JP2023524919A - Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA - Google Patents

Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA Download PDF

Info

Publication number
JP2023524919A
JP2023524919A JP2022506378A JP2022506378A JP2023524919A JP 2023524919 A JP2023524919 A JP 2023524919A JP 2022506378 A JP2022506378 A JP 2022506378A JP 2022506378 A JP2022506378 A JP 2022506378A JP 2023524919 A JP2023524919 A JP 2023524919A
Authority
JP
Japan
Prior art keywords
gas
rectification
adsorption
pressure
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022506378A
Other languages
Japanese (ja)
Inventor
ヤーリン チョン
ランハイ ワン
ユーミン チョン
ユン チェン
ジンカイ タン
ユエミン サイ
Original Assignee
浙江天采云集科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天采云集科技股▲分▼有限公司 filed Critical 浙江天采云集科技股▲分▼有限公司
Publication of JP2023524919A publication Critical patent/JP2023524919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/197Separation; Purification by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/196Separation; Purification by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

【課題】AHF精製が受ける伝統精留、蒸留、吸収又は化学吸着等の分離工程の相平衡の制限を受ける又は吸着剤使用寿命が短い。【解決手段】本発明は、工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法を開示しており、工業レベルAHF(ガス)における各留分(HFは有効留分であるH2O、H2SO4、SO2、SiF4、NH3、CO2、H2SiF6及び微量のHCl、水溶性Me+イオン及びSS粒子を主な不純物留分とする)自体は、異なる圧力と温度下での吸着/精留/膜分離係数及び物理化学性質の差異性を利用して、主に二段階の中温変圧吸着工程を採用し、HFと精留/膜分離結合することで、中温変圧吸着工程における吸着と脱離が整合性と平衡との繰り返し操作により分離と純化を容易にできるようにすることで、電子レベルのHF商品の製造を実現する。本発明は、上記課題を解決することにより、当該技術分野における空白を埋めた。【選択図】図1Kind Code: A1 AHF refining is subject to phase equilibrium limitations in separation processes such as traditional rectification, distillation, absorption or chemisorption, or has a short adsorbent service life. The present invention discloses a separation and purification method for purifying industrial-level high-concentration HF to electronic-level FTrPSA, wherein each fraction in industrial-level AHF (gas) (HF is the active fraction H2O, H2SO4, SO2, SiF4, NH3, CO2, H2SiF6 and traces of HCl, water-soluble Me+ ions and SS particles as the main impurity fractions) themselves can be adsorbed/rectified/membrane under different pressures and temperatures. Using the difference of separation factor and physico-chemical properties, it mainly adopts two-stage medium-temperature pressure-pressure adsorption process, and combines HF with rectification/membrane separation, so that the adsorption and desorption in the medium-temperature pressure-pressure adsorption process are consistent. By facilitating separation and purification by repeated operations of chemistry and equilibrium, the manufacture of electronic-level HF products is realized. The present invention has filled a void in the technical field by solving the above problems. [Selection drawing] Fig. 1

Description

本発明は、工業レベルの高濃度フッ化水素(HF)を原料として、電子レベルのHFを調製する浄化純化に関する創作である。更に具体的に述べると、工業レベルの高濃度HFを電子レベルのFTrPSA(全温程変圧吸着)に精製する分離及び純化方法に関する創作である。 The present invention is a creation related to purification and purification for preparing electronic-level HF using industrial-level high-concentration hydrogen fluoride (HF) as a raw material. More specifically, the invention relates to a separation and purification process for refining industrial-grade high-concentration HF to electronic-level FTrPSA (full-temperature pressure-pressure adsorption).

フッ化水素(HF)は、フッ素化学の基本的な原料であり、有機フッ素、無機フッ化物塩及びその他含フッ素触媒剤、フッ素ケイ酸等の分野の製造に使用できる。HFは、冷媒、界面活性剤、フッ素ゴム、フッ素塗料、含フッ素樹脂、含フッ素農薬、高純度フッ素樹脂、医薬中間体等の有機フッ素分野における応用はますます増えている。現在、半導体産業の発展につれて、超高純度の電子レベルHF(ガスと液体)は、集積回路(IC)と超大規模集積回路(VLSI)のウエハの洗浄、エッチング及び化学蒸着工程に既に広く応用されており、マイクロ電子業界製造工程において、キーポイントとなる基礎化学材料の一つである。また、分析試薬として用いられ、高純度フッ素含有薬品や半導体材料を調製することもできる。 Hydrogen fluoride (HF) is a basic raw material in fluorine chemistry, and can be used in the production of organic fluorine, inorganic fluoride salts and other fluorine-containing catalysts, fluorosilicic acid and other fields. HF is increasingly being applied in the field of organic fluorine, such as refrigerants, surfactants, fluororubbers, fluorocoatings, fluororesins, fluorochemicals, high-purity fluororesins, and pharmaceutical intermediates. At present, with the development of the semiconductor industry, ultra-pure electronic level HF (gas and liquid) has been widely applied in wafer cleaning, etching and chemical vapor deposition processes of integrated circuits (IC) and very large scale integrated circuits (VLSI). It is one of the key basic chemical materials in the manufacturing process of the microelectronics industry. It can also be used as an analytical reagent to prepare high-purity fluorine-containing chemicals and semiconductor materials.

