JPWO2022127019A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2022127019A5
JPWO2022127019A5 JP2022512788A JP2022512788A JPWO2022127019A5 JP WO2022127019 A5 JPWO2022127019 A5 JP WO2022127019A5 JP 2022512788 A JP2022512788 A JP 2022512788A JP 2022512788 A JP2022512788 A JP 2022512788A JP WO2022127019 A5 JPWO2022127019 A5 JP WO2022127019A5
Authority
JP
Japan
Prior art keywords
gas
hcl
adsorption
rectification
chlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022512788A
Other languages
Japanese (ja)
Other versions
JP2023535850A (en
Publication date
Priority claimed from CN202011485842.2A external-priority patent/CN112707373B/en
Application filed filed Critical
Publication of JP2023535850A publication Critical patent/JP2023535850A/en
Publication of JPWO2022127019A5 publication Critical patent/JPWO2022127019A5/ja
Pending legal-status Critical Current

Links

Description

前記FTrPSAによるHF/HCl含有エッチング排ガスの分離及び回収循環再利用方法は、
(1)原料ガスの温度が常温であり、圧力が0.2~0.3MPaであるように制御し、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とを含む前処理ユニットに送り込み、順にダスト、粒子、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、前処理を経て形成された浄化原料ガスをクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔の底部から入らせて吸収剤と向流交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を一段目のPSA(1#PSA)吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してから次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目のPSA(2#PSA)吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合してから戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、中温圧力スイング吸着工程からの粗HFガスが凝縮してから得られた精製HF液体をHF精留工程における精留塔に入らせ、精製HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、それを直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段又は下段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を多段蒸発・圧縮・凝縮工程に入らせ、残りの一部を排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体をHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、残りの一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、他の一部をクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を導入し、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合して排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガスと、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した不凝縮ガス5及びHCl精製工程からの不凝縮ガス7を混合したのちに排ガス吸収塔に入らせ、吸収塔の底部で形成したフルオロケイ酸溶液を原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The method for separating, recovering and recycling the etching exhaust gas containing HF/HCl using the FTrPSA is as follows:
(1) Controls the temperature of the raw material gas to be room temperature and the pressure to 0.2 to 0.3 MPa, and includes a dust remover, a particle removal filter, an oil smoke removal collector, and an activated carbon adsorber. The gas is sent to a pretreatment unit to sequentially remove dust, particles, oil smoke, VOC, high fluorine silane/acid, and high chlorine silane, and the purified raw material gas formed through pretreatment is sent to the chlorosilane/HCl spray absorption process. processing step;
(2) A spray absorption tower that uses a mixed liquid of chlorosilane and HCl as an absorbent is used as the reactor, and after heat-exchanging the purified raw material gas from the pretreatment process to 50 to 80°C, it is introduced from the bottom of the spray absorption tower. The absorption liquid enriched with chlorosilane/HCl flows out from the bottom of the spray absorption tower and enters the subsequent multi-stage evaporation, compression and condensation process, while at the same time a small amount flows out from the bottom of the tower. Foreign substances such as residual particles, high chlorine silane, and high fluorine silane/acid are sent out for environmental protection treatment, and a non-condensable gas 1 enriched with HF and low-boiling components flows out from the top of the spray absorption tower, which is then heated to medium temperature. a chlorosilane/HCl spray absorption step to enter a pressure swing adsorption step;
(3) It consists of a two-stage pressure swing adsorption process, and each stage of the pressure swing adsorption process consists of two or more adsorption towers, at least one adsorption tower is in the adsorption step and the remaining adsorption towers are in the desorption step. , the non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced from the bottom of the first-stage PSA (1#PSA) adsorption tower, the operating pressure of 1#PSA is 0.2-0.3 MPa, and the operating temperature is is 50 to 80°C, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, and the non-condensable gas 2 formed through condensation is subjected to precision filtration and absorption with deionized water. After doing this, an HF aqueous solution with a concentration of 40% is obtained and sent out to the outside, and the non-condensable gas 3 formed through water absorption is a hydrogen-enriched gas, which can be sent out and used as a fuel gas, or can be used as a pressure swing. It is used as a raw material gas for hydrogen purification by adsorption, and the crude HF liquid formed through condensation is microfiltered and then entered into the next step, HF rectification step, from the bottom of the 1#PSA adsorption tower in the desorption step. The outflowing desorbed gas is subjected to pressure increase and heat exchange, and then enters from the bottom of the second stage PSA (2#PSA) adsorption tower, and the operating pressure of the 2#PSA adsorption tower is 0.2 to 0.3 MPa. , the operating temperature is 50-80 °C, and the intermediate gas of the non-adsorbed phase flowing out from the top of the 2#PSA adsorption tower in the adsorption step is mixed with the non-condensable gas 1 from the chlorosilane/HCl spray absorption step and then returned. The desorption gas flowing out from the bottom of the 2# PSA adsorption column is a concentrated gas, which is returned to the chlorosilane/HCl spray absorption process, and further recovered the active ingredients HF and HCl. a medium temperature pressure swing adsorption step to recover the active ingredient;
(4) Contains a rectification column consisting of two stages of upper and lower rectification, in which the purified HF liquid obtained after condensing the crude HF gas from the medium temperature pressure swing adsorption step enters the rectification column in the HF rectification step. , the purified HF liquid is introduced from the top of the lower rectification column or the bottom of the upper rectification column, and the light component foreign gas distilled out at the top of the upper rectification column is returned to the subsequent exhaust gas absorption process, and the upper rectification is carried out. The non-condensable gas 4 formed through condensation of the distillate at the bottom of the column or the top of the lower rectification column is anhydrous HF (AHF) gas with a purity of 99.99% or more, which is directly converted into electronic grade. The HF product gas is returned to the dry etching process and used for circulation, and the liquid formed through condensation is used as the reflux of the upper or lower rectification, containing a small amount of heavy foreign substances distilled out at the bottom of the lower rectification. A part of the non-condensable gas 5 formed through condensation of the column bottom fluid is passed through a multi-stage evaporation, compression and condensation process, and the remaining part is passed through an exhaust gas absorption process to absorb the liquid formed through condensation. an HF rectification process in which the chlorosilane/HCl spray is recycled and used as an absorption process;
(5) The absorption liquid from the chlorosilane/HCl spray absorption process is entered into a multi-stage evaporation process and then into a condenser, from which crude HCl gas in the gas phase is obtained, and the heavy components from the HF rectification process are The bottom fluid of the column is condensed and then mixed with the resulting non-condensable gas 5, and the crude HCl liquid formed through condensation is allowed to enter the HCl purification process, and the crude chlorosilane liquid flows out from the condenser, which is then The non-condensable gas 6 flowing out from the condenser is heat-exchanged and returned to the medium-temperature pressure swing adsorption process, and the active components HF and HCl are further recovered. process and
(6) Including an HCl rectification column and a vacuum rectification column, the operating pressure of the HCl rectification column is 0.3 to 0.6 MPa, the operating temperature is 50 to 80°C, and the operating pressure of the vacuum rectification column is is -0.08 to -0.1 MPa, the operating temperature is 60 to 120 °C, and a part of the HCl product gas with a purity greater than 99.99% flowing out from the top of the HCl rectification column is subjected to a dry etching process. The remaining part is liquefied and recycled as an absorbent in the chlorosilane/HCl spray absorption process. The top gas flowing out from the top of the distillation column is a non-condensable gas 7, a part of which is passed into the subsequent flue gas absorption process, the other part is returned to the medium temperature pressure swing adsorption process, and the other part is sent to the bottom of the vacuum rectification column. A HCl purification step in which a part of the heavy components flowing out from the HCl is returned to a multistage evaporation, compression, and condensation step, and the other part is sent to a weak cold rectification step in chlorosilane;
(7) Including a rectification column, introducing the crude chlorosilane liquid from the multi-stage evaporation/compression/condensation process and/or the heavy component fluid at the bottom of the vacuum column from the HCl purification process, with an operating temperature of -35 to 10°C. The operating pressure is 0.6 to 2.0 MPa, and the non-condensable gas 8 flowing out from the top of the rectification column is heat-exchanged and then returned to the medium-temperature pressure swing adsorption process, and is then passed from the bottom of the rectification column. A portion of the effluent chlorosilane liquid is mixed with HCl to form a mixed liquid and recycled as an absorbent back to the chlorosilane/HCl spray absorption process, and another portion is mixed with sulfuric acid for absorption in the exhaust gas absorption process. A weak cold rectification process in chlorosilane used as an agent,
(8) An exhaust gas absorption tower using a mixture of chlorosilane liquid from the weak cold rectification process and fresh sulfuric acid as an absorbent is used as a reactor, and distillation is carried out at the top of the upper rectification tower from the HF rectification process. The foreign substance gas of the light components obtained was mixed with non-condensable gas 5 formed through condensation of heavy components flowing out from the bottom of the lower rectifying column from the HF rectification process and non-condensable gas 7 from the HCl purification process. The fluorosilicic acid solution formed at the bottom of the absorption tower is then fed into the exhaust gas absorption tower, sent out as a raw material, and recycled as a raw material liquid in the production process of preparing AHF using the fluorosilicic acid removal method. It includes an exhaust gas absorption step of directly discharging the outflowing non-condensable gas 9 as exhaust gas.

