JP2023535850A - Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method - Google Patents

Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method Download PDF

Info

Publication number
JP2023535850A
JP2023535850A JP2022512788A JP2022512788A JP2023535850A JP 2023535850 A JP2023535850 A JP 2023535850A JP 2022512788 A JP2022512788 A JP 2022512788A JP 2022512788 A JP2022512788 A JP 2022512788A JP 2023535850 A JP2023535850 A JP 2023535850A
Authority
JP
Japan
Prior art keywords
gas
hcl
adsorption
rectification
chlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022512788A
Other languages
Japanese (ja)
Other versions
JPWO2022127019A5 (en
JP7541763B2 (en
Inventor
▲ア▼玲 鐘
蘭海 汪
雨明 鐘
運 陳
金財 唐
躍明 蔡
Original Assignee
浙江天采云集科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天采云集科技股▲分▼有限公司 filed Critical 浙江天采云集科技股▲分▼有限公司
Publication of JP2023535850A publication Critical patent/JP2023535850A/en
Publication of JPWO2022127019A5 publication Critical patent/JPWO2022127019A5/ja
Application granted granted Critical
Publication of JP7541763B2 publication Critical patent/JP7541763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0718Purification ; Separation of hydrogen chloride by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/196Separation; Purification by distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/197Separation; Purification by adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明は、FTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法を開示し、半導体プロセスにおけるエッチング排ガスの有効成分の回収と循環再利用の環境保護分野に関し、その主なステップは、HF/HCl含有乾式エッチング排ガスを順に前処理、クロロシラン/HClスプレー吸収、中温圧力スイング吸着、HF精留、多段蒸発・圧縮・凝縮、HCl精製、クロロシラン中弱冷精留と排ガス吸収工程を行うことにより、純度が99.99%以上のHFとHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用することであり、中温圧力スイング吸着は二段のPSAであり、HF精留は上下二段であり、HCl精製は2つの塔による精留である。本発明によれば、HF/HCl含有乾式エッチング排ガスからHFとHClを分離して回収するとともに、エッチングプロセスに戻して循環使用することが実現され、エッチングガス原料のコスト及び排ガスの環境保護処理コストが大幅に削減され、従来技術においてただ基準に達せば排出してしまい、排ガスの総合利用を実現できないことが解決され、この技術分野の空白が埋められた。【選択図】図1JPEG2023535850000002.jpg64134The present invention discloses a method for separating and recovering and recycling an etching exhaust gas containing HF/HCl using FTrPSA, and relates to the environmental protection field of recovering and recycling the effective components of an etching exhaust gas in a semiconductor process, the main steps of which are: HF/HCl-containing dry etching exhaust gas is sequentially subjected to pretreatment, chlorosilane/HCl spray absorption, medium temperature pressure swing adsorption, HF rectification, multi-stage evaporation/compression/condensation, HCl purification, weak cold rectification in chlorosilane, and exhaust gas absorption steps. HF and HCl product gases with a purity of 99.99% or higher are obtained and recycled back to the dry etching process. Medium temperature pressure swing adsorption is a two-stage PSA, and HF rectification is a two-stage PSA. HCl purification is rectification using two columns. According to the present invention, it is possible to separate and recover HF and HCl from the HF/HCl-containing dry etching exhaust gas, and to return them to the etching process for circulation use, thereby reducing the cost of etching gas raw materials and the environmental protection treatment of exhaust gas. has been significantly reduced, solving the problem of conventional technology in which exhaust gas is emitted only when it reaches the standard, making it impossible to realize comprehensive utilization of exhaust gas, and filling a gap in this technical field. [Selection diagram] Figure 1 JPEG2023535850000002.jpg64134

Description

本発明は、半導体プロセスにおけるエッチング排ガスの有効成分の回収と循環再利用の環境保護分野に関し、より具体的には、FTrPSA(全温度範囲圧力スイング吸着)によるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法に関する。 The present invention relates to the environmental protection field of recovery and recycling of effective components of etching exhaust gas in semiconductor processes, and more specifically, separation and recovery of HF/HCl-containing etching exhaust gas by FTrPSA (Full Temperature Range Pressure Swing Adsorption). It relates to a cyclic reuse method.

ケイ素(Si)又は炭化ケイ素(SiC)ベースのウエハ又はエピタキシャル薄膜にエッチングを行うことは、半導体集積回路(IC)などのチップの製造プロセスにおける最も重要なステップであり、その中でもフッ素(F)、塩素(Cl)を含有する化合物でプラズマ又は通常のガスによる乾式エッチングを行うことは、半導体工業において広く適用されている。例えば、通常、集積回路(IC)の製造は、トランジスタ、抵抗素子及び容量素子のような回路要素を形成・接続するように、堆積、マスキング、エッチング及び剥離などのステップを含む。IC製造プロセスにおいて、1つのウエハ又はエピタキシャル薄膜シートで同時に何百~千個以上のチップを作製する必要があり、その際に1要素の寸法を0.5μmよりも小さくする必要があり、且つその寸法は益々小さくなる傾向がある。超大規模集積回路(ULSI)チップの発展のニーズに応えて、エッチング技術は、面積がより大きくエッチング線幅がより小さい方向へ発展する傾向があり、その中でもガス乾式エッチング、特にプラズマガス乾式エッチングは既に最も広く適用されて発展してきたエッチング技術となっている。順に現れた反応性イオンエッチング(RIE)、電子サイクロトロン共鳴(ECR)、ヘリコン波源(HWS)及び誘導結合プラズマ源(ICP)などの加工方法及び装置は、エッチング面積が300mmよりも大きくエッチング線幅が0.1μmよりも小さいなどのような高解像度集積回路の要求に適応するために誕生したものである。 Etching silicon (Si) or silicon carbide (SiC) based wafers or epitaxial thin films is the most critical step in the manufacturing process of chips such as semiconductor integrated circuits (ICs), among which fluorine (F), Plasma or conventional gas dry etching with compounds containing chlorine (Cl) is widely applied in the semiconductor industry. For example, integrated circuit (IC) fabrication typically includes steps such as deposition, masking, etching and stripping to form and connect circuit elements such as transistors, resistors and capacitors. In the IC manufacturing process, it is necessary to fabricate hundreds to thousands of chips at the same time on one wafer or epitaxial thin film sheet. Dimensions tend to be smaller and smaller. In response to the development needs of ultra large scale integrated circuit (ULSI) chips, etching technology tends to develop in the direction of larger area and smaller etching line width, among which gas dry etching, especially plasma gas dry etching It has already become the most widely applied and developed etching technology. Processing methods and equipment such as reactive ion etching (RIE), electron cyclotron resonance (ECR), helicon wave source (HWS) and inductively coupled plasma source (ICP), which have emerged in succession, have etching areas greater than 300 mm and etching line widths greater than 300 mm. It was born to meet the requirements of high resolution integrated circuits, such as sub-0.1 μm.

エッチング(又は食刻,Etch Film)は、ケイ素又は炭化ケイ素ベースのウエハ又はエピタキシャル薄膜(「ウエハ」と略称する)の表面から必要としない材料を選択的に除去する過程であり、接着剤が塗布されたウエハにマスクパターンを正確に転写する。エッチングは湿式と乾式に分けられ、そのうち乾式エッチングにおけるプラズマエッチングは、既に主流のエッチング工法となっている。乾式エッチングによく使用されるガスは、主にフッ化水素(HF)、塩化水素(HCl)、四フッ化炭素(CF)、六フッ化硫黄(SF)、三フッ化窒素(NF)、四塩化炭素(CCl)などのフッ素ベースガス及びCl、Br基が導入された混合ガスであり、また、キャリアガスとして、水素ガス(H)、アルゴンガス(Ar)、酸素ガス(O)、窒素ガス(N)などを使用する。低圧放電のプラズマ環境ではウエハ表面のSi又はSiCと反応し、気相でHF、HCl、四フッ化ケイ素(SiF)、四塩化ケイ素(SiCl)、及び少量の四臭化ケイ素(SiBr)、シラン(SiH)、一酸化炭素(CO)、二酸化炭素(CO)、水(HO)、揮発性有機物(VOC)、懸濁する微細二酸化ケイ素(SiO)、ケイ素(Si)又は炭化ケイ素(SiC)又はエーロゾルなどの粒子及びH、N、Arなどを含有するエッチング排ガスを生成する。前記エッチング排ガスは、引火性と、爆発性と、有毒性と、腐食性などの特徴を有する危険な化学ガスであり、処理方法としては、大気排出基準を満たす方法である必要があるが、それだけでなく技術的且つ経済的に実施可能であり、且つ生産コストを削減する方法である必要もある。 Etching (or Etch Film) is the process of selectively removing unwanted material from the surface of a silicon or silicon carbide based wafer or epitaxial thin film (abbreviated as "wafer") so that the adhesive is applied. The mask pattern is accurately transferred onto the processed wafer. Etching is divided into wet etching and dry etching, and plasma etching in dry etching has already become a mainstream etching method. Commonly used gases for dry etching are mainly hydrogen fluoride (HF), hydrogen chloride (HCl), carbon tetrafluoride ( CF4 ), sulfur hexafluoride ( SF6 ), nitrogen trifluoride ( NF3) . ), carbon tetrachloride (CCl 4 ) and other fluorine-based gases and Cl, Br groups are introduced, and hydrogen gas (H 2 ), argon gas (Ar), oxygen gas ( O 2 ), nitrogen gas (N 2 ), etc. are used. In the plasma environment of the low pressure discharge, it reacts with Si or SiC on the wafer surface, and in the gas phase HF, HCl, silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), and a small amount of silicon tetrabromide (SiBr 4 ) . ), silane (SiH 4 ), carbon monoxide (CO), carbon dioxide (CO 2 ), water (H 2 O), volatile organics (VOC), suspended fine silicon dioxide (SiO 2 ), silicon (Si ) or particles such as silicon carbide (SiC) or an aerosol, and an etching exhaust containing H 2 , N 2 , Ar, and the like. The etching exhaust gas is a dangerous chemical gas with characteristics such as flammability, explosiveness, toxicity, and corrosiveness. It also needs to be a method that is technically and economically feasible and reduces production costs.

従来のエッチング排ガスを処理する主な工業的方法には、水洗と、酸塩基中和と、酸化燃焼と、吸着及びプラズマ燃焼の5種類がある。 There are five main industrial methods for treating conventional etching exhaust gases: water washing, acid-base neutralization, oxidative combustion, adsorption and plasma combustion.

水洗法は、エッチング排ガスが主に酸性が非常に高い有毒異物を含有する状況に対して、水吸収と水性ガス転化により、酸性成分を吸収して液体を形成し、且つ有毒異物成分を無毒物質又は沈殿(水スラリー)に転化して排出を実現する方法である。この方法は、簡単で操作しやすく、工業的に一般的に採用されているが、吸収相平衡及び転化効率が制限され、形成された吸収液が非常に高い腐食性を有するため、吸収後の排ガスに依然として多くの酸性異物成分が残留され、完全に排出基準に達することが非常に困難であり、更に空気を導入して希釈するか又は燃焼するか又は吸着するなどの他の方法で処理してはじめて排出基準に達することができる。水洗法では、加熱された水蒸気を採用することも可能であり、高温によって有害な異物を無害な酸化物に転化させることで、水洗法による浄化効率がより高くなる。水洗法の主な問題は、大量の水を消費する必要がある点であり、また回収しにくく腐食性が非常に高いフッ化水素酸、塩酸又はフルオロケイ酸などの二次汚染物が生成されるため、結果として処理機器に多くの投資をすることになる。同時に、水洗法により形成された高フッ素又は高塩素ケイ酸がケイ素又は二酸化ケイ素の粒子や粉塵とスラリー状物を形成してバルブ又はパイプなどの機器を塞ぎやすく、更に熱を受けると分解して機器を腐食して漏れを招くなどの危険がある。また、水洗法は、排ガスが多くの水溶性有害異物成分を含有する場合や排ガスが水蒸気と転化反応しやすい場合に対して一定の効果がある。 For the situation that the etching exhaust gas mainly contains highly acidic toxic contaminants, the water washing method uses water absorption and water gas conversion to absorb the acidic components to form a liquid, and convert the toxic contaminant components into non-toxic substances. Alternatively, it is a method of converting to sedimentation (water slurry) and realizing discharge. Although this method is simple and easy to operate and is commonly employed in industry, the absorption phase equilibrium and conversion efficiency are limited, and the absorption liquid formed has a very high corrosiveness. Exhaust gas still contains many acidic contaminants, which makes it very difficult to completely meet the emission standards. Emission standards can only be reached after The water washing method can also employ heated steam, and the high temperature converts harmful contaminants into harmless oxides, thereby increasing the cleaning efficiency of the water washing method. The main problem with the water washing method is that it consumes large amounts of water and produces secondary contaminants such as hydrofluoric acid, hydrochloric acid or fluorosilicic acid, which are difficult to recover and highly corrosive. This results in a large investment in processing equipment. At the same time, the high-fluorine or high-chlorine silicic acid formed by the water washing method forms a slurry with silicon or silicon dioxide particles and dust, which easily clogs equipment such as valves and pipes, and further decomposes when subjected to heat. There is a danger of corroding equipment and causing leaks. Further, the water washing method has a certain effect in the case where the exhaust gas contains many water-soluble harmful foreign matter components or the case where the exhaust gas easily undergoes a conversion reaction with water vapor.