現在、工業的な高純度のHFの調製と抽出は、主に工業レベル高濃度のHFを原料とし、蒸留/精留及び膜分離を主な精製方法として採用しており、精留、蒸留、サブボイリング蒸留、減圧蒸留、ガス吸収、マイクロフィルタ、限外濾過、ナノ濾過及び各種構成等を含む。これらの伝統的な純化工程において、原料(液体/ガス)の各留分とHFとの間で異なる温度下における揮発度(沸点)、溶解度又は分子の大きさの差異を利用して、原料の中の不純物を分別分離して、浄化除去することで、純度相当の非水HF(AHF)商品を得ることができる。原料における主要な不純物留分は、フッ素ケイ酸(HSiF)、水(HO)、塩化物(主に、塩化水素HCl)、リン化物(P)、金属酸化物(MeO)、金属イオン及び固体顆粒(SS)等である。電子レベルのHF商品は、EL(一般電子レベル)、UP(超純)、UPS(超高純)、UPSS(超高高純)に分類され、国際半導体業界協会(SEMI)もSEMI-C/Sレベルに対応する標準を制定し、当該標準はUPS/UPSSレベルに相当する。例えば、中国国内で一般的に使用されているUP電子レベルHF(液体)指標は、HSiF含量は100ppm未満であり、クロライド(Cl)は5ppm未満であり、Pは1ppm未満であり、MeO/Me+は10ppb未満であり、SS(≧1μm)は25単位(個)/ミリリットル未満であるという標準等である。MeO/Me+は、特に、水溶性ヒ素(As)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)とカリウム(K)等のMeO/Me+不純物であり、必ずきれいに除去にする必要がある。そうでなければ、半導体ウエハの性能に重大な影響が生じる。半導体ウエハ洗浄剤又はウェットエッチングとしての電子レベルHF液体は、そのHF含量が例えば49%である等様々なレベルであり、残りはいずれも脱イオン水である。したがって、工業的には通常、蛍石法やフッ素ケイ酸法を採用しており、非水HF(AHF)を調製する生産過程の精留及び膜濾過の後に、純度が99.9%である純AHFガスを得られる。脱イオン水で吸収した後、シャワー密度、気液比及び膜濾過等を制御する方法を採用し、電子レベルフッ化水素酸を更に純化させて電子レベルHF液体商品を得ることができる。しかしながら、精留過程において、水、HF、及び蛍石法又はフッ素ケイ酸法工程自体から生成されるその他不純物、例えば、硫酸(HSO)、二酸化硫黄(SO)、塩化水素(HCl)、四フッ化ケイ素(SiF)、アンモニア(NH)及び二酸化炭素(CO)等の相互溶解性、及び精留分離が受ける相平衡の制約によりこれらの不純物とHFとを完全に分離することができないことから、得られる純AHFガスには依然として比較的多くの不純物留分が含まれており、それにより、その後の脱イオン水吸収、シャワー密度と気液比の制御、膜濾過等の工程において、これらその後の純化によって、微量又は極微量の不純物留分を除去することも非常に困難である。したがって、蛍石法やフッ素ケイ酸法からAHFを調製する生産過程において獲得した純AHF商品の純度を制御することは極めて重要である。それゆえに、95~99%含量の工業レベルHFやAHF原料ガスに精留、蒸留、サブ蒸留や特殊精留を直接行うと、不純物濃度が低すぎるため、精留又は蒸留のコストが非常に高い。不純物留分とHFとの間の沸点の相違が比較的大きいが、水分はその他各不純物留分の水中での物質移動の分配に影響するため、精留又は蒸留は相平衡に厳しい制限が課され、純化深度は電子レベルの要求には遠く及ばない。 At present, the industrial preparation and extraction of high-purity HF mainly takes industrial-level high-concentration HF as raw material, and adopts distillation/rectification and membrane separation as the main purification methods. Including sub-boiling distillation, vacuum distillation, gas absorption, microfilter, ultrafiltration, nanofiltration and various configurations. In these traditional purification processes, the difference in volatility (boiling point), solubility or molecular size at different temperatures between each fraction of the feedstock (liquid/gas) and HF is used to By separating, purifying and removing the impurities inside, a non-aqueous HF (AHF) product corresponding to the purity can be obtained. The major impurity fractions in the feedstock are fluorosilicic acid ( H2SiF6 ), water ( H2O ), chlorides (mainly hydrogen chloride HCl), phosphides (P), metal oxides (MeO), metal ions and solid granules (SS); Electronic level HF products are classified into EL (general electronic level), UP (ultra pure), UPS (ultra high purity), and UPSS (ultra high purity). Establish a standard corresponding to the S level, which corresponds to the UPS/UPSS level. For example, the UP electronic level HF (liquid) index commonly used in China is H SiF 6 content is less than 100 ppm, chloride (Cl) is less than 5 ppm, P is less than 1 ppm, Standards such as MeO/Me+ less than 10 ppb and SS (≧1 μm) less than 25 units/ml. MeO/Me+ are MeO/Me+ impurities, especially water-soluble arsenic (As), magnesium (Mg), calcium (Ca), sodium (Na) and potassium (K), and must be removed cleanly. . Otherwise, the performance of the semiconductor wafer will be severely impacted. Electronic level HF liquids as semiconductor wafer cleaners or wet etches have varying levels of HF content, such as 49%, with the remainder being deionized water. Therefore, industrially, the fluorite method and the fluorosilicic acid method are usually adopted, and the purity is 99.9% after rectification and membrane filtration in the production process of preparing non-aqueous HF (AHF). A pure AHF gas is obtained. After absorption with deionized water, the method of controlling the shower density, gas-liquid ratio and membrane filtration can be adopted to further purify the electronic level hydrofluoric acid to obtain the electronic level HF liquid product. However, during the rectification process water, HF and other impurities produced from the fluorite or fluorosilicic acid process itself, such as sulfuric acid ( H2SO4 ), sulfur dioxide ( SO2 ), hydrogen chloride (HCl ), silicon tetrafluoride (SiF 4 ), ammonia (NH 3 ) and carbon dioxide (CO 2 ), etc., and due to the phase equilibrium constraints imposed by the rectification separation, these impurities are completely separated from HF. Since the pure AHF gas obtained still contains a relatively large number of impurity fractions, it can be used for subsequent deionized water absorption, control of shower density and gas-liquid ratio, membrane filtration, etc. It is also very difficult to remove traces or traces of impurity fractions by these subsequent purifications in the process of . Therefore, it is extremely important to control the purity of the pure AHF commercial obtained during the production process of preparing AHF from the fluorite method and the fluorosilicic acid method. Therefore, if the technical level HF or AHF feed gas with a content of 95-99% is directly subjected to rectification, distillation, sub-distillation or special rectification, the impurity concentration is too low, and the cost of rectification or distillation is very high. . Although the difference in boiling points between the impurity fraction and HF is relatively large, rectification or distillation imposes severe limits on the phase equilibrium because water affects the mass transfer distribution of each other impurity fraction in water. However, the purification depth falls far short of electronic level requirements.