具体的な実施工程は、
(1)原料ガスを増圧した後に、除塵機と、粒子除去フィルタと、油煙除去捕集器と、
活性炭吸着器とからなる前処理ユニットに送り込み、0.2~0.3MPaの圧力と常温の操作条件下で、順にダスト、粒子(SS)、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、形成された浄化原料ガスを次の工程であるクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔に底部から導入し、クロロシランとHCl(1:1~1.4)の混合液体を吸収剤として採用し、スプレー吸収塔の頂部から下へスプレーして浄化原料ガスと向流交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを次の工程である中温圧力スイング吸着工程に直接入らせるクロロシラン/HClスプレー吸収工程と、
(3)クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を二段の圧力スイング吸着(PSA)からなる中温圧力スイング吸着工程に入らせ、一段目、二段目の圧力スイング吸着(1#PSA、2#PSA)がいずれも3つの吸着塔からなり、そのうち1つの吸着塔が吸着ステップにあり、残りの2つの吸着塔が降圧・逆ガス抜き又は真空引き、
昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、不凝縮ガス1を1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過(10マイクロメートルより小さい)した後に次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスを0.2~0.3MPaに増圧した後に2#PSA吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合して戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)中温圧力スイング吸着工程からの粗HFガスが凝縮を経て形成した精製HF液体をHF精留工程の精留塔に入らせ、本工程の精留塔が上下二段の精留からなり、精製HF液体を下段精留の頂部に入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に入らせて処理し、上段精留の底部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の70%を次の工程である多段蒸発・圧縮・凝縮工程に入らせ、30%を後続の排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、二段の精留塔の操作温度が18~100℃であり、操作圧力が0.03~0.2MPaであるHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体を次の工程であるHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)多段蒸発・圧縮・凝縮工程からの粗HCl液体をHCl精留塔と真空精留塔からなるHCl精製工程に入らせ、HCl精留塔の操作圧力が0.3~0.6MPaであり、
操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.
99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、
一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、
HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガス(不凝縮ガス7)の一部を後続の排ガス吸収工程に入らせ、一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、一部を次の工程であるクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を混合した後に入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部がHClと適切な割合(1:1~1.4)で混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、一部を硫酸と混合して次の工程である排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガス、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した一部の不凝縮ガス5及びHCl精製工程からの一部の不凝縮ガス7を混合した後に、クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔に入らせ、吸収塔の底部でフルオロケイ酸溶液を形成し、原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The specific implementation process is
(1) After increasing the pressure of the raw material gas, a dust remover, a particle removal filter, an oil smoke removal collector,
Dust, particles (SS), oil smoke, VOC, high fluorine silane/acid, and high chlorine silane are fed into a pretreatment unit consisting of an activated carbon adsorber and operated under a pressure of 0.2 to 0.3 MPa and room temperature. a pretreatment step in which the purified raw material gas formed is allowed to enter the next step, a chlorosilane/HCl spray absorption step;
(2) After heat-exchanging the purified raw material gas from the pretreatment process to 50-80°C, it is introduced from the bottom into the spray absorption tower, and a mixed liquid of chlorosilane and HCl (1:1-1.4) is used as an absorbent. The chlorosilane/HCl-enriched absorption liquid flows out from the bottom of the spray absorption tower and is then used for subsequent multi-stage evaporation and compression.・At the same time, a small amount of residual particles, high chlorine silane, high fluorine silane/acid, and other foreign substances flowing out from the bottom of the tower are sent out for environmental protection treatment, and HF and low boiling point components are removed from the top of the spray absorption tower. a chlorosilane/HCl spray absorption step in which the enriched non-condensable gas 1 flows out and enters directly into the next step, a medium temperature pressure swing adsorption step;
(3) The non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced into a medium-temperature pressure swing adsorption process consisting of two stages of pressure swing adsorption (PSA). , 2#PSA) each consists of three adsorption towers, one of which is in the adsorption step, and the remaining two adsorption towers are used for pressure reduction, reverse gas venting or evacuation,
In the desorption step, which includes different stages of pressurization or final gas filling, the non-condensable gas 1 enters from the bottom of the 1#PSA adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, and the operating temperature is is 50 to 80°C, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, and the non-condensable gas 2 formed through condensation is subjected to precision filtration and absorption with deionized water. After doing this, an HF aqueous solution with a concentration of 40% is obtained and sent out to the outside, and the non-condensable gas 3 formed through water absorption is hydrogen-enriched gas, which is sent out and used as a fuel gas, but after condensation. The formed crude HF liquid is subjected to microfiltration (less than 10 micrometers) before entering the next step, the HF rectification step, and the desorption gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is reduced to 0.2 After increasing the pressure to ~0.3 MPa, it is introduced from the bottom of the 2#PSA adsorption tower, and the operating pressure of the 2#PSA adsorption tower is 0.2~0.3 MPa, the operating temperature is 50~80°C, The intermediate gas of the non-adsorbed phase flowing out from the top of the 2# PSA adsorption tower in the step is mixed with the non-condensable gas 1 from the chlorosilane/HCl spray absorption process and fed back into the 1# PSA adsorption tower, and then the active ingredient A medium-temperature pressure swing adsorption step in which HF and HCl are recovered, and the desorption gas flowing out from the bottom of the 2#PSA adsorption tower is a concentrated gas, which is returned to the chlorosilane/HCl spray absorption step to further recover the active ingredient;