酸塩基中和法は、酸性を有するエッチング排ガスの特性に対して、水酸化カルシウムなどの塩基性溶液を加えて、その中のフッ素イオン又はHFなどをフッ化カルシウム(CaF,即ち人工蛍石)として形成し、或いは、高フッ素/高塩素ケイ酸カルシウムを沈殿させるか又はスラリーとして脱離させ、吸収されていないガスに更に他の塩基性溶液を加え、更にその中の酸性異物を脱離させ、排ガスにおける酸性異物成分の残留量が排出基準に達するようにする方法である。半導体業界において、著名な英国エドワーズ社(EDWARDS)が化学中和方法及びその装置であるガスリアクタカラム(GRC,gas reactor column)を発明したが、その原理は、化学中和方法を利用して排ガスを処理することである。前記装置のカラムには適切な無機微小粒子の混合物が詰められており、カラムに通電して一定の温度に加熱した後、排ガスがカラムを経由して中和反応を生じる。このガスリアクタカラムにおいて発生したのは乾式化学反応であり、真空システムに直接接続することが可能である。排ガスはカラムにおける塩基性又は金属塩基性物質と十分に化学反応し、排ガスのうちの一部が不活性物質に転化し、一部が化学反応によって吸着されることで、排出される有害排ガスが大幅に減少される。しかしながら、ガス柱の交換頻度が高いため、排ガスの吸着が完全でなく、又反応カラムが失活して有害成分が通過してしまい、これにより二次汚染を招く場合がある。酸塩基中和法又は化学中和法は、依然として吸収又は化学吸着の平衡により制限され、排ガスが徹底的に排出基準に達するように多段又はマルチカラムの中和反応が必要とされるため、コストが高いという問題を抱えている。 In the acid-base neutralization method, a basic solution such as calcium hydroxide is added to the acidity of etching exhaust gas, and fluoride ions or HF therein are converted into calcium fluoride (CaF 2 , i.e., artificial fluorite). ), or by precipitating or desorbing the high fluorine/high chlorine calcium silicate as a slurry, adding another basic solution to the unabsorbed gas, and desorbing the acidic contaminants therein. This is a method for allowing the amount of residual acidic foreign matter components in the exhaust gas to reach the emission standards. EDWARDS, a well-known company in the semiconductor industry, invented a gas reactor column (GRC), which is a chemical neutralization method and its device. is to process The column of the device is packed with a suitable mixture of inorganic fine particles, and after the column is heated to a certain temperature by energizing the column, the exhaust gas passes through the column and causes a neutralization reaction. A dry chemical reaction occurred in this gas reactor column, which can be directly connected to a vacuum system. The flue gas undergoes a sufficient chemical reaction with basic or metal basic substances in the column, part of the flue gas is converted into inert substances, and a part of the flue gas is adsorbed by the chemical reaction, resulting in the discharge of harmful flue gas. greatly reduced. However, since the gas column is frequently exchanged, adsorption of the exhaust gas is not complete, and the reaction column is deactivated, causing harmful components to pass through, which may lead to secondary pollution. Acid-base or chemical neutralization methods are still limited by absorption or chemisorption equilibria and require multi-stage or multi-column neutralization reactions in order to exhaust emissions exhaustively to meet emission standards, thus reducing costs. I have a problem that is high.

酸化燃焼法は、エッチング排ガスに含有されているHと、シランと、四フッ化ケイ素と、有機物(VOC)などの引火性成分を利用し、十分な温度及び時間で空気又は酸素含有化合物ガスを導入して引火性成分と接触させて焼却し、酸化物を生成可能にし、続いて熱交換により酸化生成物が凝縮するまでそれを冷却して排出し、残存ガスを更に塩基性溶液でリンスし、廃ガスの酸性を除去する方法である。エッチング排ガスには多くの難燃性のHF、HClなどの酸性ガスが含有されるため、この方法はエッチング排ガスの処理に適合しない。特に排ガスにポリメタクリル酸メチル(PMMA)などの特定のフォトレジストを含有する場合は、一般的に洗浄工程できれいに洗浄することが非常に困難であり、エッチング排ガスに残留された少量のフォトレジストに対して燃焼処理を採用してはいけない(ダイオキシン又はオキサゾール類有害物質を形成するため)。そのため、他の物理的方法を採用するしかできない。現在、酸化燃焼法は、一部の化学気相成長(CVD)で生じた排ガスの処理のみに適用されている。 The oxidative combustion method utilizes flammable components such as H2 , silane, silicon tetrafluoride, and organic substances (VOC) contained in the etching exhaust gas, and uses air or oxygen-containing compound gas at a sufficient temperature and time. is introduced into contact with flammable components and incinerated to allow the formation of oxides, which are subsequently cooled by heat exchange until the oxidation products condense and are discharged, and the residual gas is further rinsed with a basic solution. and remove the acidity of the waste gas. Since the etching exhaust gas contains many flame-retardant acidic gases such as HF and HCl, this method is not suitable for treating the etching exhaust gas. In particular, when the exhaust gas contains a specific photoresist such as polymethyl methacrylate (PMMA), it is generally very difficult to clean it completely in the cleaning process, and the small amount of photoresist remaining in the etching exhaust gas Combustion treatment should not be adopted for it (because it forms dioxins or oxazoles harmful substances). Therefore, other physical methods can only be adopted. At present, the oxidative combustion method is only applied to the treatment of some chemical vapor deposition (CVD) exhaust gases.

吸着法は、エッチング排ガスの成分と、選択された特定の吸着剤間の物理又は化学吸着力の大きさにより選択的な分離と浄化を実現する方法である。通常使用される酸化アルミニウム、活性炭又はモレキュラーシーブは、極性の強いHF、HCl、HO、SiF、SiH、CO及びVOCなどに対して顕著な吸着作用を有するが、吸着力が強いため、吸着剤の再生が相当に困難であり、使用寿命が短く、コストが上がるなどの問題がある。また、注意すべきこととして、HFを吸着するための吸着剤が特殊であることが挙げられる。このような吸着剤の多くは塩基性金属のフッ化物を用いており、金属フッ化物とHFが低い温度で化学反応することにより化学吸着を選択的に行い、金属フッ化物-HFの錯体を形成し、高い温度で更に錯体の分解反応を行うことで、HFの吸着剤からの脱離を実現し、他の異物が吸着剤において選択性を有していないことによって、HFの分離と浄化が実現される。このような化学吸着法を採用する場合の多くは、フッ化反応によるクロロフルオロアルカン(CFC)、水素含有クロロフルオロアルカン(HCFC)、水素含有フルオロアルカン(HFC)、フッ化スルフリル(SO)などで製品が製されている場合である。反応により生成された反応混合ガスは、HFに対する選択的な吸着、分離及び回収効果が好適であるが、吸着剤の損失率が大きい。水又はSiF又はHCl異物成分を含有するエッチング排ガスに対して、吸着剤と水などの異物成分との間でも化学反応又は共吸着現象が発生するため、吸着剤の粉状化又は過飽和及び吸着を招き、更に処理と浄化を効果的に行うことができない。そのほか、金属ゲッタ又は膜分離システムを採用して選択的な吸着を行うことは、一部の異物の脱離に有効であるが、エッチング排ガスに対する効果は顕著ではなく、更にコストが高い。また、吸着法の最も深刻な問題の1つは、この方法がエッチング排ガスにおける吸着質(異物)成分の濃度が低い状況には適するが、濃度が高い異物成分に対して、多くの場合吸着容量の制限によって吸着剤の用量が増えてしまい、操作コストもそれに伴って増え、脱離効果が悪いことである。 The adsorption method is a method for realizing selective separation and purification by the physical or chemical adsorption force between the components of the etching exhaust gas and the selected specific adsorbent. Commonly used aluminum oxide, activated carbon or molecular sieves have a significant adsorption effect on HF, HCl, H2O , SiF4 , SiH4 , CO2 and VOC with strong polarity, but the adsorption force is strong. Therefore, regeneration of the adsorbent is considerably difficult, and there are problems such as a short service life and an increase in cost. Also, it should be noted that the adsorbent for adsorbing HF is special. Many of such adsorbents use a basic metal fluoride, and the metal fluoride and HF chemically react at a low temperature to selectively perform chemisorption to form a metal fluoride-HF complex. Then, the desorption of HF from the adsorbent is realized by further performing the decomposition reaction of the complex at a high temperature. Realized. In many cases where such a chemisorption method is employed , chlorofluoroalkanes (CFCs), hydrogen-containing chlorofluoroalkanes (HCFCs), hydrogen-containing fluoroalkanes (HFCs), sulfuryl fluoride ( SO2F2 ), etc. The reaction mixture gas produced by the reaction has favorable selective adsorption, separation and recovery effects on HF, but the loss rate of the adsorbent is large. For etching exhaust gas containing water or SiF4 or HCl foreign matter components, a chemical reaction or co-adsorption phenomenon also occurs between the adsorbent and foreign matter components such as water, so that the adsorbent becomes powdery or supersaturated and adsorbed. and cannot be effectively treated and cleaned. In addition, using a metal getter or a membrane separation system for selective adsorption is effective in desorbing some foreign matter, but the effect on the etching exhaust gas is not significant and the cost is high. In addition, one of the most serious problems of the adsorption method is that although this method is suitable for situations where the concentration of adsorbate (foreign matter) components in the etching exhaust gas is low, for high concentrations of foreign matter components, the adsorption capacity is often This limitation results in an increased adsorbent dosage, a corresponding increase in operating costs, and poor desorption efficiency.

プラズマ浄化法は、現在流行している処理方法であり、特にエッチング排ガス、フッ化水素を調製する場合の排ガスをはじめとした、HF含有排ガスを含むフッ化廃ガスに対するものである。プラズマ浄化は、プラズマにより排ガスを分解(破壊)を補強し、有害成分を直接転換させることである。このような転換は、高密度プラズマ領域で完成し、この領域はグロー放電又は他の放電形態により得られる。プラズマはに大量の活性粒子が存在し、これらの粒子は、エッチング排ガスにおける有毒及び分解しにくい物質を破壊するおそれがある。この方法は、プラズマエッチングと組み合わせられ、非常に見込みのある排ガス処理方法であるとされている。例えば、パルスコロナプラズマ化学処理(PPCP,pulsed corona Induced plasma)は、酸窒化物(NO)、二酸化硫黄(SO)、水銀(Hg)蒸气及び揮発性有機物(VOC)に対して優れた処理効果を有する。NO及びSOの脱離は、パルスコロナにより生じた強いラジカルがそれらと酸化反応し、添加物(例えばアンモニア(NH)及びHO)の存在下で、それらを硫酸塩及び硝酸塩に転化させることであり、VOCの脱離は、パルスコロナにより生じた高エネルギー電子がそれを励起し、分解させて電離させ、最終的に構造が簡単であるCO及びCOを生成することである。フッ化排ガスに対しては、H,NH又はメタン(CH)などの水素又は水素含有化合物を添加し、水と溶解しにくい又は分解しにくいフッ化物などの成分をプラズマ条件下で分解させ、それにより生じた水素イオン(H+)はフッ素イオン(F-)又は塩素イオン(Cl+)と共にHF、HClを形成し、更に水洗によりフッ化排ガスを浄化する。しかしながらプラズマは、HF,HClなどの含有量の高いエッチング排ガスに対して処理効果が顕著ではなく、且つ高価であるため、小規模の排ガス処理のみに適する。 Plasma purification is a currently prevalent treatment method, particularly for fluorinated waste gases including HF-containing exhaust gases, including etching exhaust gases and exhaust gases for the preparation of hydrogen fluoride. Plasma purification is to reinforce decomposition (destruction) of exhaust gas by plasma and directly convert harmful components. Such conversion is completed in a high density plasma region, which is obtained by glow discharge or other forms of discharge. A large amount of active particles are present in the plasma, and these particles can destroy toxic and persistent substances in the etching exhaust gas. This method, combined with plasma etching, is said to be a very promising exhaust gas treatment method. For example, pulsed corona plasma chemical treatment (PPCP) is an excellent treatment for oxynitrides ( NOx ), sulfur dioxide ( SO2 ), mercury (Hg) vapors and volatile organics (VOCs). have an effect. The desorption of NOx and SO2 occurs when the strong radicals generated by the pulsed corona undergo oxidation reactions with them, converting them to sulfates and nitrates in the presence of additives (e.g. ammonia ( NH3 ) and H2O ). The desorption of VOCs is that the high-energy electrons produced by the pulsed corona excite it, decompose it and ionize it, finally producing CO2 and CO, which are simple in structure . . Hydrogen or hydrogen-containing compounds such as H 2 , NH 3 or methane (CH 4 ) are added to the fluorinated exhaust gas to decompose components such as fluorides that are difficult to dissolve or decompose with water under plasma conditions. The resulting hydrogen ions (H+) form HF and HCl together with fluorine ions (F−) or chlorine ions (Cl+), and are washed with water to purify the fluorinated exhaust gas. Plasma, however, is only suitable for small-scale exhaust gas treatment because its treatment effect is not remarkable for etching exhaust gas with a high content of HF, HCl, etc., and it is expensive.

以上に記載した従来のエッチング排ガス処理方法は、いずれも有毒有害成分を無害化するとともに排ガスが排出基準に達するようにすることを主な目的とし、排ガスにおける大量の非常に価値のあるHF、Cl又はHなどは全て回収利用することができない。 The conventional etching exhaust gas treatment methods described above all aim to detoxify toxic and harmful components and to make the exhaust gas meet the emission standards. Or H 2 and the like cannot be recovered and used at all.

本発明の目的は、HF/HCl/H含有乾式エッチング排ガスから高純度のHF、HCl又はHを得、それをエッチングプロセスに戻すことで循環使用するFTrPSA(全温度範囲圧力スイング吸着)によるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法を提供することである。 The object of the present invention is through FTrPSA (Full Temperature Range Pressure Swing Adsorption) which obtains high purity HF, HCl or H2 from HF/HCl/ H2 containing dry etch exhaust gas and recycles it back into the etching process. Another object of the present invention is to provide a method for separating, recovering, recycling and reusing etching exhaust gas containing HF/HCl.

全温度範囲圧力スイング吸着(英語全称はFull Temperature Range-Pressure Swing Adsorptionであり、以降FTrPSAと略称する)は、圧力スイング吸着(PSA)を基に各種の分離技術と結合できる方法であり、エッチング排ガスにおける各成分(HF/HClが有効成分であり、残りが異物成分である)自身の、異なる圧力と温度下での吸収・吸着・精留及び物理化学性質の差異を利用する。二段の中温圧力スイング吸着工程を主として採用し、この工程とスプレー吸収、HF精留/HCl精製(精留)及び凝縮を結合することで、中温圧力スイング吸着過程における吸着と脱着がマッチング・平衡しやすくなり、吸着と脱着の循環操作により分離と浄化を行うことでHF/HClを回収しエッチングプロセスに戻して循環使用することを実現する。 Full temperature range pressure swing adsorption (Full Temperature Range-Pressure Swing Adsorption, hereinafter abbreviated as FTrPSA) is a method that can be combined with various separation technologies based on pressure swing adsorption (PSA). The absorption, adsorption, rectification, and physicochemical properties of each component (HF/HCl is the active component and the rest is the foreign component) in different pressures and temperatures. The two-stage intermediate temperature pressure swing adsorption process is mainly adopted, and this process is combined with spray absorption, HF rectification/HCl purification (rectification) and condensation, so that the adsorption and desorption in the intermediate temperature pressure swing adsorption process are matched and balanced. By separating and purifying HF/HCl by cyclic operation of adsorption and desorption, HF/HCl can be recovered and returned to the etching process for cyclic use.