吸着法を採用してHF精製を行えるが報告されており、吸着剤は主にアルカリ性金属のフッ素化物であり、金属フッ素化物とHFとが比較的低い温度下で発生する化学反応を利用して、選択的に化学吸着を行い、金属フッ素化物-HFの錯体を形成する。錯体の分解反応は、吸着剤からHFの着脱するために比較的高い温度下で行うことで、吸着剤からの脱着を実現することができ、その他不純物は吸着剤における選択性はなくとも、HFの分離と浄化を実現することができる。この化学吸着法が適用される工程状況のほとんどは、フッ素化反応によりフルオロクロロアルカン(CFC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC)、フッ化スルフリル(SO)等の商品を調製する場合であり、反応によって生成される反応混合ガスは、HFを選択的に吸着し、分離し、回収することができるため、その効果はよりよいが、吸着剤の損失率は大きい。水、硫酸又はSiF等を含む蛍石法又はフッ素ケイ酸法で得られた粗HF又は純HFに対して、吸着剤が水等の不純物の留分と化学反応することで吸着剤が粉化してしまい、吸着剤の効果が著しく失われてしまうことで、有効に深度脱水不純物除去を行うことができない。特に重要なのは、吸着剤上におけるアルカリ性金属又は金属イオンは、HFと化学反応が発生し、HFガス自体に取り込まれることで、その後のHF純化が困難になってしまう。したがって、化学吸着法は、蛍石法又はフッ素ケイ酸法で調製するAHF工程に対してほとんど有効に応用することができない。 It has been reported that HF can be purified by adopting an adsorption method, and the adsorbent is mainly an alkaline metal fluoride, and the metal fluoride and HF utilize a chemical reaction that occurs at a relatively low temperature. , selectively chemisorbs to form a metal fluoride-HF complex. Desorption of the complex from the adsorbent can be achieved by carrying out the decomposition reaction of the complex at a relatively high temperature in order to desorb HF from the adsorbent. separation and purification can be achieved. In most of the process situations where this chemisorption method is applied, commodities such as fluorochloroalkanes (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons ( HFCs ), and sulfuryl fluoride ( SO2F2 ) are produced by fluorination reactions. and the reaction mixture gas produced by the reaction can selectively adsorb, separate and recover HF, so the effect is better, but the loss rate of the adsorbent is large. For crude HF or pure HF obtained by the fluorite method or the fluorosilicic acid method containing water, sulfuric acid, SiF4, etc., the adsorbent is powdered by chemical reaction with the fraction of impurities such as water. , and the effect of the adsorbent is significantly lost, making it impossible to effectively remove impurities by deep dehydration. Of particular importance, any alkaline metals or metal ions on the adsorbent can chemically react with HF and be incorporated into the HF gas itself, making subsequent HF purification difficult. Therefore, the chemisorption method can hardly be effectively applied to the AHF process prepared by the fluorite method or the fluorosilicic acid method.