(4) The purified HF liquid formed through condensation of the crude HF gas from the medium temperature pressure swing adsorption process is introduced into the rectification column of the HF rectification process, and the rectification column of this process consists of two stages of upper and lower rectification. , the purified HF liquid enters the top of the lower rectifier, the light component foreign gas distilled at the top of the upper rectifier is processed by entering the subsequent exhaust gas absorption process, and the purified HF liquid enters the bottom of the upper rectifier. The non-condensable gas 4 formed by the condensation of the output is anhydrous HF (AHF) gas, with a purity of 99.99% or more, which can be directly recycled into the dry etching process as an electronic grade HF product gas, The liquid formed through the condensation is used as the reflux of the upper rectification, and the non-condensable gas 5 formed through the condensation of the column bottom fluid containing a small amount of foreign matter components of heavy components distilled at the bottom of the lower rectification. 70% goes into the next step, a multi-stage evaporation/compression/condensation step, and 30% goes into the subsequent exhaust gas absorption step, and the liquid formed through condensation is returned to the chlorosilane/HCl spray absorption step as an absorbent. An HF rectification process in which the HF rectification process is used in circulation, the operating temperature of the two-stage rectification column is 18 to 100°C, and the operating pressure is 0.03 to 0.2 MPa;
(5) The absorption liquid from the chlorosilane/HCl spray absorption process is entered into a multi-stage evaporation process and then into a condenser, from which crude HCl gas in the gas phase is obtained, and the heavy components from the HF rectification process are The column bottom fluid is condensed and mixed with the obtained non-condensable gas 5, and the crude HCl liquid formed through condensation is allowed to enter the next step, the HCl purification step, and the crude chlorosilane liquid flows out from the condenser. Then, it is subjected to a subsequent weak cold rectification process in chlorosilane, and the non-condensable gas 6 flowing out from the condenser is heat exchanged, and then returned to the medium temperature pressure swing adsorption process, and the active ingredients HF and HCl are further recovered. Evaporation, compression, and condensation steps;
(6) The crude HCl liquid from the multistage evaporation/compression/condensation process is introduced into an HCl purification process consisting of an HCl rectification column and a vacuum rectification column, and the operating pressure of the HCl rectification column is 0.3 to 0.6 MPa. can be,
The operating temperature is 50 to 80 °C, the operating pressure of the vacuum rectification column is -0.08 to -0.1 MPa, the operating temperature is 60 to 120 °C, and the purity flowing out from the top of the HCl rectification column is is 99.
recycling a portion of the HCl product gas greater than 99% back into the dry etching process;
A portion is liquefied and recycled as an absorbent in the chlorosilane/HCl spray absorption process,
The effluent at the bottom of the HCl rectification column is passed into the vacuum rectification column, and a part of the overhead gas (non-condensable gas 7) flowing out from the top of the vacuum rectification column is passed into the subsequent exhaust gas absorption step. part is returned to the medium-temperature pressure swing adsorption process, a part of the heavy components flowing out from the bottom of the vacuum rectification column is returned to the multistage evaporation/compression/condensation process, and a part is sent to the next process, which is weak cold rectification in chlorosilane. an HCl purification step to be entered into the process;
(7) the crude chlorosilane liquid from the multistage evaporation/compression/condensation process and/or the heavy component fluid at the bottom of the vacuum column from the HCl purification process are mixed together, and the operating temperature is -35 to 10°C; The operating pressure is 0.6 to 2.0 MPa, and the non-condensable gas 8 flowing out from the top of the rectification column is heat-exchanged and then returned to the medium temperature pressure swing adsorption process, and the chlorosilane flowing out from the bottom of the rectification column is A part of the liquid is mixed with HCl in an appropriate ratio (1:1~1.4) and recycled back to the chlorosilane/HCl spray absorption process as an absorbent, and a part is mixed with sulfuric acid. A weak cold rectification step in chlorosilane, which is used as an absorbent in the next step, the exhaust gas absorption step,
(8) Light component foreign gas distilled out at the top of the upper rectification column from the HF rectification process and heavy components flowing out from the bottom of the lower rectification column from the HF rectification process are formed through condensation. After mixing some non-condensable gas 5 and some non-condensable gas 7 from the HCl purification process, exhaust gas absorption using a mixture of chlorosilane liquid from the weak cold rectification process and fresh sulfuric acid as an absorbent in chlorosilane A fluorosilicic acid solution is formed at the bottom of the absorption tower, sent out as a raw material, and recycled as a raw material liquid in the production process of preparing AHF by the fluorosilicic acid removal method. It includes an exhaust gas absorption step of directly exhausting the condensed gas 9 as exhaust gas.