本発明において採用されている技術的解決手段は、FTrPSAによるHF/HCl含有エッチング排ガスの分離及び回収循環再利用方法であり、原料ガスは、ケイ素又は炭化ケイ素ベースのウエハチップの乾式エッチング過程で生じた排ガスに由来し、主に不活性キャリアガス(水素ガス(H)),有効成分であるフッ化水素(HF)と塩化水素(HCl),及び少量の水(HO),四フッ化ケイ素(SiF),四塩化ケイ素(SiCl),シラン(SiH),メタン(CH),一酸化炭素(CO),二酸化炭素(CO)及び微量又は痕跡量の揮発性有機物(VOC),金属イオン(Me+),微細固体とエーロゾル粒子(SS),一部の高フッ素シラン酸/高塩素シランの異物成分等を含有し、温度が常温であり、圧力が常圧又はマイクロ正圧である。 The technical solution adopted in the present invention is the method of separation, recovery and recycling of HF/HCl-containing etching exhaust gas by FTrPSA, and the source gas is generated in the dry etching process of silicon or silicon carbide-based wafer chips. derived from the exhaust gas, mainly inert carrier gas (hydrogen gas (H 2 )), active ingredients hydrogen fluoride (HF) and hydrogen chloride (HCl), and a small amount of water (H 2 O), tetrafluoride silicon dioxide (SiF 4 ), silicon tetrachloride (SiCl 4 ), silane (SiH 4 ), methane (CH 4 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and traces of volatile organics ( VOC), metal ions (Me+), fine solids and aerosol particles (SS), some high fluorine silane acid/high chlorine silane foreign matter components, etc., the temperature is normal temperature, the pressure is normal pressure or micro-positive pressure.

前記FTrPSAによるHF/HCl含有エッチング排ガスの分離及び回収循環再利用方法は、
(1)原料ガスの温度が常温であり、圧力が0.2~0.3MPaであるように制御し、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とを含む前処理ユニットに送り込み、順にダスト、粒子、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、前処理を経て形成された浄化原料ガスをクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔の底部から入らせて吸収剤と逆物質移動交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を一段目のPSA(1#PSA)吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してから次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目のPSA(2#PSA)吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合してから戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、中温圧力スイング吸着工程からの粗HFガスが凝縮してから得られた精製HF液体をHF精留工程における精留塔に入らせ、精製HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、それを直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段又は下段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を多段蒸発・圧縮・凝縮工程に入らせ、残りの一部を排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体をHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、残りの一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、他の一部をクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を導入し、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合して排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガスと、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した不凝縮ガス5及びHCl精製工程からの不凝縮ガス7を混合したのちに排ガス吸収塔に入らせ、吸収塔の底部で形成したフルオロケイ酸溶液を原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The method for separating, collecting, recycling, and reusing the HF/HCl-containing etching exhaust gas by the FTrPSA includes:
(1) The temperature of the raw material gas is controlled to be normal temperature, the pressure is controlled to be 0.2 to 0.3 MPa, and includes a dust remover, a particle removal filter, a soot removal collector, and an activated carbon adsorber. It is fed into the pretreatment unit to desorb dust, particles, soot, VOC, high fluorine silane/acid and high chlorine silane in order, and the purified raw material gas formed through pretreatment is before entering the chlorosilane/HCl spray absorption process. a processing step;
(2) A spray absorption tower using a mixed liquid of chlorosilane and HCl as an absorbent is adopted as a reactor, and the purified raw material gas from the pretreatment process is heat-exchanged up to 50 to 80° C. and then introduced from the bottom of the spray absorption tower. back mass transfer exchange with the absorbent at the bottom of the spray absorption tower, the chlorosilane/HCl-enriched absorbent exits from the bottom of the absorption tower, enters the subsequent multi-stage evaporation-compression-condensation process, and simultaneously exits from the bottom of the tower. A small amount of residual particles, high-chlorine silane, high-fluorine silane/acid and other foreign matter are sent out for environmental protection treatment, and the non-condensable gas 1 enriched with HF and low boiling point components flows out from the top of the spray absorption tower, which is a chlorosilane/HCl spray absorption step entering a medium temperature pressure swing adsorption step;
(3) comprising a two-stage pressure swing adsorption process, wherein each stage of the pressure swing adsorption process comprises two or more adsorption towers, at least one adsorption tower being in the adsorption step and the remaining adsorption towers being in the desorption step; , the non-condensable gas 1 from the chlorosilane/HCl spray absorption process is introduced from the bottom of the first-stage PSA (1#PSA) adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, and the operating temperature is is 50-80 ° C, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, and the non-condensed gas 2 formed through condensation is subjected to microfiltration and absorption by deionized water. After performing the above, an aqueous HF solution with a concentration of 40% is obtained and sent out, and the non-condensable gas 3 formed through water absorption is a hydrogen-rich gas, which is sent out and used as fuel gas, or pressure swing It is used as the feed gas for hydrogen purification by adsorption, and the crude HF liquid formed through condensation is subjected to microfiltration before entering the next process, the HF rectification process, from the bottom of the 1#PSA adsorption tower in the desorption step. The outflowing desorption gas is subjected to pressure increase and heat exchange, and then enters from the bottom of the second stage PSA (2#PSA) adsorption tower, and the operating pressure of the 2#PSA adsorption tower is 0.2-0.3MPa. , the operating temperature is 50-80° C., and the non-adsorbed phase intermediate gas exiting the top of the 2#PSA adsorption tower in the adsorption step is mixed with 1 of the non-condensable gas from the chlorosilane/HCl spray absorption step before returning. into the 1#PSA adsorption tower to recover the active ingredients HF and HCl, and the desorption gas flowing out from the bottom of the 2#PSA adsorption tower is the enriched gas, which is returned to the chlorosilane/HCl spray absorption process, and further a medium temperature pressure swing adsorption step for recovering the active ingredient;
(4) including a rectification column consisting of two stages of rectification, wherein the purified HF liquid obtained after the crude HF gas from the intermediate temperature pressure swing adsorption step is condensed into the rectification column in the HF rectification step; , the purified HF liquid enters from the top of the lower rectification column or the bottom of the upper rectification column, and the light component foreign matter gas distilled at the top of the upper rectification column is returned to the subsequent exhaust gas absorption step, and the upper rectification The non-condensable gas 4 formed by the condensation of the distillate at the bottom of the column or the top of the lower rectification column is anhydrous HF (AHF) gas with a purity of 99.99% or more, which is directly converted into an electronic grade The HF product gas is recycled back to the dry etching process, and the liquid formed through condensation is used as the reflux of the upper or lower rectification, and contains a small amount of foreign matter components of the heavy components distilled at the bottom of the lower rectification. Part of the non-condensable gas 5 formed by condensation of the bottom fluid is sent to the multi-stage evaporation, compression and condensation process, and the remaining part is sent to the exhaust gas absorption process to absorb the liquid formed by condensation. HF rectification step recycled as agent back to chlorosilane/HCl spray absorption step;
(5) Allowing the absorbent from the chlorosilane/HCl spray absorption step to enter a multi-stage evaporation step and then to a condenser from which crude HCl gas in the vapor phase is obtained for heavy components from the HF rectification step. is mixed with the uncondensable gas 5 obtained after condensing the bottoms fluid of , and the crude HCl liquid formed through condensation is sent to the HCl purification step, and the crude chlorosilane liquid flows out from the condenser, which is used in the subsequent The non-condensable gas 6 flowing out from the condenser is heat-exchanged and then returned to the intermediate temperature pressure swing adsorption step, and the active ingredients HF and HCl are recovered. process and
(6) including an HCl rectification column and a vacuum rectification column, the operating pressure of the HCl rectification column is 0.3-0.6 MPa, the operating temperature is 50-80° C., and the operating pressure of the vacuum rectification column; is −0.08 to −0.1 MPa, the operating temperature is 60 to 120° C., and part of the HCl product gas exiting the top of the HCl rectification column with a purity greater than 99.99% is subjected to a dry etching process. The remaining part is liquefied and then recycled as an absorbent in the chlorosilane/HCl spray absorption process, and the bottom effluent of the HCl rectification column is introduced into the vacuum rectification column for vacuum purification. The overhead gas flowing out from the top of the distillation column is the non-condensable gas 7, part of which is sent to the subsequent exhaust gas absorption process, the other part is returned to the intermediate temperature pressure swing adsorption process, and is returned to the bottom of the vacuum rectification column. a portion of the heavy components flowing out from the HCI is returned to the multi-stage evaporation-compression-condensation step and the other portion is sent to the weak-cold rectification step in chlorosilane;
(7) including a rectification column, introducing the crude chlorosilane liquid from the multi-stage evaporation, compression and condensation process, and/or the heavy component fluid at the bottom of the vacuum column from the HCl purification process, with an operating temperature of -35 to 10°C; The operating pressure is 0.6 to 2.0 MPa, and the noncondensable gas 8 flowing out from the top of the rectification column is heat-exchanged, returned to the intermediate temperature pressure swing adsorption step, and discharged from the bottom of the rectification column. Part of the effluent chlorosilane liquid is mixed with HCl to form a mixed liquid, and recycled back to the chlorosilane/HCl spray absorption process as an absorbent, and another part is mixed with sulfuric acid to absorb the exhaust gas absorption process. A weak cold rectification step in chlorosilane used as an agent,
(8) Adopting as a reactor the exhaust gas absorption tower with the mixed liquid of the chlorosilane liquid from the weak cold rectification process in chlorosilane and fresh sulfuric acid as the absorbent, and distilling at the top of the upper rectification tower from the HF rectification process; The foreign matter gas of the light components thus obtained was mixed with the non-condensable gas 5 formed through condensation of the heavy components flowing out from the bottom of the lower rectification column from the HF rectification process and the non-condensable gas 7 from the HCl refining process. After that, it is introduced into the exhaust gas absorption tower, and the fluorosilicic acid solution formed at the bottom of the absorption tower is sent out as a raw material, circulated and used as a raw material liquid in the production process of preparing AHF by the fluorosilicic acid removal method, and is discharged from the top of the absorption tower. and an exhaust gas absorption step for directly discharging the outflowing non-condensable gas 9 as exhaust gas.

更に、前記原料ガスにおけるHClの含有量が1%より小さい場合、前記浄化原料ガスを中温圧力スイング吸着工程に直接入らせ、1#PSA塔頂から流出する粗HFガスが凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目のPSA(2#PSA)吸着塔の底部から入らせ、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して1#PSA吸着塔に入らせ、更に有効成分を回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、新しく増設された凝縮器を経てから形成した不凝縮ガス1を更に中温圧力スイング吸着工程の粗HFガスと混合して有効成分HFを回収し、新しく増設された凝縮器の後に形成した液体をHCl精製工程に直接入らせてHClを回収し、HCl精製工程から流出する重質成分を処理してから直接排出することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省く。 In addition, when the content of HCl in the feed gas is less than 1%, the purified feed gas is allowed to directly enter the intermediate temperature pressure swing adsorption step, and the crude HF gas exiting from the top of the 1#PSA column undergoes condensation to form impurities. After the condensed gas 2 is subjected to microfiltration and absorption with deionized water, an HF aqueous solution with a concentration of 40% is obtained and sent outside, and the non-condensable gas 3 formed through water absorption is a hydrogen-rich gas, It is delivered and used as a fuel gas or as a feed gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed through condensation is microfiltered before entering the HF rectification step and undergoing a desorption step. The desorbed gas flowing out from the bottom of the 1#PSA adsorption tower is pressurized and heat exchanged, and then enters from the bottom of the second stage PSA (2#PSA) adsorption tower, and the 2#PSA adsorption tower in the adsorption step. The intermediate gas of the non-adsorbed phase flowing out from the top is directly returned to enter the 1#PSA adsorption tower to recover the active ingredients, and the desorbed gas flowing out from the bottom of the 2#PSA adsorption tower is the enriched gas, which is newly added. The non-condensable gas 1 formed after passing through the newly added condenser is further mixed with the crude HF gas in the intermediate temperature pressure swing adsorption process to recover the active ingredient HF, and the liquid formed after the newly added condenser is used in the HCl purification process. to recover HCl, treat the heavy components discharged from the HCl refining process, and then directly discharge it, chlorosilane/HCl spray absorption, multi-stage evaporation, compression, condensation and medium-low cold chlorosilane rectification process. Omit.

更に、前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。 Furthermore, when the concentration of HF in the raw material gas is lower than the concentration of HCl, the purified raw material gas from the pretreatment process is heat-exchanged to 80 to 160° C. before entering the chlorosilane/HCl spray absorption process, and the top of the spray absorption tower is The non-condensable gas 2 formed by the condensation of the non-condensable gas 1 flowing out of is further entered into the intermediate temperature pressure swing adsorption process consisting of two stages of PSA, and the condensed liquid formed through condensation directly enters the HCl purification process, The absorbent flowing out from the bottom of the spray absorption tower is subjected to multiple stages of evaporation, compression and condensation.

更に、前記原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、不凝縮ガス2を一段目のPSA(1#PSA)吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが中間ガスであり、それを二段目の(2#PSA)吸着塔の底部に導入し、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス3に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス4が水素富化ガスであり、それを送り出し、燃料ガスとして又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガス及び2#PSA吸着塔の底部から流出する濃縮ガスをそれぞれクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収し、不凝縮ガス1が凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。 Furthermore, when the concentration of HF in the raw material gas is lower than the concentration of HCl, the purified raw material gas from the pretreatment process is heat-exchanged to 80 to 160° C. before entering the chlorosilane/HCl spray absorption process, and the top of the spray absorption tower is The noncondensable gas 2 formed by the condensation of the noncondensable gas 1 flowing out of the is further entered into the intermediate temperature pressure swing adsorption process consisting of two stages of PSA, and the noncondensable gas 2 is transferred to the first stage PSA (1#PSA) adsorption tower. , the operating pressure of 1#PSA is 0.2-0.3 MPa, the operating temperature is 50-80 ° C., and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is intermediate gas, which is introduced into the bottom of the second stage (2#PSA) adsorption tower, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, formed through condensation The uncondensable gas 3 is subjected to microfiltration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40% and is sent outside, and the noncondensable gas 4 formed through water absorption is a hydrogen-rich gas. , send it out and use it as a fuel gas or as a feed gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed through condensation is microfiltered before entering the HF rectification process, 1# in the desorption step The desorbed gas from the bottom of the PSA adsorption tower and the concentrated gas from the bottom of the 2#PSA adsorption tower are respectively returned to the chlorosilane/HCl spray absorption process to further recover the active ingredients, and the non-condensable gas 1 is formed through condensation. The resulting condensed liquid directly enters the HCl purification process, and the absorbent exiting from the bottom of the spray absorption tower enters the multi-stage evaporation-compression-condensation process.