これも、現在、我が国中国が低水準の電子レベルAHF商品しか生産することができない主な原因の一つであり、日韓両国で発生した電子レベル半導体化学品に関する貿易紛争において、日本がその技術的な優位性を以て韓国向けの電子レベルAHFの輸出を制限した重要な原因の一つである。日本は国際的に純度が99.9999%~99.99999999%(6N~12N)のAHFを調製する技術を有する極小数の国家である。 This is also one of the main reasons why China, our country, is currently only able to produce low-level electronic level AHF products. This is one of the important reasons why the export of electronic level AHF to South Korea was restricted due to its superiority. Japan is one of the very few countries that has the technology to prepare AHF with a purity of 99.9999%-99.99999999% (6N-12N) internationally.

本発明の目的は、上述の既存課題に対して、本発明は工業レベルの高濃度HFを電子レベルのFTrPSA(全温程変圧吸着)に精製する分離及び純化方法を提供することにある。全温程変圧吸着(英文名称:Full Temperature Range-Pressure Swing Adsorption、略称:FTrPSA)は、変圧吸着(PSA)を基礎とし、各種分離技術と相結合することができる方法であり、工業レベルAHF(ガス)における各留分(HFは有効留分であるHO、HSO、SO、SiF、NH、CO、HSiF及び微量のHCl、水溶性Me+イオン及びSS粒子を主な不純物留分とする)自体は、異なる圧力と温度下での吸着/精留/膜分離係数及び物理化学性質の差異性を利用して、主に二段階の中温変圧吸着工程を採用し、HFと精留/膜分離結合することで、中温変圧吸着工程における吸着と脱離が整合性と平衡との繰り返し操作により分離と純化を容易にできるようにすることで、電子レベルのHF商品の製造を実現する。 SUMMARY OF THE INVENTION The object of the present invention is to provide a separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA (full-temperature pressure-pressure adsorption). Full Temperature Range-Pressure Swing Adsorption (abbreviated as FTrPSA) is a method that is based on pressure-pressure adsorption (PSA) and can be phase-coupled with various separation technologies. gas) in each fraction (HF is effective fraction H 2 O, H 2 SO 4 , SO 2 , SiF 4 , NH 3 , CO 2 , H 2 SiF 6 and traces of HCl, water-soluble Me + ions and SS Particles as the main impurity fraction) itself, using the difference of adsorption/rectification/membrane separation coefficients and physicochemical properties under different pressures and temperatures, mainly adopts a two-step medium temperature pressure pressure adsorption process. By adopting and combining with HF and rectification/membrane separation, the adsorption and desorption in the medium temperature pressure pressure adsorption process can be easily separated and purified by repeated operations of consistency and equilibrium, so that the electronic level Realize the manufacture of HF products.

本発明が採用する技術的思想は以下の通り。 The technical idea adopted by the present invention is as follows.