Claims (7)

(1)原料ガスの温度が常温であり、圧力が0.2~0.3MPaであるように制御し、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とを含む前処理ユニットに送り込み、順にダスト、粒子、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、前処理を経て形成された浄化原料ガスを後続のクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前記前処理工程からの前記浄化原料ガスを50~80℃まで熱交換した後、当該スプレー吸収塔の底部から入らせて、前記吸収剤と向流交換させ、当該スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に当該スプレー吸収塔の塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して、当該スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、当該不凝縮ガス1後続の中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、2つ以上の当該吸着塔の内、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、前記クロロシラン/HClスプレー吸収工程からの前記不凝縮ガス1が一段目の圧力スイング吸着1#PSA吸着塔の底部から入らせ、当該1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある当該吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収の処理を行ってからHF溶液を得て外部に送り出し、当該処理を経て形成した不凝縮ガス3が水素富化ガスであり、当該水素富化ガスを送り出し、燃料ガスとして使用するか、圧力スイング吸着による水素精製の原料ガスとして使用し、当該凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある当該1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから前記二段目の圧力スイング吸着2#PSA吸着塔の底部から入らせ、当該2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある当該2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを前記クロロシラン/HClスプレー吸収工程からの前記不凝縮ガス1と混合してから戻して当該1#PSA吸着塔に入らせ、更にHFを回収し、当該2#PSA吸着塔の底部から流出する脱着ガスを前記クロロシラン/HClスプレー吸収工程に戻中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、前記中温圧力スイング吸着工程からの前記粗HFガスが凝縮してから得られた前記HF液体をHF精留工程における精留塔に入らせ、すなわち前記粗HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、当該上段精留塔の頂部で留出された異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4無水HFガスとして乾式エッチングプロセスに戻して循環使用し、当該凝縮を経て形成した液体を当該上段精留塔又は当該下段精留塔への還流とし、当該下段精留の底部で留出された異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を後続の多段蒸発・圧縮・凝縮工程に入らせ、他の一部を後の排ガス吸収工程に入らせ、当該凝縮を経て形成した液体を前記吸収剤として前記クロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)前記クロロシラン/HClスプレー吸収工程からの前記吸収液を多段蒸発させてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、前記HF精留工程において得られた前記不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体を後のHCl精製工程に入らせ、当該凝縮器から粗クロロシラン液体が流出し、当該粗クロロシラン液体を後続のクロロシラン中弱冷精留工程に入らせ、当該凝縮器から流出する不凝縮ガス6を熱交換してから前記中温圧力スイング吸着工程に戻多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、当該HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、当該真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、当該HCl精留塔の頂部から流出するHClガスの一部を乾式エッチングプロセスに戻して循環使用し、他の一部を液化してから前記クロロシラン/HClスプレー吸収工程の前記吸収剤として循環使用し、当該HCl精留塔の底部の流出物を当該真空精留塔に入らせ、当該真空精留塔の頂部から流出するガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を前記中温圧力スイング吸着工程に戻し、当該真空精留塔の底部から流出する流体の一部を前記多段蒸発・圧縮・凝縮工程に戻し、他の一部を後続のクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、前記多段蒸発・圧縮・凝縮工程からの前記粗クロロシラン液体、及び/又は前記HCl精製工程において前記真空精留塔底部から流出する前記流体を当該精留塔に入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、当該精留塔の塔頂から流出する不凝縮ガス8を熱交換してから前記中温圧力スイング吸着工程に戻し、当該精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、当該混合液を吸収剤として前記クロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合しこの混合液を後続の排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)前記クロロシラン中弱冷精留工程からのクロロシラン液体と硫酸の前記混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、前記HF精留工程において前記上段精留塔の頂部で留出された前記異物ガス前記HF精留工程からの前記不凝縮ガス5及び前記HCl精製工程からの前記不凝縮ガス7を排ガス吸収塔に入らせ、当該排ガス吸収塔の底部でフルオロケイ酸溶液を形成し、送り出し、フルオロケイ酸除去方法によりAHFを調製する生産プロセスにおける原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、
を含む
ことを特徴とするFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
(1) Controls the temperature of the raw material gas to be room temperature and the pressure to 0.2 to 0.3 MPa, and includes a dust remover, a particle removal filter, an oil smoke removal collector, and an activated carbon adsorber. The gas is sent to a pretreatment unit to sequentially remove dust, particles, oil smoke, VOC, high fluorine silane/acid, and high chlorine silane, and the purified raw material gas formed through the pretreatment is sent to the subsequent chlorosilane/HCl spray absorption process. a pretreatment step to
(2) A spray absorption tower using a mixed liquid of chlorosilane and HCl as an absorbent is adopted as a reactor, and after heat-exchanging the purified raw material gas from the pretreatment step to 50 to 80°C, the bottom of the spray absorption tower is The absorption liquid enriched with chlorosilane/HCl flows out from the bottom of the spray absorption tower and enters the subsequent multi-stage evaporation, compression, and condensation steps, and at the same time A small amount of foreign matter such as residual particles, high chlorine silane, high fluorine silane/acid flowing out from the bottom of the spray absorption tower is sent out, and a non-condensable gas enriched with HF and low boiling point components is produced from the top of the spray absorption tower 1. a chlorosilane/HCl spray absorption step in which the non-condensable gas 1 is introduced into a subsequent medium temperature pressure swing adsorption step;
(3) Consisting of a two-stage pressure swing adsorption process, each stage of the pressure swing adsorption process consists of two or more adsorption towers, and at least one of the two or more adsorption towers is in the adsorption step. , the remaining adsorption tower is in the desorption step, and the non-condensable gas 1 from the chlorosilane/HCl spray absorption step is allowed to enter from the bottom of the first stage pressure swing adsorption 1#PSA adsorption tower, and the operation of the 1#PSA tower is The pressure is 0.2-0.3 MPa, the operating temperature is 50-80°C, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, which is formed through condensation. The non-condensable gas 2 is subjected to precision filtration and absorption with deionized water to obtain an HF solution and sent to the outside, and the non-condensable gas 3 formed through this process is a hydrogen-enriched gas. The enriched gas is sent out and used as a fuel gas or as a raw material gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed through the condensation is microfiltered before entering the HF rectification process for desorption. The desorption gas flowing out from the bottom of the 1#PSA adsorption tower in the step is pressurized and heat exchanged, and then enters the second stage pressure swing adsorption from the bottom of the 2#PSA adsorption tower to adsorb the 2#PSA adsorption tower. The operating pressure of the tower is 0.2-0.3 MPa, the operating temperature is 50-80°C, and the intermediate gas of the non-adsorbed phase flowing out from the top of the 2#PSA adsorption tower in the adsorption step is mixed with the chlorosilane/ The non -condensable gas 1 from the HCl spray absorption step is mixed with the non-condensable gas 1 and returned to enter the 1# PSA adsorption tower, HF is further recovered, and the desorption gas flowing out from the bottom of the 2# PSA adsorption tower is converted into the chlorosilane. a medium temperature pressure swing adsorption step returning to the /HCl spray absorption step;