更に、前記原料ガスにおけるHFとHClの濃度が合計で3%を超えていない場合、原料ガスに前処理工程を行って得られた浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、一段のPSAが2つ以上の吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き又は昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、浄化原料ガスをPSA吸着塔の底部から入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが吸着廃ガスであり、それを燃料ガスとして、又は圧力スイング吸着による水素精製の原料ガスとして使用し、脱着ステップにある吸着塔の底部から流出する濃縮ガスが凝縮を経て形成した不凝縮ガス1を浄化原料ガスと混合して中温圧力スイング吸着工程に戻し、更に有効成分を回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス2を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省くことができ、またこの動作状況は従来の水洗吸収法によりエッチング排ガスを処理した後の低濃度HF/HCl含有酸性排ガスの分離と回収再利用にも適する。 Further, if the total concentration of HF and HCl in the feed gas does not exceed 3%, the purified feed gas obtained by subjecting the feed gas to a pretreatment step is directly subjected to a medium temperature pressure swing adsorption step comprising a single PSA. A single stage PSA consists of two or more adsorption towers, one adsorption tower is in the adsorption step, and the remaining adsorption towers contain different stages of pressure reduction, reverse venting or evacuation or pressure rise or final gas filling. In the desorption step, the operation pressure of the adsorption tower is 0.2-0.3 MPa, the operation temperature is 70-90 ℃, the purified raw gas is introduced from the bottom of the PSA adsorption tower, and the adsorption tower in the adsorption step is The non-adsorbed phase gas exiting the top of the adsorption tower is the adsorption waste gas, which is used as fuel gas or as feed gas for hydrogen purification by pressure swing adsorption, and the enriched gas exiting the bottom of the adsorption tower in the desorption step is The non-condensable gas 1 formed through condensation is mixed with the purified feed gas and returned to the intermediate temperature pressure swing adsorption step for further recovery of active ingredients, and the condensed liquid formed through condensation is further entered into the HF rectification step to The non-condensable gas 2 discharged from the rectification process is sent to the exhaust gas absorption process for treatment, the HF product gas discharged from the HF rectification process is returned to the dry etching process for recycling, and discharged from the bottom of the HF rectification tower. By directly entering the HCl purification process, thus obtaining the HCl product gas, and recycling it back to the dry etching process, the chlorosilane/HCl spray absorption, multi-stage evaporation-compression-condensation, medium A weakly cooled chlorosilane rectification step can be omitted, and the operating conditions are also suitable for separating and recovering and reusing low-concentration HF/HCl-containing acidic exhaust gases after treating the etching exhaust gases by the conventional water washing absorption process.

更に、前記原料ガスにおけるHF/HClの濃度が20%を超えている場合、前処理工程を経た浄化原料ガスを凝縮して形成した不凝縮ガス1に対して、水洗により少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した不凝縮ガス2を燃料ガス又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した凝縮液をHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス3を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着工程を省き、この動作状況がプラズマにより洗浄した後に生成された高濃度HF/HCl含有排ガスの分離と回収再利用にも適する。 Furthermore, when the concentration of HF/HCl in the raw material gas exceeds 20%, the uncondensed gas 1 formed by condensing the purified raw material gas that has undergone the pretreatment step is washed with water to remove a small amount of residual acidic components. The noncondensable gas 2 formed by desorption, dilute acid is produced and sent to the outside, washed with water, is used as a fuel gas or a raw material gas for hydrogen purification by pressure swing adsorption, and is condensed to form a condensate. is introduced into the HF rectification process, the non-condensable gas 3 flowing out of the HF rectification process is processed by entering the exhaust gas absorption process, and the HF product gas flowing out of the HF rectification process is returned to the dry etching process and recycled. Then, the heavy component fluid exiting from the bottom of the HF rectification column directly enters the HCl purification step, thus obtaining the HCl product gas, which is recycled back to the dry etching process, chlorosilane/HCl spray absorption, Eliminating multi-stage evaporation/compression/condensation, medium-weak cold chlorosilane rectification and medium-temperature pressure swing adsorption processes, this operating condition is also suitable for separating and recovering and reusing high-concentration HF/HCl-containing flue gas produced after plasma cleaning. .

更に、前記中温圧力スイング吸着工程において、圧力スイング吸着による水素精製の原料ガスが水洗後に生成された不凝縮ガス又は吸着廃ガスであり、まず不凝縮ガス又は吸着廃ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得、1.0~3.0MPaに加圧してから常温まで熱交換し、4つ以上の吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、そうすることで吸着塔の頂部から純度が99.99~99.999%の超純粋水素が流出し、それをパラジウム膜又は金属ゲッタからなる水素ガス純化工程に入らせ、電子グレードの水素ガス基準に合致するH製品ガスを得、乾式エッチングプロセスに戻して循環使用するか又は外部へ送り出すことで吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして直接使用する。 Further, in the intermediate temperature pressure swing adsorption step, the raw material gas for hydrogen purification by pressure swing adsorption is the non-condensable gas or adsorption waste gas produced after washing with water, and the non-condensable gas or adsorption waste gas is first introduced into the drying tower, Hydrogen-enriched purifying methane by desorbing acidic components containing water and a small amount of fluorine and chlorine, followed by an adsorption purification stage, desorbing foreign substances including silane, phosphorane, and metal ions. - obtain hydrogen gas, pressurize to 1.0-3.0 MPa, then heat-exchange to normal temperature, enter into a hydrogen purification process by pressure swing adsorption consisting of four or more adsorption towers, so that the adsorption towers From the top, ultra-pure hydrogen with a purity of 99.99-99.999% flows out and enters a hydrogen gas purification process consisting of a palladium membrane or metal getter to produce a H2 product gas that meets electronic grade hydrogen gas standards. The desorbed gas flowing out from the bottom of the adsorption tower is the methane-rich gas, which is directly used as fuel gas.

本発明の有益効果は、以下の通りである。
(1)本発明によれば、HF/HCl含有乾式エッチング排ガスからHFとHClを分離して回収するとともに、エッチングプロセスに戻して循環使用することが実現され、そのことでエッチングガス原料のコスト及び排ガスの環境保護処理コストが大幅に削減され、従来技術においてただ標準に達せば排出してしまい、排ガスの総合利用を実現できない課題が解決され、この技術分野における空白が埋められた。
(2)本発明において、原料ガスにおける各成分(HF/HClが有効成分であり、残りが異物成分である)自身の異なる圧力と温度での吸着・吸収・精留・凝縮係数及び物理化学性質の差異を利用し、二段の中温圧力スイング吸着工程を主として採用し、この工程をクロロシランスプレー吸収、HF精留、HCl精製(精留)、クロロシラン精留及び蒸発・圧縮・凝縮と結合することで、中温圧力スイング吸着過程における吸着と脱着がマッチング・平衡しやすくなり、吸着と脱着の循環操作により分離と浄化を行うことで、HF/HClを他の異物成分と分離して精製するとともに、乾式エッチングプロセスに戻して循環使用することを実現する。
(3)本発明は、従来の化学吸着法において、HFと吸着剤が低温で化学反応(キレート)を起こして吸着し、高温で分解反応して脱着することにより、吸着と脱着の頻繁な循環操作過程における吸着剤の損失率が大きくなり、吸着剤が水などの異物成分とも化学反応を起こすため、吸着剤の粉状化と失活がひどくなり吸着分離を効果的に行うことができないという問題を克服し、HFとHClの両者の極性が強く吸着されやすいが脱着されにくいという特徴を利用し、独自の中温圧力スイング吸着の物理吸着過程を採用し、精留又は凝縮の過程と組み合わせて吸着と脱着の循環操作を調節することにより、このような現象を回避し、吸着剤の使用寿命を延ばすことができる。
(4)本発明は、異なる原料ガスの場合、フローを効果的に簡略化することでHF/HClの回収再利用を実現することができるため、従来の環境保護を目的とする水洗法又はプラズマ法と本発明を結合してエッチング排ガスを処理し、HF/HClを効果的に回収してエッチングプロセス又は乾式洗浄プロセスに戻して循環使用することができ、従来の処理方法では回収できない欠陥が解決され、同様に排出基準に達する。
(5)本発明は、エッチング排ガスからHF/HClを回収して循環再利用することができると同時に、PSAを追加して水素を精製することで価値のある電子グレードのH製品を得ることができ、且つ、乾式エッチングプロセスに戻して循環使用することも可能であり、又は半導体の他のプロセスの水素源とすることも可能であり、同時に、プロセスキャリアガスがアルゴンガス又は窒素ガス又は水素との混合ガスである場合、PSAを調整することで水素精製又はアルゴン精製又は窒素精製を行うか、もしくは低温吸着を追加して電子グレードのアルゴンガス、窒素ガスなどの製品を得ることができる。
The beneficial effects of the present invention are as follows.
(1) According to the present invention, it is possible to separate and recover HF and HCl from the HF/HCl-containing dry etching exhaust gas and return them to the etching process for recycling. The environmental protection treatment cost of flue gas is greatly reduced, and the problem that the conventional technology only emits if it reaches the standard and cannot realize the comprehensive utilization of flue gas is solved, filling the void in this technical field.
(2) In the present invention, adsorption/absorption/rectification/condensation coefficients and physicochemical properties of each component in the source gas (HF/HCl is the active component and the rest is the foreign matter component) at different pressures and temperatures , mainly adopting the two-stage intermediate temperature pressure swing adsorption process, and combining this process with chlorosilane spray absorption, HF rectification, HCl purification (rectification), chlorosilane rectification and evaporation/compression/condensation. , the adsorption and desorption in the intermediate temperature pressure swing adsorption process are easily matched and balanced, and by performing separation and purification through the cyclic operation of adsorption and desorption, HF / HCl is separated from other foreign matter components and purified. It is realized to return to the dry etching process and recycle.
(3) In the conventional chemisorption method, the HF and the adsorbent cause a chemical reaction (chelate) at low temperature to adsorb, and decompose at high temperature to desorb, resulting in frequent cycles of adsorption and desorption. The loss rate of the adsorbent increases during the operation process, and the adsorbent undergoes chemical reactions with foreign substances such as water, so the adsorbent becomes pulverized and deactivated, making it impossible to effectively perform adsorption separation. Overcoming the problem, taking advantage of the characteristics of both HF and HCl that are highly polar and easy to adsorb but difficult to By adjusting the cyclic operation of adsorption and desorption, such a phenomenon can be avoided and the service life of the adsorbent can be extended.
(4) In the case of different raw material gases, the present invention can realize the recovery and reuse of HF/HCl by effectively simplifying the flow. By combining the method and the present invention, the etching exhaust gas can be treated, the HF/HCl can be effectively recovered, and the HF/HCl can be recycled back to the etching process or dry cleaning process, and the defects that cannot be recovered by the conventional treatment method can be solved. and reach emission standards as well.
(5) The present invention can recover and recycle HF/HCl from etching exhaust gas, and at the same time obtain valuable electronic grade H2 products by adding PSA to purify hydrogen. and can be recycled back to the dry etching process, or can be used as a hydrogen source for other semiconductor processes, while the process carrier gas is argon gas or nitrogen gas or hydrogen gas. If it is a mixed gas with, the PSA can be adjusted for hydrogen purification or argon purification or nitrogen purification, or low temperature adsorption can be added to obtain electronic grade argon gas, nitrogen gas, etc. products.

本発明の実施例1のフローチャートである。It is a flow chart of Example 1 of the present invention. 本発明の実施例2のフローチャートである。It is a flowchart of Example 2 of this invention. 本発明の実施例3のフローチャートである。It is a flow chart of Example 3 of the present invention. 本発明の実施例4のフローチャートである。It is a flow chart of Example 4 of the present invention. 本発明の実施例5のフローチャートである。It is a flow chart of Example 5 of the present invention. 本発明の実施例6のフローチャートである。It is a flowchart of Example 6 of this invention. 本発明の実施例7のフローチャートである。It is a flowchart of Example 7 of this invention.

本発明の目的、技術的解決手段及び利点をより明らかにするために、本発明を更に詳細に説明する。ここで記載されている具体的な実施例は、本発明を解釈するためのものに過ぎず、本発明の実施形態を限定するためのものではなく、即ち、記載されている実施例は、本発明の一部の実施例に過ぎず、全ての実施例ではないことを理解すべきである。 In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail. The specific examples described herein are only for the purpose of interpreting the invention and not for limiting the embodiments of the invention, i.e. the examples described It is to be understood that this is only some, but not all, embodiments of the invention.

実施例1
図1に示すように、FTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスは、ケイ素ベースのウエハチップの乾式エッチング過程で生じた排ガスに由来し、主に不活性キャリアガスである水素ガス(H)83%(v/v)、有効成分であるフッ化水素(HF)9%と塩化水素(HCl)5%、及び少量の水(HO)、四フッ化ケイ素(SiF)、四塩化ケイ素(SiCl)、シラン(SiH)、メタン(CH)、一酸化炭素(CO)、二酸化炭素(CO)、及び微量又は痕跡量の揮発性有機物(VOC)、金属イオン(Me+)、微細固体とエーロゾル粒子(SS)、一部の高フッ素シラン酸/高塩素シランの異物成分を含有し、常温常圧である。
Example 1
As shown in FIG. 1, in the separation, recovery, recycling and recycling method of HF/HCl-containing etching exhaust gas by FTrPSA, the raw material gas is derived from the exhaust gas generated during the dry etching process of silicon-based wafer chips, and is mainly inert. 83% (v/v) hydrogen gas (H 2 ) as a carrier gas, 9% hydrogen fluoride (HF) and 5% hydrogen chloride (HCl) as active ingredients, and a small amount of water (H 2 O). silicon fluoride ( SiF4 ), silicon tetrachloride ( SiCl4 ), silane ( SiH4 ), methane ( CH4 ), carbon monoxide (CO), carbon dioxide ( CO2 ), and trace or trace amounts of volatile It contains organic substances (VOC), metal ions (Me+), fine solids and aerosol particles (SS), some high fluorine silane acid/high chlorine silane foreign matter components, and is normal temperature and pressure.