工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法において、原料ガスは蛍石法又はフッ素ケイ酸法が調製する非水フッ化水素(AHF)生産過程において生成される工業レベル高濃度フッ化水素(HF)のガス、含有濃度が95~99%(v/v)であるHF、及び硫酸(HSO)、水(HO)、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH3)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)、金属イオン(Me+)及び微細粒子(SS)その他の不純物留分によるものであり、Me+は、主に水溶性のナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンとし、SS粒子の直径は1マイクロメートル(μm)より大きく、温度は20~60℃であり、圧力は常圧又は微圧であり、以下の工程を含む。
(1)原料ガスは、50~80℃の間で冷熱交換され、0.2~0.3MPaまで増圧された後、二段変圧吸着(PSA)から構成される中温変圧吸着工程に入り、各段変圧吸着は少なくとも2以上の吸着塔により構成され、少なくとも1の吸着塔は吸着工程にあり、残りの吸着塔は、逆方向減圧又は真空排気、昇圧又は最終充填その他の異なる段階の脱離工程にあり、原料ガスは第一段PSA(1PSA)吸着塔の塔底から入り、1PSAの操作圧力は0.2~0.3MPaであり、操作温度50~80℃であり、吸着工程にある吸着塔の塔頂から流出する非吸着相ガスは純HFガスであり、凝結した後の不凝ガスは精密濾過され、脱イオン水を吸収した後、得られる濃度が40~49%であるHF水溶液が一般的な電子ELレベルフッ化水素酸商品として輸出され、凝結した後に形成された純HFは次の工程である膜分離に入り、脱離工程にある1PSA吸着塔の塔底から流出する脱離ガスは、増圧して冷熱交換した後、第二段PSA(2PSA)の吸着塔の塔底から入り、2PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は50~80℃であり、吸着工程にある2PSA吸着塔の塔頂から流出する非吸着相の中間ガスは、原料ガスと混合し、1PSA吸着塔に戻り、2PSA吸着塔の塔底から流出する脱離ガスは濃縮ガスであり、その後のアンモニア水脱炭工程に入り、更に有効留分を回収する、中温変圧吸着。
(2)中温変圧吸着工程から凝結されて形成された純HF液体は、1.0~1.6MPaまで増圧され、温度は50~80℃であり、1級又は2級から構成される無機セラミック膜又はステンレス鋼膜分離システムに入り、膜孔径は1マイクロメートル未満であり、膜を透過した側から浄化純HF液体を流出させ、直径が1μmより大きいSS粒子の含量は25(個)単位/ミリリットル(Ea/ml)未満であり、次の工程であるHF精留に入り、膜を透過していない側にSS粒子濃縮液を濃縮させ、冷却、沈殿させた後、SS粒子を除去し、液体を加熱加圧した後、膜分離システムに戻し、更に有効留分を回収する、膜分離。
(3)膜分離工程からの浄化純HF液体がHF精留工程の精留塔に入り、本工程の精留塔は、上下二段階の精留の構成を採用し、浄化純HF液体は、下段精留の頂部又は上段精留の底部から入り、上段精留塔の塔頂から取り除いた軽留分不純物ガスはその後の排気ガス吸収工程に戻り、上段精留の底部又は下段精留の頂部の蒸留物が凝結した後に形成する不凝ガスはAHFガスであり、純度は99.99%より大きく、直接に電子UP又はUSPレベルAHFの商品ガスとし、凝縮した後形成される液体は、上段又は下段精留の回流とし、下段精留の底部から蒸留された少量の重留分を含む不純物留分の塔底物の流体が凝結した後に形成する不凝ガスは温変圧吸着工程に戻り、更に有効留分を回収し、凝結した後に形成する液体を吸収剤として、次の工程であるアンモニア水脱炭に入る、HF精留。
(4)中温変圧吸着工程からの濃縮ガスは、常圧又は僅かな過圧まで増圧した後、アンモニア水、硫酸及びHF精留工程下段から精留した蒸留物が凝結した後に形成した液体に入り、比率に基づき、吸収剤としてのアンモニア水脱炭吸収塔を混合し、吸収塔底から形成された炭酸水素アンモニウムとフッ化水素アンモニウムとの混合溶液から吐出し、直接フッ素ケイ酸法としてAHF生産過程における返料又は予備混合した反応物質を調製する、アンモニア水脱炭。
In the separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA, the raw material gas is industrial-level produced in the non-aqueous hydrogen fluoride (AHF) production process prepared by the fluorite method or the fluorosilicic acid method. A gas of high concentration hydrogen fluoride (HF), HF with a concentration of 95-99% (v/v), and sulfuric acid (H 2 SO 4 ), water (H 2 O), sulfur dioxide (SO 2 ), Silicon tetrafluoride ( SiF4 ), ammonia (NH3), fluorosilicic acid ( H2SiF6 ), carbon dioxide ( CO2 ), chloride (calculated with HCl ), metal ions (Me+) and fine particles (SS) It is due to other impurity fractions, and Me + is mainly water-soluble sodium (Na), magnesium (Mg), calcium (Ca), and arsenic (As) ions, and the diameter of SS particles is 1 micrometer (μm ), the temperature is 20-60° C., the pressure is normal pressure or micro pressure, and includes the following steps.
(1) The raw material gas undergoes cold heat exchange between 50 and 80° C. and is pressurized to 0.2 to 0.3 MPa, and then enters a medium temperature pressure pressure adsorption process consisting of two-stage pressure pressure adsorption (PSA), Each stage pressure pressure adsorption is composed of at least two or more adsorption towers, at least one adsorption tower is in the adsorption process, and the remaining adsorption towers are reverse depressurization or evacuation, pressurization or final filling and other different stages of desorption. In the process, the feed gas enters from the bottom of the first stage PSA (1 # PSA) adsorption tower, the operating pressure of 1 # PSA is 0.2-0.3 MPa, the operating temperature is 50-80 ℃, The non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is pure HF gas, and the non-condensed gas after condensation is precision filtered, and after absorbing deionized water, the concentration obtained is 40 to 49. % HF aqueous solution is exported as a general electronic EL level hydrofluoric acid commodity, and the pure HF formed after condensation enters the next process, membrane separation, into the 1 # PSA adsorption tower in the desorption process. The desorbed gas flowing out from the bottom of the tower is pressurized and subjected to cold heat exchange, and then enters the bottom of the adsorption tower of the second stage PSA (2 # PSA), and the operating pressure of the 2 # PSA adsorption tower is 0.2-0. .3 MPa, the operating temperature is 50-80° C., and the non-adsorbed phase intermediate gas flowing out from the top of the 2 # PSA adsorption tower in the adsorption process is mixed with the raw material gas and fed to the 1 # PSA adsorption tower. Returning, the desorbed gas flowing out from the bottom of the 2 # PSA adsorption tower is the enriched gas, and then enters the ammonia water decarburization process to recover the effective fraction, medium temperature pressure pressure adsorption.
(2) The pure HF liquid condensed and formed from the medium-temperature pressure-pressure adsorption step is pressurized to 1.0-1.6 MPa, the temperature is 50-80° C., and the inorganic Enter the ceramic membrane or stainless steel membrane separation system, the membrane pore size is less than 1 micrometer, the clarified pure HF liquid flows out from the permeated side of the membrane, and the content of SS particles with a diameter greater than 1 micrometer is 25 units. / milliliter (Ea/ml), enter the next step, HF rectification, concentrate the SS particle concentrate on the non-permeated side of the membrane, cool and precipitate, and then remove the SS particles. , membrane separation in which the liquid is heated and pressurized, then returned to the membrane separation system, and the effective fraction is recovered.
(3) The purified pure HF liquid from the membrane separation process enters the rectification column of the HF rectification process, and the rectification column in this process adopts the configuration of upper and lower two-stage rectification, and the purified pure HF liquid is The light end impurity gas that enters from the top of the lower rectification or the bottom of the upper rectification and is removed from the top of the upper rectification column returns to the subsequent exhaust gas absorption step, and enters the bottom of the upper rectification or the top of the lower rectification. The non-condensable gas formed after condensation of the distillate is AHF gas, the purity is greater than 99.99%, directly into the electronic UP or USP level AHF commodity gas, and the liquid formed after condensation is the upper or as a circulation stream of the lower rectification, the non-condensable gas formed after condensation of the bottom fluid of the impurity fraction containing a small amount of heavy fraction distilled from the bottom of the lower rectification is returned to the temperature pressure pressure adsorption step, HF rectification in which the effective fraction is recovered and the liquid formed after condensation is used as an absorbent for the next step, ammonia water decarburization.
(4) The concentrated gas from the medium-temperature pressure-pressure adsorption step, after being pressurized to normal pressure or a slight overpressure, into the liquid formed after condensation of aqueous ammonia, sulfuric acid and the rectified distillate from the lower stage of the HF rectification step. Ammonium hydrogen carbonate and ammonium hydrogen fluoride mixed solution formed from the bottom of the absorption tower is discharged from the absorption tower bottom, and AHF is directly used as a fluorosilicic acid method. Aqueous ammonia decarburization to prepare return or premixed reactants in the production process.