(4) A rectification column consisting of two stages of upper and lower rectification, the crude HF liquid obtained after the crude HF gas from the medium temperature pressure swing adsorption step is condensed into the rectification column in the HF rectification step. In other words, the crude HF liquid is introduced from the top of the lower rectification column or the bottom of the upper rectification column, and the foreign gas distilled at the top of the upper rectification column is returned to the subsequent exhaust gas absorption step; The non-condensable gas 4 formed through condensation of the distillate at the bottom of the upper rectification column or the top of the lower rectification column is returned to the dry etching process as anhydrous HF gas for circulation use, and the liquid formed through the condensation is recycled. A part of the non-condensable gas 5 that is refluxed to the upper rectifying column or the lower rectifying column and formed through condensation of the column bottom fluid containing foreign substances distilled at the bottom of the lower rectifying column. into the subsequent multistage evaporation, compression , and condensation step, and the other part into the subsequent exhaust gas absorption step, and the liquid formed through the condensation is returned to the chlorosilane/HCl spray absorption step as the absorbent. An HF rectification process that uses circulation;
(5) The absorption liquid from the chlorosilane / HCl spray absorption step is evaporated in multiple stages and then entered into a condenser, from which crude HCl gas in the gas phase is obtained, and the absorption liquid obtained in the HF rectification step is The crude HCl liquid formed by mixing with the non-condensable gas 5 and condensing is allowed to enter the subsequent HCl purification step, and the crude chlorosilane liquid flows out from the condenser, and the crude chlorosilane liquid is subjected to subsequent weak cold rectification in the chlorosilane. a multi-stage evaporation/compression/condensation process in which the non-condensable gas 6 flowing out from the condenser is heat exchanged and then returned to the medium temperature pressure swing adsorption process;
(6) Including an HCl rectification column and a vacuum rectification column, the operating pressure of the HCl rectification column is 0.3 to 0.6 MPa, the operating temperature is 50 to 80°C, and the vacuum rectification column is The operating pressure is -0.08 to -0.1 MPa, the operating temperature is 60 to 120°C, and a part of the HCl gas flowing out from the top of the HCl rectification column is returned to the dry etching process and used for circulation. , the other part is liquefied and recycled as the absorbent in the chlorosilane/HCl spray absorption step, and the effluent at the bottom of the HCl rectification column is fed into the vacuum rectification column to perform the vacuum rectification. The gas flowing out from the top of the column is a non-condensable gas 7, a part of which is passed into the subsequent exhaust gas absorption process, the other part is returned to the medium temperature pressure swing adsorption process, and is then collected from the bottom of the vacuum rectification column. A HCl purification step in which a part of the flowing fluid is returned to the multistage evaporation, compression, and condensation step, and the other part is entered into a subsequent weak cold rectification step in chlorosilane;
(7) A rectification column, in which the crude chlorosilane liquid from the multistage evaporation/compression/condensation step and/or the fluid flowing out from the bottom of the vacuum rectification column in the HCl purification step is sent to the rectification column. The operating temperature is -35 to 10°C, the operating pressure is 0.6 to 2.0 MPa, and the non-condensable gas 8 flowing out from the top of the rectification column is heat exchanged, and then Returning to the swing adsorption step, a portion of the chlorosilane liquid flowing out from the bottom of the rectification column is mixed with HCl to form a mixture, and the mixture is returned to the chlorosilane/HCl spray absorption step as an absorbent. A weak cold rectification process in chlorosilane in which the mixture is recycled and the other part is mixed with sulfuric acid and this mixed liquid is used as an absorbent in the subsequent exhaust gas absorption process;
(8) An exhaust gas absorption tower using the mixture of chlorosilane liquid from the weak cold rectification process in chlorosilane and sulfuric acid as an absorbent is used as a reactor, and in the HF rectification process, distillation is carried out at the top of the upper rectification tower. The discharged foreign gas , the non -condensable gas 5 from the HF rectification process, and the non-condensable gas 7 from the HCl purification process are allowed to enter an exhaust gas absorption tower, and a fluorosilicic acid solution is formed at the bottom of the exhaust gas absorption tower. an exhaust gas absorption step in which the non-condensable gas 9 flowing out from the top of the absorption tower is directly discharged as exhaust gas;
A method for separating, collecting and recycling an etching exhaust gas containing HF/HCl using FTrPSA, comprising:
前記前処理工程の前記原料ガスにおけるHClの含有量が1%より小さい場合、前記浄化原料ガスを前記中温圧力スイング吸着工程に直接入らせ、前記1#PSA吸着塔の塔頂から流出する前記粗HFガスが凝縮を経て形成した前記不凝縮ガス2に対して精密濾過及び脱イオン水による吸収の前記処理を行ってからHF溶液を得て外部に送り出し、当該処理を経て形成した不凝縮ガス3が水素富化ガスであり、当該水素富化ガスを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してから前記HF精留工程に入らせ、脱着ステップにある当該1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから前記2#PSA吸着塔の底部から入らせ、吸着ステップにある当該2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して当該1#PSA吸着塔に入らせ、更にHFを回収し、当該2#PSA吸着塔の底部から流出する脱着ガスを、前記凝縮器とは別の凝縮器を経てから形成した不凝縮ガス1を更に前記中温圧力スイング吸着工程の前記粗HFガスと混合してHFを回収し、新しく増設された当該別の凝縮器の後に形成した液体を前記HCl精製工程に直接入らせてHClを回収し、当該HCl精製工程において前記真空精留塔の底部から流出する前記流体を処理してから直接排出することで、前記クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省く
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