具体的な実施工程は、
(1)原料ガスを増圧した後に、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とからなる前処理ユニットに送り込み、0.2~0.3MPaの圧力と常温の操作条件下で、順にダスト、粒子(SS)、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、形成された浄化原料ガスを次の工程であるクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔に底部から導入し、クロロシランとHCl(1:1~1.4)の混合液体を吸収剤として採用し、スプレー吸収塔の頂部から下へスプレーして浄化原料ガスと逆物質移動交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを次の工程である中温圧力スイング吸着工程に直接入らせるクロロシラン/HClスプレー吸収工程と、
(3)クロロシラン/HClスプレー吸収工程からの不凝縮ガス1を二段の圧力スイング吸着(PSA)からなる中温圧力スイング吸着工程に入らせ、一段目、二段目の圧力スイング吸着(1#PSA、2#PSA)がいずれも3つの吸着塔からなり、そのうち1つの吸着塔が吸着ステップにあり、残りの2つの吸着塔が降圧・逆ガス抜き又は真空引き、昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、不凝縮ガス1を1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過(10マイクロメートルより小さい)した後に次の工程であるHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスを0.2~0.3MPaに増圧した後に2#PSA吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合して戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)中温圧力スイング吸着工程からの粗HFガスが凝縮を経て形成した精製HF液体をHF精留工程の精留塔に入らせ、本工程の精留塔が上下二段の精留からなり、精製HF液体を下段精留の頂部に入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に入らせて処理し、上段精留の底部の留出物が凝縮を経て形成した不凝縮ガス4が無水HF(AHF)ガスであり、純度が99.99%以上であり、直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の70%を次の工程である多段蒸発・圧縮・凝縮工程に入らせ、30%を後続の排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、二段の精留塔の操作温度が18~100℃であり、操作圧力が0.03~0.2MPaであるHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体を次の工程であるHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)多段蒸発・圧縮・凝縮工程からの粗HCl液体をHCl精留塔と真空精留塔からなるHCl精製工程に入らせ、HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガス(不凝縮ガス7)の一部を後続の排ガス吸収工程に入らせ、一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、一部を次の工程であるクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を混合した後に入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部がHClと適切な割合(1:1~1.4)で混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、一部を硫酸と混合して次の工程である排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガス、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した一部の不凝縮ガス5及びHCl精製工程からの一部の不凝縮ガス7を混合した後に、クロロシラン中弱冷精留工程からのクロロシラン液体と新鮮な硫酸の混合液を吸収剤とする排ガス吸収塔に入らせ、吸収塔の底部でフルオロケイ酸溶液を形成し、原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、を含む。
The specific implementation process is
(1) After increasing the pressure of the raw material gas, it is sent to a pretreatment unit consisting of a dust remover, a particle removal filter, a soot removal collector, and an activated carbon adsorber, and the pressure is 0.2 to 0.3 MPa and normal temperature. Dust, particles (SS), soot, VOC, high-fluorine silane/acid and high-chlorine silane are sequentially desorbed under the operating conditions of , and the purified raw material gas thus formed is subjected to the next step, the chlorosilane/HCl spray absorption step. A pretreatment step for entering the
(2) After heat-exchanging the purified raw material gas from the pretreatment process to 50 to 80° C., it is introduced into the spray absorption tower from the bottom, and a mixed liquid of chlorosilane and HCl (1:1 to 1.4) is used as an absorbent. is used, spraying downward from the top of the spray absorption tower to cause reverse mass transfer exchange with the purified raw gas, and the chlorosilane/HCl-enriched absorption liquid flows out from the bottom of the spray absorption tower, which is used for the subsequent multi-stage evaporation. Compressing and condensing process, and at the same time sending out a small amount of residual particles, high-chlorine silane, high-fluorine silane/acid and other foreign matter from the bottom of the tower for environmental protection treatment, and HF and low boiling point components from the top of the spray absorption tower. a chlorosilane/HCl spray absorption step in which the non-condensible gas 1 enriched in
(3) The noncondensable gas 1 from the chlorosilane/HCl spray absorption step is introduced into a medium temperature pressure swing adsorption step consisting of two stages of pressure swing adsorption (PSA), and the first and second stages of pressure swing adsorption (1#PSA) , 2#PSA) each consist of three adsorption towers, one of which is in the adsorption step, and the remaining two adsorption towers are in different stages of depressurization/back-venting or evacuation, pressurization or final gassing. in the desorption step including, let the noncondensable gas 1 enter from the bottom of the 1#PSA adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, the operating temperature is 50-80 ℃, The non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, and the non-condensable gas 2 formed through condensation is subjected to microfiltration and absorption with deionized water, and the concentration is 40%. HF aqueous solution is obtained and sent out, and the non-condensable gas 3 formed through water absorption is hydrogen-rich gas, which is sent out and used as fuel gas, while the crude HF liquid formed through condensation is finely filtered (less than 10 micrometers), the next step, the HF rectification step, was introduced, and the desorption gas flowing out from the bottom of the 1#PSA adsorption tower in the desorption step was pressurized to 0.2 to 0.3 MPa. After entering from the bottom of the 2#PSA adsorption tower, the operating pressure of the 2#PSA adsorption tower is 0.2-0.3MPa, the operating temperature is 50-80 ℃, and the 2#PSA adsorption tower is in the adsorption step. The intermediate gas of the non-adsorbed phase flowing out from the top of the is mixed with the non-condensable gas 1 from the chlorosilane/HCl spray absorption step and returned to the 1# PSA adsorption tower, further recovering the active ingredients HF and HCl, and 2 # A medium temperature pressure swing adsorption step in which the desorbed gas flowing out from the bottom of the PSA adsorption tower is a concentrated gas, which is returned to the chlorosilane/HCl spray absorption step to further recover the active ingredients;
(4) The purified HF liquid formed by the condensation of the crude HF gas from the intermediate temperature pressure swing adsorption step is introduced into the rectification column of the HF rectification step, and the rectification column of this step consists of upper and lower two-stage rectification. , the purified HF liquid enters the top of the lower rectification, the foreign gas of light components distilled at the top of the upper rectification column is treated by entering the subsequent exhaust gas absorption process, and the bottom distillate of the upper rectification is The non-condensable gas 4 formed by the condensation of the effluent is anhydrous HF (AHF) gas with a purity of 99.99% or more, and is directly recycled back to the dry etching process as an electronic grade HF product gas, The liquid formed through condensation is used as the reflux of the upper rectification, and the bottoms fluid containing a small amount of heavy components and foreign matter components distilled at the bottom of the lower rectification is condensed to form non-condensable gas 5. 70% is sent to the next step, the multi-stage evaporation-compression-condensation process, 30% is sent to the subsequent exhaust gas absorption process, and the liquid formed through condensation is returned to the chlorosilane/HCl spray absorption process as an absorbent. an HF rectification step in which the circulating two-stage rectification column has an operating temperature of 18 to 100° C. and an operating pressure of 0.03 to 0.2 MPa;
(5) Allowing the absorbent from the chlorosilane/HCl spray absorption step to enter a multi-stage evaporation step and then to a condenser from which crude HCl gas in the vapor phase is obtained for heavy components from the HF rectification step. is mixed with the uncondensable gas 5 obtained after the bottoms fluid is condensed, and the crude HCl liquid formed through condensation is sent to the next HCl purification step, and the crude chlorosilane liquid flows out of the condenser. Then, it is sent to the subsequent weak-cold rectification step in chlorosilane, where the non-condensable gas 6 flowing out from the condenser is heat-exchanged, and then returned to the intermediate temperature pressure swing adsorption step, and the active ingredients HF and HCl are recovered. Evaporation/compression/condensation process,
(6) The crude HCl liquid from the multi-stage evaporation/compression/condensation process is introduced into the HCl purification process consisting of the HCl rectification column and the vacuum rectification column, and the operating pressure of the HCl rectification column is 0.3-0.6 MPa. , the operating temperature is 50 ~ 80 ° C, the operating pressure of the vacuum rectification column is -0.08 ~ -0.1 MPa, the operating temperature is 60 ~ 120 ° C, and the HCl rectification column is discharged from the top Part of the HCl product gas with a purity greater than 99.99% is recycled back to the dry etching process, part is liquefied and then recycled as an absorbent in the chlorosilane/HCl spray absorption step, and HCl rectification. The effluent from the bottom of the column enters the vacuum rectification column, part of the overhead gas (non-condensable gas 7) exiting the top of the vacuum rectification column enters the subsequent exhaust gas absorption step, and part of the Returning to the pressure swing adsorption process, part of the heavy components flowing out from the bottom of the vacuum rectification column is returned to the multi-stage evaporation/compression/condensation process, and part of it is sent to the next process, the weak cold rectification process in chlorosilane. a HCl purification step that allows
(7) entering after mixing the crude chlorosilane liquid from the multi-stage evaporation/compression/condensation process and/or the vacuum column bottom heavy component fluid from the HCl purification process, the operating temperature being -35 to 10°C; The operating pressure is 0.6 to 2.0 MPa, and the noncondensable gas 8 flowing out from the top of the rectifying column is heat-exchanged and then returned to the intermediate temperature pressure swing adsorption step, and the chlorosilane flowing out from the bottom of the rectifying column. A part of the liquid is mixed with HCl in an appropriate ratio (1:1-1.4) to form a mixed liquid, which is recycled back to the chlorosilane/HCl spray absorption process as an absorbent, and a part is mixed with sulfuric acid. A weak-cold rectification step in chlorosilane used as an absorbent in the exhaust gas absorption step, which is the next step,
(8) The foreign gas of the light component distilled at the top of the upper rectification column from the HF rectification process and the heavy component flowing out from the bottom of the lower rectification column from the HF rectification process are formed through condensation. After mixing a part of the non-condensable gas 5 and a part of the non-condensable gas 7 from the HCl refining process, exhaust gas absorption with a mixture of chlorosilane liquid from the weak cold rectification process in chlorosilane and fresh sulfuric acid as an absorbent. It enters the tower, forms a fluorosilicic acid solution at the bottom of the absorption tower, is sent out as a raw material, and is recycled as a raw material liquid in the production process of preparing AHF by the fluorosilicic acid removal method, and the waste flowing out from the top of the absorption tower. and an exhaust gas absorption step for directly discharging the condensed gas 9 as exhaust gas.

実施例2
図2に示すように、実施例1を基に、原料ガスにおけるHClの濃度が1%より小さく、HFの濃度が13%程度に増えた場合、浄化原料ガスを中温圧力スイング吸着工程に直接入らせ、1#PSA塔頂から流出する粗HFガスが凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスを0.2~0.3MPaに増圧した後に2#PSA吸着塔の底部から入らせ、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して1#PSA吸着塔に入らせ、更に有効成分を回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、新しく増設された凝縮器を経てから形成した不凝縮ガス1を更に中温圧力スイング吸着工程の粗HFガスと混合して有効成分HFを回収し、新しく増設された凝縮器の後に形成した液体をHCl精製工程に直接入らせてHClを回収し、HCl精製工程から流出する重質成分を処理してから直接排出することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省く。
Example 2
As shown in FIG. 2, based on Example 1, when the concentration of HCl in the feed gas is less than 1% and the concentration of HF is increased to about 13%, the purified feed gas is directly entered into the intermediate temperature pressure swing adsorption process. Then, the non-condensable gas 2 formed by the condensation of the crude HF gas flowing out from the top of the 1#PSA column is subjected to microfiltration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is discharged to the outside. The non-condensable gas 3 formed through pumping and water absorption is the hydrogen-rich gas, which is pumped and used as fuel gas, while the crude HF liquid formed through condensation is microfiltered before entering the HF rectification process. The desorption gas flowing out from the bottom of the 1#PSA adsorption tower in the desorption step is pressurized to 0.2 ~ 0.3 MPa, and then entered from the bottom of the 2#PSA adsorption tower to enter the 2#PSA in the adsorption step. The intermediate gas of the non-adsorbed phase flowing out from the top of the adsorption tower is directly returned to enter the 1#PSA adsorption tower to recover the active ingredient, and the desorption gas flowing out from the bottom of the 2#PSA adsorption tower is the enriched gas. , the non-condensable gas 1 formed after passing through the newly added condenser is further mixed with the crude HF gas in the intermediate temperature pressure swing adsorption process to recover the active ingredient HF, and the liquid formed after the newly added condenser is Chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation and medium-weak cold chlorosilane Eliminates the rectification step.

実施例3
図3に示すように、実施例1を基に、原料ガスにおけるHFの濃度(5%)がHClの濃度(9%)より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。
Example 3
As shown in FIG. 3, based on Example 1, when the concentration of HF (5%) in the source gas is less than the concentration of HCl (9%), the purified source gas from the pretreatment process is heated to 80 to 160 ° C. After heat exchange, it is introduced into the chlorosilane/HCl spray absorption process, and the noncondensable gas 2 formed through condensation of the noncondensable gas 1 flowing out from the top of the spray absorption tower is further passed to the intermediate temperature pressure swing adsorption process comprising two stages of PSA. The condensed liquid formed through condensation directly enters the HCl purification process, and the absorbent exiting from the bottom of the spray absorption tower enters the multi-stage evaporation-compression-condensation process.