更に、工程(2)の中膜分離システムはマイクロフィルタ膜又は限外濾過膜を膜モジュールとすることができる。 Further, the medium membrane separation system in step (2) can be a membrane module of microfilter membranes or ultrafiltration membranes.

更に、HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合して、硫酸を吸収剤とする排気ガス吸収塔に入り、吸収塔の底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製する非水フッ化水素AHF生産過程の原料循環使用に直接戻ることができ、吸収塔の塔頂から流出する不凝ガスを排ガスとして直接排出する、排気ガス吸収工程も含む。 Furthermore, the light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarburization absorption tower, and is exhausted using sulfuric acid as an absorbent. Entering the gas absorption tower, forming a fluorosilicic acid solution from the bottom of the absorption tower, discharging it as a raw material, can be directly returned to the raw material recycling use in the non-aqueous hydrogen fluoride AHF production process prepared by the fluorosilicic acid method, It also includes an exhaust gas absorption step in which the non-condensable gas flowing out from the top of the absorption tower is directly discharged as exhaust gas.

更に、前記の中温変圧吸着工程における吸着塔には、活性酸化アルミニウム、シリカゲルと分子篩とが装填されており、1PSA吸着塔に装填される吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比率は(4-6):(2-4):(1-3)であり、2PSA吸着塔で装填する吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比は(3-5):(1-3):(3-5)である。 Furthermore, the adsorption tower in the medium temperature pressure pressure adsorption step is loaded with activated aluminum oxide, silica gel and molecular sieve, and the weight of aluminum oxide: silica gel: molecular sieve in the adsorbent composition loaded in the 1 # PSA adsorption tower The ratio is (4-6):(2-4):(1-3) and the weight ratio of aluminum oxide: silica gel: molecular sieve in the adsorbent composition loaded in the 2 # PSA adsorption tower is (3-5). :(1-3):(3-5).

三種類の吸着剤の装填数量及び分布は、原料ガスHF濃度の大きさと不純物留分含量の大きさによって決まり、二段PSA吸着塔における吸着剤が装填する数量分布も異なる。 The loading quantity and distribution of the three kinds of adsorbents are determined by the raw gas HF concentration and the content of impurity fractions, and the loading quantity distribution of the adsorbents in the two-stage PSA adsorption tower is also different.

更に、排気ガス吸収は、HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合し、硫酸を吸収剤とする排気ガス吸収塔に入り、吸収塔底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製するAHF生産過程の原料循環使用に直接戻ることができ、吸収塔の塔頂から流出する不凝ガスを排ガスとして直接排出する。 Furthermore, in exhaust gas absorption, the light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarburization absorption tower to absorb sulfuric acid. The exhaust gas used as the agent enters the absorption tower, forming a fluorosilicic acid solution from the bottom of the absorption tower, which is discharged as raw material, and can be directly returned to the raw material recycling in the AHF production process prepared by the fluorosilicic acid method, and the absorption tower The non-condensable gas flowing out from the top of the column is discharged directly as exhaust gas.

更に、上述のHF精留工程の純HF液体入口側端は、上段底部又は下段頂部に設置されており、原料ガスに含まれるHO、HSO、SO、SiF、NH、CO、HSiFの主な不純物留分含量の大きさによって決まる。 Furthermore, the pure HF liquid inlet side end of the HF rectification process described above is installed at the bottom of the upper stage or the top of the lower stage, and the H 2 O, H 2 SO 4 , SO 2 , SiF 4 , NH 3 contained in the raw material gas , CO 2 , H 2 SiF 6 depending on the size of the main impurity fraction content.