When the content of HCl in the raw material gas in the pretreatment step is less than 1%, the purified raw material gas is directly introduced into the medium temperature pressure swing adsorption step, and the crude oil flowing out from the top of the 1#PSA adsorption tower is The non-condensable gas 2 formed through condensation of HF gas is subjected to the above- mentioned processes of precision filtration and absorption with deionized water, and then an HF solution is obtained and sent to the outside, and the non-condensable gas 3 formed through the process is is a hydrogen-enriched gas, and the hydrogen-enriched gas is sent out and used as a fuel gas, or used as a raw material gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed through condensation is microfiltered. The desorption gas flowing out from the bottom of the 1# PSA adsorption tower in the desorption step is pressurized and heat exchanged, and then enters the HF rectification process from the bottom of the 2# PSA adsorption tower to perform adsorption. The intermediate gas of the non-adsorbed phase flowing out from the top of the 2#PSA adsorption tower in the step is directly returned to the 1#PSA adsorption tower, and HF is further recovered and flows out from the bottom of the 2#PSA adsorption tower. The desorbed gas is passed through a condenser different from the condenser, and then the non-condensable gas 1 formed is further mixed with the crude HF gas from the medium temperature pressure swing adsorption process to recover HF. The liquid formed after the separate condenser directly enters the HCl purification step to recover HCl, and in the HCl purification step, the fluid flowing out from the bottom of the vacuum rectification column is treated and then directly discharged. The separation, recovery, circulation and recirculation of HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, wherein the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, and moderately cold chlorosilane rectification steps are omitted. How to Use.
前記前処理工程の前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前記前処理工程からの前記浄化原料ガスを80~160℃まで熱交換した後に前記クロロシラン/HClスプレー吸収工程に入らせ、前記スプレー吸収塔の頂部から流出する前記不凝縮ガス1が凝縮を経て形成した前記不凝縮ガス2を更に二段のPSAからなる前記中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体を前記HCl精製工程に直接入らせ、前記スプレー吸収塔の底部から流出する吸収液を前記多段蒸発・圧縮・凝縮工程に入らせる
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
When the concentration of HF in the raw material gas in the pretreatment step is lower than the concentration of HCl, the purified raw material gas from the pretreatment step is heat exchanged to 80 to 160 ° C. and then enters the chlorosilane/HCl spray absorption step. , the non -condensable gas 2 formed through condensation of the non -condensable gas 1 flowing out from the top of the spray absorption tower is further fed into the medium- temperature pressure swing adsorption process consisting of two stages of PSA, and the condensate formed through condensation is HF / HCl by FTrPSA according to claim 1, characterized in that the liquid directly enters the HCl purification step, and the absorption liquid flowing out from the bottom of the spray absorption tower enters the multistage evaporation/compression/condensation step. Separation and recovery circulation reuse method of etching exhaust gas.
前記前処理工程の前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの前記浄化原料ガスを80~160℃まで熱交換した後に前記クロロシラン/HClスプレー吸収工程に入らせ、前記スプレー吸収塔の頂部から流出する前記不凝縮ガス1が凝縮を経て形成した前記不凝縮ガス2を更に二段のPSAからなる前記中温圧力スイング吸着工程に入らせ、当該不凝縮ガス2を前記1#PSA吸着塔の底部から入らせ、当該1#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある当該1#PSA吸着塔の頂部から流出する前記非吸着相ガスが中間ガスであり、当該中間ガス前記2#PSA吸着塔の底部に入らせ、吸着ステップにある当該2#PSA吸着塔の頂部から流出する非吸着相ガスが前記粗HFガスであり、凝縮を経て形成した前記不凝縮ガス3に対して精密濾過及び脱イオン水による吸収の処理を行ってからHF水溶液を得て外部に送り出し、当該処理を経て形成した前記不凝縮ガス4が水素富化ガスであり、当該水素富化ガスを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してから前記HF精留工程に入らせ、脱着ステップにある当該1#PSA吸着塔の底部から流出する脱着ガス及び当該2#PSA吸着塔の底部から流出する脱着ガスをそれぞれ前記クロロシラン/HClスプレー吸収工程に戻し、更にHFを回収し、前記不凝縮ガス1が凝縮を経て形成した凝縮液体を前記HCl精製工程に直接入らせ、前記スプレー吸収塔の底部から流出する吸収液を前記多段蒸発・圧縮・凝縮工程に入らせる
ことを特徴とする請求項3に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
When the concentration of HF in the raw material gas in the pretreatment step is lower than the concentration of HCl, the purified raw material gas from the pretreatment step is heat exchanged to 80 to 160 ° C. and then enters the chlorosilane/HCl spray absorption step; The non -condensable gas 2 formed through condensation of the non -condensable gas 1 flowing out from the top of the spray absorption tower is further fed into the medium- temperature pressure swing adsorption step consisting of two stages of PSA, and the non-condensable gas 2 is The 1#PSA adsorption tower is introduced from the bottom, and the operating pressure of the 1#PSA adsorption tower is 0.2~0.3MPa, the operating temperature is 50~80℃, and the 1#PSA adsorption tower is in the adsorption step. The non-adsorbed phase gas flowing out from the top of the column is an intermediate gas, and the intermediate gas is allowed to enter the bottom of the 2#PSA adsorption column, and the non-adsorbed phase gas flowing out from the top of the 2#PSA adsorption column in the adsorption step is The phase gas is the crude HF gas, and the non-condensable gas 3 formed through condensation is subjected to precision filtration and absorption with deionized water, and then an HF aqueous solution is obtained and sent to the outside, and after the treatment, The formed non -condensable gas 4 is a hydrogen-enriched gas, and the hydrogen-enriched gas is sent out and used as a fuel gas, or used as a raw material gas for hydrogen purification by pressure swing adsorption, and the crude gas formed through condensation is The HF liquid is subjected to precision filtration and then entered into the HF rectification process, and the desorption gas flowing out from the bottom of the 1# PSA adsorption tower and the desorption gas flowing out from the bottom of the 2# PSA adsorption tower in the desorption step are respectively Returning to the chlorosilane/HCl spray absorption step, further recovering HF , and directing the condensed liquid formed by the condensation of the non -condensable gas 1 to the HCl purification step, the absorption liquid flowing out from the bottom of the spray absorption tower. 4. The method for separating, collecting and recycling an etching exhaust gas containing HF/HCl using FTrPSA according to claim 3, wherein the HF/HCl-containing etching exhaust gas is subjected to the multi-stage evaporation/compression/condensation process.
前記前処理工程の前記原料ガスにおけるHFとHClの濃度が合計で3%を超えていない場合、前記当該原料ガスに前記前処理工程を行って得られた前記浄化原料ガスを前記クロロシラン/HClスプレー吸収工程を経て前記二段の圧力スイング吸着工程からなる前記中温圧力スイング吸着工程を行うことに代えて、当該浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、当該一段のPSAが2つ以上の吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き、昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、当該吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、前記浄化原料ガスを当該吸着塔の底部から入らせ、吸着ステップにある当該吸着塔の頂部から流出する非吸着相ガスが吸着ガスであり、それを燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、脱着ステップにある当該吸着塔の底部から流出する脱着ガスが凝縮を経て形成した前記不凝縮ガス1を浄化原料ガスと混合して前記中温圧力スイング吸着工程に戻し、更にHFを回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する前記不凝縮ガス2を前記排ガス吸収工程に入らせて処理し、前記HF精留工程から流出するHFガスを乾式エッチングプロセスに戻して循環使用し、前記HF精留塔の底部から流出する前記流体を前記HCl精製工程に直接入らせ、このようにHClガスを得て、乾式エッチングプロセスに戻して循環使用し、前記クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省く