実施例4
図4に示すように、実施例1及び実施例3を基に、原料ガスにおけるHFの濃度が5%であり、HClの濃度が9%である場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、不凝縮ガス2を50~80℃に冷却した後に1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが中間ガスであり、それを2#PSA吸着塔の底部に入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス3に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス4が水素富化ガスであり、それを送り出し、燃料ガスとして使用するが、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガス及び2#PSA吸着塔の底部から流出する濃縮ガスをそれぞれクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収し、不凝縮ガス1が凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせる。
Example 4
As shown in FIG. 4, based on Examples 1 and 3, when the concentration of HF in the source gas is 5% and the concentration of HCl is 9%, the purified source gas from the pretreatment step is changed to 80%. After heat exchange up to ~160°C, the chlorosilane/HCl spray absorption step is entered, and the noncondensable gas 2 formed through condensation of the noncondensible gas 1 flowing out from the top of the spray absorption tower is further converted into a medium temperature pressure gas comprising two stages of PSA. Entering the swing adsorption process, the noncondensable gas 2 is cooled to 50-80 ° C. and then enters from the bottom of the 1#PSA adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, and the operating temperature is is 50-80 ℃, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the intermediate gas, let it enter the bottom of the 2#PSA adsorption tower, and the top of the adsorption tower in the adsorption step The non-adsorbed phase gas flowing out of is crude HF gas, and the non-condensable gas 3 formed through condensation is subjected to microfiltration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is discharged to the outside. The non-condensable gas 4 formed through pumping and water absorption is the hydrogen-rich gas, which is pumped and used as fuel gas, while the crude HF liquid formed through condensation is microfiltered prior to the HF rectification process. the desorbed gas flowing out from the bottom of the 1#PSA adsorption tower in the desorption step and the concentrated gas flowing out of the bottom of the 2#PSA adsorption tower are respectively returned to the chlorosilane/HCl spray absorption process to further recover the effective ingredients; The condensed liquid formed by the condensation of the non-condensable gas 1 directly enters the HCl purification process, and the absorbent flowing out from the bottom of the spray absorption tower enters the multi-stage evaporation-compression-condensation process.

実施例5
図5に示すように、実施例1を基に、原料ガスにおけるHFとHClの濃度が合計で3%を超えておらず、Hの含有量が90%を超えている場合、前処理工程を経て得られた浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、一段のPSAが4つの吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き、昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、浄化原料ガスをPSA吸着塔の底部から入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが吸着廃ガスであり、それを燃料ガスとして使用し、脱着ステップにある吸着塔の底部から流出する濃縮ガスが凝縮を経て形成した不凝縮ガス1を浄化原料ガスと混合して中温圧力スイング吸着工程に戻し、更に有効成分を回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス2を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省く。この動作状況は従来の水洗吸収法によりエッチング排ガスを処理した後の低濃度HF/HCl含有酸性排ガスの分離と回収再利用にも適する。
Example 5
As shown in FIG. 5, based on Example 1, when the total concentration of HF and HCl in the source gas does not exceed 3% and the content of H2 exceeds 90%, the pretreatment process The purified feed gas obtained through is directly entered into a single-stage PSA intermediate pressure swing adsorption process, the single-stage PSA is composed of four adsorption towers, one adsorption tower is in the adsorption step, and the remaining adsorption towers are in the desorption step including different stages of depressurization/reverse venting or evacuation, pressure increase or final gas filling, the operating pressure of the adsorption tower is 0.2-0.3 MPa, the operating temperature is 70-90° C., Purified raw gas enters from the bottom of the PSA adsorption tower, and the non-adsorbed phase gas that flows out from the top of the adsorption tower in the adsorption step is the adsorption waste gas, which is used as fuel gas for the adsorption tower in the desorption step. The non-condensable gas 1 formed through condensation of the enriched gas flowing out from the bottom is mixed with the purified feed gas and returned to the intermediate temperature pressure swing adsorption step for further recovery of active components, and the condensed liquid formed through condensation is further purified by HF. The non-condensable gas 2 flowing out of the HF rectification process is introduced into the distillation process and treated in the exhaust gas absorption process, the HF product gas flowing out of the HF rectification process is returned to the dry etching process and recycled, and the HF The heavy component fluid discharged from the bottom of the rectification column directly enters the HCl purification process, thus obtaining the HCl product gas, and recycling it back to the dry etching process, chlorosilane/HCl spray absorption, multi-stage evaporation and Eliminates compression/condensation and medium-low-cooling chlorosilane rectification processes. This operating situation is also suitable for separating and recovering and reusing low-concentration HF/HCl-containing acidic exhaust gas after treating the etching exhaust gas by the conventional water washing absorption method.

実施例6
図6に示すように、実施例1を基に、原料ガスにおけるHF/HClの濃度が30%であり、水素ガス濃度が70%より小さい場合、前処理工程を経た浄化原料ガスを凝縮して形成した不凝縮ガス1に対して、水洗を行い少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した不凝縮ガス2を燃料ガスとし、凝縮を経て形成した凝縮液をHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス3を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着工程を省く。この動作状況はプラズマにより洗浄した後に生成された高濃度HF/HCl含有排ガスの分離と回収再利用にも適する。
Example 6
As shown in FIG. 6, based on Example 1, when the HF/HCl concentration in the raw material gas is 30% and the hydrogen gas concentration is less than 70%, the purified raw material gas that has undergone the pretreatment process is condensed. The formed noncondensable gas 1 is washed with water to desorb a small amount of residual acidic components, a dilute acid is generated and sent out, and the noncondensable gas 2 formed after washing is used as fuel gas, The condensate formed through condensation is sent to the HF rectification process, the non-condensable gas 3 flowing out of the HF rectification process is treated by entering the exhaust gas absorption process, and the HF product gas flowing out of the HF rectification process is dry-processed. Recycled back to the etching process, the heavy component fluid exiting from the bottom of the HF rectification column directly enters the HCl purification step, thus obtaining the HCl product gas and recycled back to the dry etching process. This eliminates the chlorosilane/HCl spray absorption, multi-stage evaporation-compression-condensation, medium-low cold chlorosilane rectification and medium-temperature pressure swing adsorption steps. This operating situation is also suitable for separation and recovery recycling of high HF/HCl containing exhaust gases produced after plasma cleaning.

実施例7
図7に示すように、実施例1~6を基に、中温圧力スイング吸着工程において水洗後に生成された不凝縮ガス又は吸着廃ガスを全て燃料ガスとして使用することを、圧力スイング吸着による水素精製の原料ガスとして使用することに変換し、まず不凝縮ガス又は吸着廃ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得て、2.6~3.0MPaに加圧してから、常温まで熱交換し、5つの吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、吸着塔の頂部から純度が99.99~99.999%の超純粋水素が流出し、それを金属ゲッタからなる水素ガス純化工程に入らせ、電子グレードの水素ガス基準に合致するH製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして使用する。
Example 7
As shown in FIG. 7, based on Examples 1 to 6, hydrogen purification by pressure swing adsorption using all the non-condensable gas or adsorption waste gas produced after water washing in the intermediate temperature pressure swing adsorption step as fuel gas. First, the non-condensable gas or adsorption waste gas is introduced into the drying tower, and the moisture and acidic components containing a small amount of fluorine and chlorine are desorbed, followed by adsorption purification. Enter the stage to desorb foreign matter including silane, phosphorane and metal ions to obtain hydrogen-enriched purified methane-hydrogen gas, pressurize to 2.6-3.0 MPa, and then heat exchange to normal temperature. Then, it is put into a hydrogen refining process by pressure swing adsorption consisting of five adsorption towers, ultrapure hydrogen with a purity of 99.99 to 99.999% flows out from the top of the adsorption tower, and it is hydrogen gas composed of metal getter. Enter the purification process to obtain H2 product gas that meets electronic grade hydrogen gas standards, and recycle it back to the dry etching process, the desorption gas exiting the bottom of the adsorption tower is methane-rich gas, Use it as fuel gas.

明らかに、以上に記載の実施例は、本発明の実施例の一部に過ぎず、実施形態の全てではない。本発明に記載の実施例に基づき、当業者が創造的な労働をすることなく得られた他の全ての実施例、又は本発明の示唆に基づいてなされた構造の改変は、本発明と同じ又は類似する技術的解決手段を有していれば、全て本発明の保護範囲内に含まれる。 Apparently, the embodiments described above are only some of the embodiments of the present invention, but not all of the embodiments. Based on the embodiment described in the present invention, all other embodiments obtained without creative work by those skilled in the art, or structural modifications made based on the suggestions of the present invention, are the same as the present invention. or have similar technical solutions, they are all within the protection scope of the present invention.

Claims (7)