更に、上述のHF精留工程の上段精留の底部又は下段精留の頂部からの蒸留物が凝結した後に形成する不凝ガスは、AHFガスであり、純度は99.99%より大きく、更に凝結してAHF液体を形成した後、フッ素交換樹脂に入り、更にMe+を除去し、UPSS電子レベルのAHF液体を形成し、脱イオン水と任意に調合して、HF溶液を形成することができ、半導体業界の各種濃度の需要を満たすことができる。 Further, the non-condensable gas formed after condensation of the distillate from the bottom of the upper rectification or the top of the lower rectification of the HF rectification process described above is AHF gas with a purity greater than 99.99%, and After condensing to form an AHF liquid, it enters a fluorine exchange resin to further remove Me+ to form a UPSS electronic level AHF liquid, which can optionally be blended with deionized water to form an HF solution. , can meet the needs of various concentrations in the semiconductor industry.

先行技術と比較した本発明の有益な効果は以下の通り。 The beneficial effects of the present invention compared to the prior art are as follows.

1)本発明は、伝統的な蛍石法又はフッ素ケイ酸法により調製したAHF生産過程において生成した高濃度HFガスを原料とし、その原料を半導体業界が必要とするEL/UP/UPSからUPSS電子レベルAHFガス又は液体までのガスを調製することで、AHF精製が受ける伝統精留、蒸留、吸収又は化学吸着等の分離工程の相平衡の制限を受ける又は吸着剤使用寿命が短いという課題を解決した。それにより、当該技術分野における空白を埋めた。 1) The present invention uses high-concentration HF gas produced in the AHF production process prepared by the traditional fluorite method or fluorosilicic acid method as a raw material, and uses the raw material as EL/UP/UPS to UPSS required by the semiconductor industry. By preparing electronic level AHF gases or gases down to liquids, the problems of phase equilibrium limitations or short adsorbent service life of separation processes such as traditional rectification, distillation, absorption or chemisorption that AHF refining undergoes are overcome. Settled. It filled a void in the art.

2)本発明は、原料ガスにおける各留分(HFは有効留分であり、残りは不純物留分である)自体が異なる圧力と温度下での吸着/凝結/精留/膜分離係数及び物理化学性質の差異性を利用して、二段階の中温変圧吸着工程を主に、凝結、膜分離及びHF精留結合を採用することで、中温変圧吸着工程における吸着と脱離の整合性と平衡の循環操作を容易にすることで、分離と浄化を行い、HFの深度脱水と除去を実現する。 2) The present invention relates to the adsorption/condensation/rectification/membrane separation coefficients and physical Taking advantage of the difference in chemical properties, the two-stage mesophilic pressure adsorption process is mainly adopted, and the combination of condensation, membrane separation and HF rectification is used to achieve the consistency and equilibrium of adsorption and desorption in the mesophilic pressure adsorption process. By facilitating the circulation operation of , separation and purification are achieved, and deep dehydration and removal of HF are realized.

3)本発明は、先行技術である化学吸着法は、HFと吸着剤とが低温下で発生する化学(キレート)反応により吸着を行うのに対して、高温下で発生する分解反応は脱離を行うことで至る吸着と脱離との頻繁な循環操作過程において吸着剤損失率が大きいという課題を克服する。それと同時に、水又は硫酸又はSiFを含む蛍石法又はフッ素ケイ酸法で得られる粗HF又は純HFに対して、先行技術の化学吸着における吸着剤は、水等の不純物留分とも化学反応が発生してしまい、吸着剤の粉化と著しく効果を失ってしまうことになり、効率的に深度脱水除去を行うことができないが、本発明が採用するのは中温変圧の物理吸着であり、このような現象を回避し、吸着剤の使用寿命を長くすることができる。 3) In the chemical adsorption method, which is a prior art, the present invention adsorbs by a chemical (chelate) reaction that occurs at low temperatures between HF and an adsorbent, whereas the decomposition reaction that occurs at high temperatures is desorption. to overcome the problem that the adsorbent loss rate is large in the process of frequent cycling between adsorption and desorption. At the same time, for crude HF or pure HF obtained by fluorite method or fluorosilicic acid method containing water or sulfuric acid or SiF4 , the adsorbent in prior art chemisorption also chemically reacts with impurity fractions such as water. occurs, the adsorbent becomes powdered and the effect is significantly lost, and deep dehydration removal cannot be performed efficiently. It is possible to avoid such a phenomenon and extend the service life of the adsorbent.

4)本発明は、AHF精製工程における単純精留工程が有する精留塔中部の温度に大きな波動が生じること、塔底の温度が要求を満たさない、HF濃度波動が比較的大きいことから精留效果が好ましくないという課題が発生することを回避することができる。本発明は、まず二段PSAを採用しており、主な重留分不純物の大部分を先に除去し、HF精留工程に入るHF濃度の波動を小さくし、上下二段精留方式を採用し、そこから、AHF商品が調製する深度脱水と除去を実現し、電子レベルAHF商品を獲得すると同時に、40~49%濃度のHF水溶液を獲得することができる。 4) In the present invention, the simple rectification process in the AHF refining process has large fluctuations in the temperature in the middle part of the rectification column, the temperature at the bottom does not meet the requirements, and the HF concentration fluctuation is relatively large. It is possible to avoid the problem that the effect is unfavorable. The present invention first adopts a two-stage PSA, which removes most of the main heavy fraction impurities first, reduces the fluctuation of the HF concentration entering the HF rectification process, and adopts the upper and lower two-stage rectification system. from which the deep dehydration and removal prepared by the AHF product can be realized, and the electronic level AHF product can be obtained at the same time as the HF aqueous solution with a concentration of 40-49%.