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
If the total concentration of HF and HCl in the raw material gas in the pretreatment step does not exceed 3% in total, the purified raw material gas obtained by performing the pretreatment step on the raw material gas is sprayed with the chlorosilane/HCl. Instead of performing the medium-temperature pressure swing adsorption step consisting of the two-stage pressure swing adsorption step after the absorption step, the purified raw material gas is directly entered into the medium-temperature pressure swing adsorption step consisting of one stage of PSA, the PSA consists of two or more adsorption columns, one adsorption column is in the adsorption step and the remaining adsorption columns are in the desorption step, including different stages of depressurization and back-venting or evacuation, pressurization or final gas filling; The operating pressure of the adsorption tower is 0.2 to 0.3 MPa, the operating temperature is 70 to 90° C., the purified raw material gas is introduced from the bottom of the adsorption tower, and the top of the adsorption tower is in the adsorption step. The non-adsorbed phase gas flowing out from the adsorption tower is the adsorbed exhaust gas , which is used as a fuel gas or as a raw material gas for hydrogen purification by pressure swing adsorption, and the desorption phase gas flowing out from the bottom of the adsorption tower in the desorption step. The non -condensable gas 1 formed through condensation is mixed with the purified raw material gas and returned to the medium temperature pressure swing adsorption step, HF is further recovered, and the condensed liquid formed through condensation is further entered into the HF rectification step. The non -condensable gas 2 flowing out from the HF rectification step is treated by entering the exhaust gas absorption step, and the HF gas flowing out from the HF rectification step is returned to the dry etching process for circulation use . The fluid flowing out from the bottom of the distillation column directly enters the HCl purification process, thus obtaining HCl gas , which is recycled back to the dry etching process to perform the chlorosilane/HCl spray absorption, multi-stage evaporation, compression and 2. The method for separating, collecting and recycling an etching exhaust gas containing HF/HCl using FTrPSA according to claim 1, characterized in that the steps of condensation and moderately cold chlorosilane rectification are omitted.
前記前処理工程の前記原料ガスにおけるHF/HClの濃度が20%を超えている場合、前記前処理工程を経た前記浄化原料ガスが凝縮を経て形成した前記不凝縮ガス1に対して、水洗により少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した前記不凝縮ガス2を燃料ガス又は圧力スイング吸着による水素精製の原料ガスとして使用し、当該凝縮を経て形成した凝縮液を前記HF精留工程に入らせ、当該HF精留工程から流出する前記不凝縮ガス3を排ガス吸収工程に入らせて処理し、当該HF精留工程から流出するHFガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する前記流体をHCl精製工程に直接入らせ、このようにHClガスを得て、乾式エッチングプロセスに戻して循環使用し、前記クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着の工程を省く
ことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
If the concentration of HF/HCl in the raw material gas in the pretreatment step exceeds 20%, the non-condensable gas 1 formed through condensation of the purified raw material gas that has undergone the pretreatment step is washed with water. Desorbing a small amount of residual acidic components, generating a dilute acid and sending it out, and using the non -condensable gas 2 formed through water washing as a fuel gas or a raw material gas for hydrogen purification by pressure swing adsorption; The condensate formed through the condensation is allowed to enter the HF rectification process, and the non -condensable gas 3 flowing out from the HF rectification process is processed by entering the exhaust gas absorption process, and then flows out from the HF rectification process. The HF gas is recycled back into the dry etching process and the fluid flowing out from the bottom of the HF rectification column is directly entered into the HCl purification process, thus obtaining HCl gas and recycled back into the dry etching process. HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, wherein the steps of chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, medium-low cooling chlorosilane rectification, and medium-temperature pressure swing adsorption are omitted. Separation, recovery and reuse method.
前記中温圧力スイング吸着工程において、圧力スイング吸着による水素精製の原料ガスが水洗後に生成された不凝縮ガス又は吸着ガスであり、まず不凝縮ガス又は吸着ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得て、1.0~3.0MPaに加圧してから、常温まで熱交換し、4つ以上の吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、吸着塔の頂部から水素が流出し、当該水素をパラジウム膜又は金属ゲッタからなる水素ガス純化工程に入らせ、純化されたH2ガスを得て、乾式エッチングプロセスに戻して循環使用するか又は外部へ送り出し、吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして直接使用する
ことを特徴とする請求項1~6のいずれか一項に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
In the medium -temperature pressure swing adsorption step, the raw material gas for hydrogen purification by pressure swing adsorption is the non-condensable gas or adsorbed exhaust gas generated after washing with water, and the non-condensable gas or adsorbed exhaust gas is first introduced into a drying tower, and then Water and acidic components containing a small amount of fluorine and chlorine are removed, followed by an adsorption purification stage to remove foreign substances including silane, phosphorane, and metal ions, and hydrogen-enriched purified methane-hydrogen is produced. After obtaining the gas and pressurizing it to 1.0 to 3.0 MPa, it is heat exchanged to room temperature, and then entered into a hydrogen purification process by pressure swing adsorption consisting of four or more adsorption towers, where hydrogen is released from the top of the adsorption tower. The hydrogen flows out and enters a hydrogen gas purification process consisting of a palladium membrane or metal getter to obtain purified H2 gas, which is returned to the dry etching process for circulation use or sent out to the outside from the bottom of the adsorption tower. Separation and recovery of HF/HCl-containing etching exhaust gas by FTrPSA according to any one of claims 1 to 6, characterized in that the outflowing desorption gas is a methane-enriched gas and is used directly as a fuel gas. Circular reuse method.
JP2022512788A 2020-12-16 2021-05-18 Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method Pending JP2023535850A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011485842.2 2020-12-16
CN202011485842.2A CN112707373B (en) 2020-12-16 2020-12-16 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
PCT/CN2021/094254 WO2022127019A1 (en) 2020-12-16 2021-05-18 Method for ftrpsa separation and recovery and recycling of hf/hcl-containing etching tail gas