(1)原料ガスの温度が常温であり、圧力が0.2~0.3MPaであるように制御し、除塵機と、粒子除去フィルタと、油煙除去捕集器と、活性炭吸着器とを含む前処理ユニットに送り込み、順にダスト、粒子、油煙、VOC、高フッ素シラン/酸及び高塩素シランを脱離させ、前処理を経て形成された浄化原料ガスをクロロシラン/HClスプレー吸収工程に入らせる前処理工程と、
(2)クロロシランとHClの混合液体を吸収剤とするスプレー吸収塔をリアクタとして採用し、前処理工程からの浄化原料ガスを50~80℃まで熱交換した後、スプレー吸収塔の底部から入らせて吸収剤と逆物質移動交換させ、スプレー吸収塔の底部からクロロシラン/HClを富化した吸収液が流出し、それを後続の多段蒸発・圧縮・凝縮工程に入らせ、同時に塔底から流出する少量の残留粒子、高塩素シラン、高フッ素シラン/酸といった異物を送り出して環境保護処理を行い、スプレー吸収塔の頂部からHF及び低沸点成分を富化した不凝縮ガス1が流出し、それを中温圧力スイング吸着工程に入らせるクロロシラン/HClスプレー吸収工程と、
(3)二段の圧力スイング吸着工程からなり、各段の圧力スイング吸着工程において2つ以上の吸着塔からなり、少なくとも1つの吸着塔が吸着ステップにあり、残りの吸着塔が脱着ステップにあり、クロロシラン/HClスプレー吸収工程からの不凝縮ガス1が一段目の圧力スイング吸着1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから二段目の圧力スイング吸着2#PSA吸着塔の底部から入らせ、2#PSA吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスをクロロシラン/HClスプレー吸収工程からの不凝縮ガス1と混合してから戻して1#PSA吸着塔に入らせ、更に有効成分HFとHClを回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、それをクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収する中温圧力スイング吸着工程と、
(4)上下二段の精留からなる精留塔を含み、中温圧力スイング吸着工程からの粗HFガスが凝縮してから得られた精製HF液体をHF精留工程における精留塔に入らせ、精製HF液体を下段精留塔の頂部又は上段精留塔の底部から入らせ、上段精留塔の頂部で留出された軽質成分の異物ガスを後続の排ガス吸収工程に戻し、上段精留塔の底部又は下段精留塔の頂部の留出物が凝縮を経て形成した不凝縮ガス4が無水HFガスであり、純度が99.99%以上であり、それを直接電子グレードのHF製品ガスとして乾式エッチングプロセスに戻して循環使用し、凝縮を経て形成した液体を上段又は下段精留の還流とし、下段精留の底部で留出された少量の重質成分の異物成分を含有する塔底物流体が凝縮を経て形成した不凝縮ガス5の一部を多段蒸発・圧縮・凝縮工程に入らせ、他の一部を排ガス吸収工程に入らせ、凝縮を経て形成した液体を吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用するHF精留工程と、
(5)クロロシラン/HClスプレー吸収工程からの吸収液を多段蒸発工程に入らせてから、凝縮器に入らせ、そこから気相の粗HClガスを得て、HF精留工程からの重質成分の塔底物流体が凝縮してから得られた不凝縮ガス5と混合し、凝縮を経て形成した粗HCl液体をHCl精製工程に入らせ、凝縮器から粗クロロシラン液体が流出し、それを後続のクロロシラン中弱冷精留工程に入らせ、凝縮器から流出する不凝縮ガス6を熱交換してから中温圧力スイング吸着工程に戻し、更に有効成分HFとHClを回収する多段蒸発・圧縮・凝縮工程と、
(6)HCl精留塔及び真空精留塔を含み、HCl精留塔の操作圧力が0.3~0.6MPaであり、操作温度が50~80℃であり、真空精留塔の操作圧力が-0.08~-0.1MPaであり、操作温度が60~120℃であり、HCl精留塔の頂部から流出する純度が99.99%より大きいHCl製品ガスの一部を乾式エッチングプロセスに戻して循環使用し、他の一部を液化してからクロロシラン/HClスプレー吸収工程の吸収剤として循環使用し、HCl精留塔の底部の流出物を真空精留塔に入らせ、真空精留塔の頂部から流出する塔頂ガスが不凝縮ガス7であり、その一部を後続の排ガス吸収工程に入らせ、他の一部を中温圧力スイング吸着工程に戻し、真空精留塔の底部から流出する重質成分の一部を多段蒸発・圧縮・凝縮工程に戻し、他の一部をクロロシラン中弱冷精留工程に入らせるHCl精製工程と、
(7)精留塔を含み、多段蒸発・圧縮・凝縮工程からの粗クロロシラン液体、及び/又はHCl精製工程からの真空塔底部の重質成分流体を入らせ、操作温度が-35~10℃であり、操作圧力が0.6~2.0MPaであり、精留塔の塔頂から流出する不凝縮ガス8を熱交換してから中温圧力スイング吸着工程に戻し、精留塔の塔底から流出するクロロシラン液体の一部をHClと混合して混合液を形成し、吸収剤としてクロロシラン/HClスプレー吸収工程に戻して循環使用し、他の一部を硫酸と混合して排ガス吸収工程の吸収剤として使用するクロロシラン中弱冷精留工程と、
(8)クロロシラン中弱冷精留工程からのクロロシラン液体と硫酸の混合液を吸収剤とする排ガス吸収塔をリアクタとして採用し、HF精留工程からの上段精留塔の頂部で留出された軽質成分の異物ガス、HF精留工程からの下段精留塔の底部から流出する重質成分が凝縮を経て形成した不凝縮ガス5及びHCl精製工程からの不凝縮ガス7を排ガス吸収塔に入らせ、吸収塔の底部でフルオロケイ酸溶液を形成し、原料として送り出し、フルオロケイ酸除去方法によりAHFを調製する生産過程における原料液として循環使用し、吸収塔の頂部から流出する不凝縮ガス9を排ガスとして直接排出する排ガス吸収工程と、
を含むことを特徴とするFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。
(1) The temperature of the raw material gas is controlled to be normal temperature, the pressure is controlled to be 0.2 to 0.3 MPa, and includes a dust remover, a particle removal filter, a soot removal collector, and an activated carbon adsorber. It is fed into the pretreatment unit to desorb dust, particles, soot, VOC, high fluorine silane/acid and high chlorine silane in order, and the purified raw material gas formed through pretreatment is before entering the chlorosilane/HCl spray absorption process. a processing step;
(2) A spray absorption tower using a mixed liquid of chlorosilane and HCl as an absorbent is adopted as a reactor, and the purified raw material gas from the pretreatment process is heat-exchanged up to 50 to 80° C. and then introduced from the bottom of the spray absorption tower. back mass transfer exchange with the absorbent at the bottom of the spray absorption tower, the chlorosilane/HCl-enriched absorbent exits from the bottom of the absorption tower, enters the subsequent multi-stage evaporation-compression-condensation process, and simultaneously exits from the bottom of the tower. A small amount of residual particles, high-chlorine silane, high-fluorine silane/acid and other foreign matter are sent out for environmental protection treatment, and the non-condensable gas 1 enriched with HF and low boiling point components flows out from the top of the spray absorption tower, which is a chlorosilane/HCl spray absorption step entering a medium temperature pressure swing adsorption step;
(3) comprising a two-stage pressure swing adsorption process, wherein each stage of the pressure swing adsorption process comprises two or more adsorption towers, at least one adsorption tower being in the adsorption step and the remaining adsorption towers being in the desorption step; , the non-condensable gas 1 from the chlorosilane/HCl spray absorption process enters from the bottom of the first stage pressure swing adsorption 1#PSA adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, and the operating temperature is is 50-80 ° C, the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is crude HF gas, and the non-condensed gas 2 formed through condensation is subjected to microfiltration and absorption by deionized water. After performing the above, an aqueous HF solution with a concentration of 40% is obtained and sent out, and the non-condensable gas 3 formed through water absorption is a hydrogen-rich gas, which is sent out and used as fuel gas, or pressure swing adsorption The crude HF liquid formed through condensation is subjected to microfiltration before entering the HF rectification process, and is added to the desorption gas flowing out from the bottom of the 1#PSA adsorption tower in the desorption step. After pressure and heat exchange, the second pressure swing adsorption 2#PSA adsorption tower is introduced from the bottom. At 80° C., the non-adsorbed phase intermediate gas flowing out from the top of the 2#PSA adsorption tower in the adsorption step is mixed with 1 non-condensable gas from the chlorosilane/HCl spray absorption step and returned to the 1#PSA adsorption tower. to recover the active ingredients HF and HCl, and the desorption gas flowing out from the bottom of the 2#PSA adsorption tower is the enriched gas, which is returned to the chlorosilane/HCl spray absorption process to recover the active ingredients. a pressure swing adsorption step;
(4) including a rectification column consisting of two stages of rectification, wherein the purified HF liquid obtained after the crude HF gas from the intermediate temperature pressure swing adsorption step is condensed into the rectification column in the HF rectification step; , the purified HF liquid enters from the top of the lower rectification column or the bottom of the upper rectification column, and the light component foreign matter gas distilled at the top of the upper rectification column is returned to the subsequent exhaust gas absorption step, and the upper rectification The non-condensable gas 4 formed by condensation of the distillate at the bottom of the column or the top of the lower rectification column is anhydrous HF gas with a purity of not less than 99.99%, which is directly used as an electronic grade HF product gas. The liquid formed through condensation is used as the reflux of the upper or lower rectification, and the bottom of the column containing a small amount of foreign matter components of the heavy components distilled at the bottom of the lower rectification A part of the non-condensable gas 5 formed by the condensation of the material fluid is sent to the multi-stage evaporation/compression/condensation process, the other part is sent to the exhaust gas absorption process, and the liquid formed by the condensation is used as an absorbent for chlorosilane. a HF rectification step that is recycled back to the /HCl spray absorption step;
(5) Allowing the absorbent from the chlorosilane/HCl spray absorption step to enter a multi-stage evaporation step and then to a condenser from which crude HCl gas in the vapor phase is obtained for heavy components from the HF rectification step. is mixed with the uncondensable gas 5 obtained after condensing the bottoms fluid of , and the crude HCl liquid formed through condensation is sent to the HCl purification step, and the crude chlorosilane liquid flows out from the condenser, which is used in the subsequent The non-condensable gas 6 flowing out from the condenser is heat-exchanged and then returned to the intermediate temperature pressure swing adsorption step, and the active ingredients HF and HCl are recovered. process and
(6) including an HCl rectification column and a vacuum rectification column, the operating pressure of the HCl rectification column is 0.3-0.6 MPa, the operating temperature is 50-80° C., and the operating pressure of the vacuum rectification column; is −0.08 to −0.1 MPa, the operating temperature is 60 to 120° C., and part of the HCl product gas exiting the top of the HCl rectification column with a purity greater than 99.99% is subjected to a dry etching process. The other part is liquefied and then recycled as an absorbent in the chlorosilane/HCl spray absorption process, and the bottom effluent of the HCl rectification column is fed into the vacuum rectification column for vacuum purification. The overhead gas flowing out from the top of the distillation column is the non-condensable gas 7, part of which is sent to the subsequent exhaust gas absorption process, the other part is returned to the intermediate temperature pressure swing adsorption process, and is returned to the bottom of the vacuum rectification column. a portion of the heavy components flowing out from the HCI is returned to the multi-stage evaporation-compression-condensation step and the other portion is sent to the weak-cold rectification step in chlorosilane;
(7) including a rectification column, into which the crude chlorosilane liquid from the multi-stage evaporation, compression and condensation process and/or the heavy component fluid at the bottom of the vacuum column from the HCl refining process is entered, and the operating temperature is -35 to 10°C; The operating pressure is 0.6 to 2.0 MPa, and the noncondensable gas 8 flowing out from the top of the rectification column is heat-exchanged, returned to the intermediate temperature pressure swing adsorption step, and discharged from the bottom of the rectification column. Part of the effluent chlorosilane liquid is mixed with HCl to form a mixed liquid, and recycled back to the chlorosilane/HCl spray absorption process as an absorbent, and another part is mixed with sulfuric acid to absorb the exhaust gas absorption process. A weak cold rectification step in chlorosilane used as an agent,
(8) Adopting as a reactor the exhaust gas absorption tower using a mixed liquid of chlorosilane liquid and sulfuric acid from the weak-cold rectification process in chlorosilane as an absorbent, and distilled at the top of the upper rectification tower from the HF rectification process Foreign matter gas of light components, non-condensable gas 5 formed through condensation of heavy components flowing out from the bottom of the lower rectification column from the HF rectification step, and non-condensable gas 7 from the HCl refining step are fed into the flue gas absorption tower. Then, a fluorosilicic acid solution is formed at the bottom of the absorption tower, sent out as a raw material, and recycled as a raw material liquid in the production process of preparing AHF by the fluorosilicic acid removal method, and the noncondensable gas 9 flowing out from the top of the absorption tower an exhaust gas absorption step for directly discharging as an exhaust gas,
A method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA, comprising:
請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスにおけるHClの含有量が1%より小さい場合、浄化原料ガスを中温圧力スイング吸着工程に直接入らせ、1#PSA塔頂から流出する粗HFガスが凝縮を経て形成した不凝縮ガス2に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス3が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガスに増圧と熱交換を行ってから2#PSA吸着塔の底部から入らせ、吸着ステップにある2#PSA吸着塔の頂部から流出する非吸着相の中間ガスを直接戻して1#PSA吸着塔に入らせ、更に有効成分を回収し、2#PSA吸着塔の底部から流出する脱着ガスが濃縮ガスであり、新しく増設された凝縮器を経てから形成した不凝縮ガス1を更に中温圧力スイング吸着工程の粗HFガスと混合して有効成分HFを回収し、新しく増設された凝縮器の後に形成した液体をHCl精製工程に直接入らせてHClを回収し、HCl精製工程から流出する重質成分を処理してから直接排出することで、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮及び中弱冷クロロシラン精留工程を省くことを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 The method for separating, recovering, recycling and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, wherein when the content of HCl in the raw gas is less than 1%, the purified raw gas is directly entered into the intermediate temperature pressure swing adsorption step, 1# Uncondensable gas 2 formed by condensation of the crude HF gas flowing out from the top of the PSA column is subjected to microfiltration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is sent outside, The non-condensable gas 3 formed via water absorption is the hydrogen-rich gas, which is delivered and used as a fuel gas or used as a feed gas for hydrogen purification by pressure swing adsorption and the crude HF formed via condensation. The liquid is subjected to microfiltration before entering the HF rectification process, and the desorption gas flowing out from the bottom of the 1#PSA adsorption tower in the desorption step is pressurized and heat exchanged before entering from the bottom of the 2#PSA adsorption tower. Then, the non-adsorbed phase intermediate gas flowing out from the top of the 2#PSA adsorption tower in the adsorption step is directly returned to the 1#PSA adsorption tower, and the effective components are recovered, and the bottom of the 2#PSA adsorption tower is The outflowing desorption gas is a concentrated gas, and the non-condensable gas 1 formed after passing through the newly added condenser is further mixed with the crude HF gas in the intermediate temperature pressure swing adsorption process to recover the active ingredient HF, and the newly added condenser. The liquid formed after the condenser is introduced directly into the HCl purification process to recover HCl, and the heavy components flowing out of the HCl purification process are treated before being discharged directly, resulting in chlorosilane/HCl spray absorption, multi-stage evaporation. The method for separation, recovery, recycling and recycling of HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, characterized in that the steps of compression/condensation and medium-to-low-cold chlorosilane rectification are omitted. 請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせることを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 In the method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, when the concentration of HF in the source gas is lower than the concentration of HCl, the purified source gas from the pretreatment step is heated up to 80 to 160°C. After heat exchange, it is introduced into the chlorosilane/HCl spray absorption process, and the noncondensable gas 2 formed through condensation of the noncondensable gas 1 flowing out from the top of the spray absorption tower is further passed to the intermediate temperature pressure swing adsorption process comprising two stages of PSA. and the condensed liquid formed through condensation directly enters the HCl purification process, and the absorbent exiting from the bottom of the spray absorption tower enters the multi-stage evaporation-compression-condensation process. Separation, collection, circulation and reuse of HF/HCl-containing etching exhaust gas by FTrPSA. 請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスにおけるHFの濃度がHClの濃度より小さい場合、前処理工程からの浄化原料ガスを80~160℃まで熱交換した後にクロロシラン/HClスプレー吸収工程に入らせ、スプレー吸収塔の頂部から流出する不凝縮ガス1が凝縮を経て形成した不凝縮ガス2を更に二段のPSAからなる中温圧力スイング吸着工程に入らせ、不凝縮ガス2を1#PSA吸着塔の底部から入らせ、1#PSAの操作圧力が0.2~0.3MPaであり、操作温度が50~80℃であり、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが中間ガスであり、それを2#PSA吸着塔の底部に入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが粗HFガスであり、凝縮を経て形成した不凝縮ガス3に対して精密濾過及び脱イオン水による吸収を行ってから濃度が40%のHF水溶液を得て外部に送り出し、水吸収を経て形成した不凝縮ガス4が水素富化ガスであり、それを送り出し、燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した粗HF液体を精密濾過してからHF精留工程に入らせ、脱着ステップにある1#PSA吸着塔の底部から流出する脱着ガス及び2#PSA吸着塔の底部から流出する濃縮ガスをそれぞれクロロシラン/HClスプレー吸収工程に戻し、更に有効成分を回収し、不凝縮ガス1が凝縮を経て形成した凝縮液体をHCl精製工程に直接入らせ、スプレー吸収塔の底部から流出する吸収液を多段蒸発・圧縮・凝縮工程に入らせることを特徴とする請求項3に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 In the method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, when the concentration of HF in the source gas is lower than the concentration of HCl, the purified source gas from the pretreatment step is heated up to 80 to 160°C. After heat exchange, it is introduced into the chlorosilane/HCl spray absorption process, and the noncondensable gas 2 formed through condensation of the noncondensable gas 1 flowing out from the top of the spray absorption tower is further passed to the intermediate temperature pressure swing adsorption process comprising two stages of PSA. The non-condensable gas 2 is introduced from the bottom of the 1#PSA adsorption tower, the operating pressure of 1#PSA is 0.2-0.3MPa, the operating temperature is 50-80 ℃, and it is in the adsorption step. The non-adsorbed phase gas flowing out from the top of the adsorption tower is the intermediate gas, which enters the bottom of the 2#PSA adsorption tower, and the non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is the crude HF gas. The uncondensable gas 3 formed through condensation is subjected to microfiltration and absorption with deionized water to obtain an HF aqueous solution with a concentration of 40%, which is sent out to the outside, and the noncondensable gas 4 formed through water absorption. is a hydrogen-rich gas, which is delivered and used as a fuel gas or as a feed gas for hydrogen purification by pressure swing adsorption, and the crude HF liquid formed via condensation is microfiltered before HF rectification The desorbed gas from the bottom of the 1#PSA adsorption tower in the desorption step and the concentrated gas from the bottom of the 2#PSA adsorption tower are respectively returned to the chlorosilane/HCl spray absorption process to further recover the effective ingredients. The condensed liquid formed by the condensation of the non-condensable gas 1 is directly entered into the HCl purification process, and the absorbent flowing out from the bottom of the spray absorption tower is entered into the multi-stage evaporation, compression and condensation process. Item 3. A method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to item 3. 請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスにおけるHFとHClの濃度が合計で3%を超えていない場合、原料ガスに前処理工程を行って得られた浄化原料ガスを一段のPSAからなる中温圧力スイング吸着工程に直接入らせ、一段のPSAが2つ以上の吸着塔からなり、1つの吸着塔が吸着ステップにあり、残りの吸着塔が降圧・逆ガス抜き又は真空引き、昇圧又は最終ガス詰めの異なる段階を含む脱着ステップにあり、吸着塔の操作圧力が0.2~0.3MPaであり、操作温度が70~90℃であり、浄化原料ガスをPSA吸着塔の底部から入らせ、吸着ステップにある吸着塔の頂部から流出する非吸着相ガスが吸着廃ガスであり、それを燃料ガスとして使用するか、又は圧力スイング吸着による水素精製の原料ガスとして使用し、脱着ステップにある吸着塔の底部から流出する濃縮ガスが凝縮を経て形成した不凝縮ガス1を浄化原料ガスと混合して中温圧力スイング吸着工程に戻し、更に有効成分を回収し、凝縮を経て形成した凝縮液体を更にHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス2を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留工程を省き、この動作状況が従来の水洗吸収法によりエッチング排ガスを処理した後の低濃度HF/HCl含有酸性排ガスの分離と回収再利用にも適することを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 In the method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, if the total concentration of HF and HCl in the source gas does not exceed 3%, the source gas is subjected to a pretreatment step. The resulting purified feed gas directly enters a medium temperature pressure swing adsorption process consisting of a single-stage PSA, wherein the single-stage PSA consists of two or more adsorption towers, one adsorption tower is in the adsorption step, and the remaining adsorption towers are in the desorption step including different stages of depressurization/reverse venting or evacuation, pressure increase or final gas filling, the operating pressure of the adsorption tower is 0.2-0.3 MPa, the operating temperature is 70-90° C., Purified feed gas enters from the bottom of the PSA adsorption tower and the non-adsorbed phase gas exiting from the top of the adsorption tower in the adsorption step is the adsorption waste gas, which is used as fuel gas or hydrogen by pressure swing adsorption. The non-condensable gas 1, which is used as the raw material gas for purification and is formed through condensation of the concentrated gas flowing out from the bottom of the adsorption tower in the desorption step, is mixed with the purified raw material gas and returned to the intermediate temperature pressure swing adsorption step, and furthermore the active ingredient is is recovered, the condensed liquid formed through condensation is further entered into the HF rectification process, and the non-condensable gas 2 flowing out of the HF rectification process is entered into the exhaust gas absorption process for treatment, and is discharged from the HF rectification process The HF product gas is recycled back to the dry etching process, and the heavy component fluid exiting the bottom of the HF rectification column directly enters the HCl purification step, thus obtaining the HCl product gas, which is used in the dry etching process. The process of chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, and medium-low-cold chlorosilane rectification process is omitted. 2. The method for separating, recovering, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, which is also suitable for separating, recovering, and reusing HCl-containing acidic exhaust gas. 請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、原料ガスにおけるHF/HClの濃度が20%を超えている場合、前処理工程を経た浄化原料ガスが凝縮を経て形成した不凝縮ガス1に対して、水洗により少量の残留酸性成分を脱離させ、希酸を生成して外部へ送り出す処理を行い、水洗を経て形成した不凝縮ガス2を燃料ガス又は圧力スイング吸着による水素精製の原料ガスとして使用し、凝縮を経て形成した凝縮液をHF精留工程に入らせ、HF精留工程から流出する不凝縮ガス3を排ガス吸収工程に入らせて処理し、HF精留工程から流出するHF製品ガスを乾式エッチングプロセスに戻して循環使用し、HF精留塔の底部から流出する重質成分流体をHCl精製工程に直接入らせ、このようにHCl製品ガスを得て、乾式エッチングプロセスに戻して循環使用し、クロロシラン/HClスプレー吸収、多段蒸発・圧縮・凝縮、中弱冷クロロシラン精留及び中温圧力スイング吸着工程を省き、この動作状況がプラズマにより洗浄した後に生成された高濃度HF/HCl含有排ガスの分離と回収再利用にも適することを特徴とする請求項1に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 In the method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, when the concentration of HF/HCl in the raw material gas exceeds 20%, the purified raw material gas that has undergone the pretreatment process is condensed. The non-condensable gas 1 formed through water washing is washed with water to desorb a small amount of residual acidic components, dilute acid is generated and sent out, and the non-condensable gas 2 formed through water washing is used as fuel gas or pressure. Used as a raw material gas for hydrogen purification by swing adsorption, the condensate formed through condensation is sent to the HF rectification process, and the non-condensable gas 3 flowing out from the HF rectification process is sent to the exhaust gas absorption process for treatment, The HF product gas exiting the HF rectification step is recycled back into the dry etching process, and the heavies stream exiting the bottom of the HF rectification column directly enters the HCl purification step, thus recycling the HCl product gas. Then, the chlorosilane/HCl spray absorption, multi-stage evaporation/compression/condensation, medium-weak cold chlorosilane rectification and medium-temperature pressure swing adsorption processes are eliminated, and the operating conditions are changed after plasma cleaning. 2. The method for separating, recovering, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, which is also suitable for separating, recovering, and reusing the generated high-concentration HF/HCl-containing exhaust gas. 請求項1のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法において、中温圧力スイング吸着工程において、圧力スイング吸着による水素精製の原料ガスが水洗後に生成された不凝縮ガス又は吸着廃ガスであり、まず不凝縮ガス又は吸着廃ガスを乾燥塔に入らせ、その中の水分及び少量のフッ素と塩素を含有する酸性成分を脱離させ、続いて吸着浄化段階に入らせ、シラン、ホスホラン、金属イオンを含む異物を脱離させ、水素を富化した浄化メタン-水素ガスを得て、1.0~3.0MPaに加圧してから、常温まで熱交換し、4つ以上の吸着塔からなる圧力スイング吸着による水素精製工程に入らせ、吸着塔の頂部から純度が99.99~99.999%の超純粋水素が流出し、それをパラジウム膜又は金属ゲッタからなる水素ガス純化工程に入らせ、電子グレードの水素ガス基準に合致するH製品ガスを得て、乾式エッチングプロセスに戻して循環使用するか又は外部へ送り出し、吸着塔の底部から流出する脱着ガスがメタン富化ガスであり、それを燃料ガスとして直接使用することを特徴とする請求項1~6のいずれか一項に記載のFTrPSAによるHF/HCl含有エッチング排ガスの分離と回収循環再利用方法。 In the method for separating, collecting, recycling, and reusing HF/HCl-containing etching exhaust gas by FTrPSA according to claim 1, in the medium-temperature pressure swing adsorption step, noncondensable gas or adsorption waste generated after washing the raw material gas for hydrogen purification by pressure swing adsorption with water. First, non-condensable gas or adsorption waste gas enters the drying tower to desorb moisture and acidic components containing a small amount of fluorine and chlorine, and then enters the adsorption purification stage, silane, Phosphorane and foreign substances including metal ions are desorbed to obtain hydrogen-enriched purified methane-hydrogen gas, pressurized to 1.0-3.0 MPa, heat exchanged to normal temperature, and adsorption of 4 or more Entering a hydrogen purification process by pressure swing adsorption consisting of a tower, ultra-pure hydrogen with a purity of 99.99 to 99.999% flows out from the top of the adsorption tower, and it is a hydrogen gas purification process consisting of a palladium membrane or a metal getter. to obtain a H2 product gas that meets electronic grade hydrogen gas standards, and either recycled back into the dry etching process or sent out, and the desorption gas exiting the bottom of the adsorption tower is a methane-rich gas , and is directly used as a fuel gas.
JP2022512788A 2020-12-16 2021-05-18 Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA Active JP7541763B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011485842.2A CN112707373B (en) 2020-12-16 2020-12-16 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN202011485842.2 2020-12-16
PCT/CN2021/094254 WO2022127019A1 (en) 2020-12-16 2021-05-18 Method for ftrpsa separation and recovery and recycling of hf/hcl-containing etching tail gas

Publications (3)

Publication Number Publication Date
JP2023535850A true JP2023535850A (en) 2023-08-22
JPWO2022127019A5 JPWO2022127019A5 (en) 2024-03-01
JP7541763B2 JP7541763B2 (en) 2024-08-29

Family

ID=75543422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512788A Active JP7541763B2 (en) 2020-12-16 2021-05-18 Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA

Country Status (3)

Country Link
JP (1) JP7541763B2 (en)
CN (1) CN112707373B (en)
WO (1) WO2022127019A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707373B (en) * 2020-12-16 2022-06-10 浙江天采云集科技股份有限公司 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN113860257B (en) * 2021-11-04 2022-04-22 浙江容跃环保科技有限公司 Method and system for regenerating and recycling glass thinning waste acid liquor
CN115231524B (en) * 2022-07-12 2024-03-12 浙江省天正设计工程有限公司 Separation and purification method and device for tail gas containing hydrogen fluoride in fluorine chemical production
CN115650240A (en) * 2022-09-08 2023-01-31 洛阳中硅高科技有限公司 Process for preparing monochlorosilane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267016A (en) * 1996-01-29 1997-10-14 Toyo Eng Corp Improved pressure swing adsorption method
CN105854516A (en) * 2016-03-31 2016-08-17 四川天采科技有限责任公司 Full-temperature-range pressure-swing adsorption method for simultaneously recycling H2, C2 and above components out of refinery dry gas
JP2017043523A (en) * 2015-08-28 2017-03-02 信越化学工業株式会社 Hydrogen gas recovery system, and separation and recovery method for hydrogen gas
CN108658042A (en) * 2018-05-29 2018-10-16 四川天采科技有限责任公司 A kind of LED-MOCVD processing procedures tail gas warm journey pressure-variable adsorption full constituent recycling method entirely
CN108744882A (en) * 2018-05-29 2018-11-06 浙江天采云集科技股份有限公司 A kind of LED-MOCVD processing procedures exhaust gas method that warm journey pressure-variable adsorption puies forward ammonia recycling entirely
US20180318750A1 (en) * 2016-03-31 2018-11-08 Sichuan Techairs Co., Ltd. Method for Gas Separation, Purification and Clarification by FTrPSA
CN109092010A (en) * 2018-05-29 2018-12-28 浙江天采云集科技股份有限公司 A kind of LED-MOCVD processing procedure exhaust gas method that warm journey pressure-variable adsorption proposes hydrogen recycling entirely
US20200070090A1 (en) * 2018-09-03 2020-03-05 South China Institute Of Environmental Science. Mee Waste gas purification system and method
CN211799895U (en) * 2020-03-17 2020-10-30 大连海奥膜技术有限公司 Process system for separating mixed gas containing hydrogen chloride and hydrogen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790130B2 (en) * 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
CN108715436B (en) * 2018-05-29 2019-11-08 四川天采科技有限责任公司 The method that the useless hydrogen Quan Wencheng Pressure Swing Adsorption of manufacture of semiconductor normal pressure recycles
CN112707373B (en) * 2020-12-16 2022-06-10 浙江天采云集科技股份有限公司 Method for separating, recovering and recycling FTrPSA (fluorine-doped silica gel) containing HF/HCl etching tail gas
CN112591711B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267016A (en) * 1996-01-29 1997-10-14 Toyo Eng Corp Improved pressure swing adsorption method
JP2017043523A (en) * 2015-08-28 2017-03-02 信越化学工業株式会社 Hydrogen gas recovery system, and separation and recovery method for hydrogen gas
CN105854516A (en) * 2016-03-31 2016-08-17 四川天采科技有限责任公司 Full-temperature-range pressure-swing adsorption method for simultaneously recycling H2, C2 and above components out of refinery dry gas
US20180318750A1 (en) * 2016-03-31 2018-11-08 Sichuan Techairs Co., Ltd. Method for Gas Separation, Purification and Clarification by FTrPSA
CN108658042A (en) * 2018-05-29 2018-10-16 四川天采科技有限责任公司 A kind of LED-MOCVD processing procedures tail gas warm journey pressure-variable adsorption full constituent recycling method entirely
CN108744882A (en) * 2018-05-29 2018-11-06 浙江天采云集科技股份有限公司 A kind of LED-MOCVD processing procedures exhaust gas method that warm journey pressure-variable adsorption puies forward ammonia recycling entirely
CN109092010A (en) * 2018-05-29 2018-12-28 浙江天采云集科技股份有限公司 A kind of LED-MOCVD processing procedure exhaust gas method that warm journey pressure-variable adsorption proposes hydrogen recycling entirely
US20200070090A1 (en) * 2018-09-03 2020-03-05 South China Institute Of Environmental Science. Mee Waste gas purification system and method
CN211799895U (en) * 2020-03-17 2020-10-30 大连海奥膜技术有限公司 Process system for separating mixed gas containing hydrogen chloride and hydrogen

Also Published As

Publication number Publication date
CN112707373A (en) 2021-04-27
JP7541763B2 (en) 2024-08-29
WO2022127019A1 (en) 2022-06-23
CN112707373B (en) 2022-06-10

Similar Documents

Publication Publication Date Title
JP7541763B2 (en) Separation, recovery, recycling and reuse of etching exhaust gas containing HF/HCl by FTrPSA
TWI691359B (en) Method for pressure swing adsorption, purification and reuse of full-pressure waste hydrogen gas in semiconductor process
JP3152389B2 (en) Separation and recovery method of fluorochemical by membrane
US5976222A (en) Recovery of perfluorinated compounds from the exhaust of semiconductor fabs using membrane and adsorption in series
US7794523B2 (en) Method for the recovery and re-use of process gases
WO2011040214A1 (en) Method for reusing hydrogen
JP2023524919A (en) Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA
CN112266318A (en) Method for purifying hexafluoro-1, 3-butadiene in grading manner
JP2012106146A (en) Apparatus for processing exhaust gas and method for processing exhaust gas
JP5344114B2 (en) Hydrogen purification recovery method and hydrogen purification recovery equipment
CN112591711B (en) High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas
EP1353742A1 (en) Decomposition of fluorine containing compounds
KR101843563B1 (en) Flue gas Enrichment Separation System and its operating method for abatement of nondegradable hazardous gas by vent concept
CN114307517B (en) Inert gas protected high-purity perfluorocarbon electronic special gas adsorption purification method
CN112744787B (en) FTrPSA separation and purification method for deeply defluorinating and drying HCl gas containing high-concentration HF
CN110040686A (en) A kind of method for the purifying of electronic grade hydrogen chloride depth, novel purified material and preparation method thereof
WO2021094709A1 (en) Inert gas recovery from a semiconductor manufacturing tool
CN112755725B (en) Method for recycling effective components of FTrPSA (fluorine-containing gas pressure swing adsorption) in HF (hydrogen fluoride) -containing industrial tail gas
CN112777569B (en) Method for recycling FTrPSA (fluorine-based SiC-CVD) tail gas in film growth process
JP3463873B2 (en) How to recycle perfluoro compounds
JPWO2022127019A5 (en)
JP3650588B2 (en) Perfluoro compound recycling method
TWI682894B (en) Hydrogen recovery and reuse system
CN112645335B (en) Method for extracting silane by pressure swing adsorption of epitaxial Cheng Weiqi Quan Wencheng
CN215101984U (en) High-purity electronic-grade hydrogen chloride production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240111

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20240119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240809

R150 Certificate of patent or registration of utility model

Ref document number: 7541763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150