Publications (2)

Publication Number Publication Date
JP2023535850A JP2023535850A (en) 2023-08-22
JPWO2022127019A5 true JPWO2022127019A5 (en) 2024-03-01

Family

ID=75543422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512788A Pending JP2023535850A (en) 2020-12-16 2021-05-18 Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method

Country Status (3)

Country Link
JP (1) JP2023535850A (en)
CN (1) CN112707373B (en)
WO (1) WO2022127019A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707373B (en) * 2020-12-16 2022-06-10 浙江天采云集科技股份有限公司 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN113860257B (en) * 2021-11-04 2022-04-22 浙江容跃环保科技有限公司 Method and system for regenerating and recycling glass thinning waste acid liquor
CN115231524B (en) * 2022-07-12 2024-03-12 浙江省天正设计工程有限公司 Separation and purification method and device for tail gas containing hydrogen fluoride in fluorine chemical production
CN115650240A (en) * 2022-09-08 2023-01-31 洛阳中硅高科技有限公司 Process for preparing monochlorosilane

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025653B2 (en) * 1996-01-29 2000-03-27 東洋エンジニアリング株式会社 Improved pressure swing adsorption method
US7790130B2 (en) * 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
JP6433867B2 (en) * 2015-08-28 2018-12-05 信越化学工業株式会社 Hydrogen gas recovery system and hydrogen gas separation and recovery method
CN105749699B (en) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 Full-temperature-range pressure swing adsorption gas separation, purification and purification method
CN105854516A (en) * 2016-03-31 2016-08-17 四川天采科技有限责任公司 Full-temperature-range pressure-swing adsorption method for simultaneously recycling H2, C2 and above components out of refinery dry gas
CN108715436B (en) * 2018-05-29 2019-11-08 四川天采科技有限责任公司 The method that the useless hydrogen Quan Wencheng Pressure Swing Adsorption of manufacture of semiconductor normal pressure recycles
CN108744882B (en) * 2018-05-29 2021-02-26 浙江天采云集科技股份有限公司 Method for recycling waste gas in LED-MOCVD process through full-temperature-range pressure swing adsorption ammonia extraction
CN108658042B (en) * 2018-05-29 2019-11-08 四川天采科技有限责任公司 A kind of LED-MOCVD processing procedure tail gas Quan Wencheng pressure-variable adsorption full constituent recycling and reusing method
CN109092010B (en) * 2018-05-29 2021-01-15 浙江天采云集科技股份有限公司 Method for recycling waste gas in LED-MOCVD process through full-temperature-range pressure swing adsorption hydrogen extraction
US11014044B2 (en) * 2018-09-03 2021-05-25 South China Institute Of Environmental Science, Mee Waste gas purification system and method
CN211799895U (en) * 2020-03-17 2020-10-30 大连海奥膜技术有限公司 Process system for separating mixed gas containing hydrogen chloride and hydrogen
CN112707373B (en) * 2020-12-16 2022-06-10 浙江天采云集科技股份有限公司 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN112591711B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas

Similar Documents

Publication Publication Date Title
US7794523B2 (en) Method for the recovery and re-use of process gases
WO2022127018A1 (en) Ftrpsa separation and purification method for refinement of electronic-grade hf from industrial-grade high-concentration hf
CN109999618B (en) System and method for separating carbon dioxide from medium-high pressure gas source
WO2023202270A1 (en) Method for graded utilization of fluorine and silicon resources in phosphate ore
CN112707373B (en) Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN112266318A (en) Method for purifying hexafluoro-1, 3-butadiene in grading manner
CN108821253B (en) Purification system and treatment method of electronic grade phosphane
CN111548244A (en) Method for recovering benzene and high-purity hydrogen in high yield from tail gas of biphenyl preparation process
JP5344114B2 (en) Hydrogen purification recovery method and hydrogen purification recovery equipment
CN113321184B (en) High-purity electronic-grade chlorine purification production device and technology thereof
CN215101986U (en) High-purity electronic grade chlorine purification apparatus for producing
CN110252268A (en) A kind of regeneration method of chlorobenzene production waste water absorption resin
CN112591711B (en) High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas
KR101955015B1 (en) method and APPARATUS for recovering nitrous oxide
CN113247862A (en) High-purity electronic-grade hydrogen chloride production device and process
JPWO2022127019A5 (en)
CN106276798B (en) A method of preparing high-purity chlorine
CN111333032A (en) Environment-friendly recovery method of hydrogen chloride tail gas in chlorothalonil production
CN116062756A (en) Process and device for preparing ultra-high purity carbonyl sulfide from industrial carbonyl sulfide
JPH11228116A (en) Recovering and purifying method of argon and device therefor
CN112744787B (en) FTrPSA separation and purification method for deeply defluorinating and drying HCl gas containing high-concentration HF
CN211716983U (en) Device for separating and purifying krypton and xenon
CN109470062B (en) Argon-containing tail gas treatment system for producing graphite for diamond by high-temperature furnace dry method
CN108821290B (en) Production device and method of carbon dioxide
JPH0420914B2 (en)