5)本発明は、電子レベルAHFの製造を得ると同時に、中温変圧吸着とHF精留工程との材料が前端の凝結又はアンモニア水脱炭等工程に戻り、更にHFを回収して、AHF商品の收率を90%を超えるようにし、排気ガス吸収工程を通じて排気ガス排出の目標達成を実現する。 5) The present invention obtains the production of electronic level AHF, and at the same time, the material from the medium temperature pressure pressure adsorption and HF rectification process returns to the front end condensation or ammonia water decarburization, etc., and further recovers HF to produce AHF products. yield of more than 90%, and achieve the target of exhaust gas emission through the exhaust gas absorption process.

本発明実施例1の工程図である。It is a process drawing of Example 1 of this invention. 本発明実施例2の工程図である。It is process drawing of Example 2 of this invention.

本発明の目的、技術方案及び利点をより明確に理解できるように、本発明について更に詳細に説明する。なお、本出願で説明する具体的な実施例は、本発明を釈明するためだけに用い、本発明を限定するものではない。即ち、説明する実施例は本発明の一部の実施例であり、全ての実施例ではない。
実施例1
図1が示す様に、工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法において、原料ガスは、蛍石法及びフッ素ケイ酸法が調製した非水フッ化水素(AHF)の生産過程において生成される工業レベル高濃度フッ化水素(HF)ガスからであり、含有濃度が98%(v/v)であるHFの含水(HO)量は1%であり、その他の不純物は、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)から構成され、その総計は0.9~1.0%であり、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンを主とする金属イオン(Me+)濃度は極微量のppmレベルであり、微細粒子(dss≧1μm)は100より大きく、温度は20~30℃であり、圧力は常圧であり、具体的な実施工程は以下を構成する。
(1)原料ガスを、60~70℃の間で冷熱交換し、吸込送風機により0.2~0.3MPaまで増圧した後、二段階変圧吸着(PSA)組成における中温変圧吸着工程に入り、第一段PSA(1PSA)吸着塔は3つあり、1つは吸着塔に吸着し、その他2つの吸着塔はそれぞれ降圧と真空排気を行い、原料ガスの充填と最終充填の脱離の工程において、原料ガスが1PSA吸着塔の塔底から入り、1PSAの操作圧力は0.2~0.3Mpaであり、操作温度は60~70℃であり、吸着工程にある吸着塔の塔頂から流出する非吸着相ガスは純HFガスであり、凝結した後の不凝ガスは、精密濾過して脱イオン水を吸収した後、得られる49%であるHF水溶液を一般的な電子ELレベルフッ化水素酸商品として輸出し、凝結した後に形成する純HF液体が次の工程である膜分離に入り、脱離工程にある1PSA吸着塔の塔底から龍するする脱離ガスは、増圧と冷熱交換後に、第二段PSA(2PSA)の吸着塔底から入り、2PSAは3つの吸着塔から組成され、1つの吸着塔は終始吸着状態にあり、その他2つの吸着塔はそれぞれ降圧と真空排気、純HFガス充圧と終充の脱離状態、吸着と脱離の循環操作にあり、2PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は60~70℃であり、吸着状態にある2PSA吸着塔の塔頂から流出する非吸着相の中間ガスは、原料ガスと混合し1PSAに戻り、2PSA吸着塔から流出するガスは濃縮ガスであり、その後のアンモニア水脱炭工程に入り、更に有効留分を回収する、中温変圧吸着。
(2)中温変圧吸着工程から、凝結した後に形成する純HF液体は、1.6MPaまで増圧し、温度は60~70℃であり、一級レベル無機セラミック膜分離システムに入り、膜孔径は0.2~0.4マイクロメートルであり、フィルム材料はジルコニア、化チタン及び酸化アルミニウム複合膜であり、ジルコニアと酸化チタンの含有量が酸化アルミニウムを超え、耐食の四フッ素エチレンを防腐密封材料とし、マルチレーン内圧式を形成する膜モジュールは膜を透過する側から浄化純HF液体を流出し、直径が1μmより大きいSS粒子含量は25(個)単位/ミリリットル(Ea/ml)未満であり、次の工程であるHF精留に入り、膜を透過しない側にSS濃縮液を濃縮し、冷却、沈降した後、SS粒子を除去し、液体が加熱加圧された後、膜分離システムに戻り、更に有効留分を回収する、膜分離。
(3)HF精留は、膜分離工程からの浄化純HF液体であり、HF精留工程の精留塔に入り、本工程の精留塔は上下二段階精留組成を採用しており、浄化純HF液体は下段精留の頂部から入り、上段精留塔の操作温度は18~30℃であり、上段精留塔の塔頂から蒸留する軽留分不純物ガスは主に、SO、SiF等の低沸点の不純物留分で構成されており、その後の排気ガス吸収工程に戻り、上段精留の底部蒸留物から凝結した後に形成する不凝ガスはAHFガスであり、純度は99.99%より大きく、直接電子UP又はUPSレベルAHFの商品ガスとして、凝結した後に形成する液体は、上段精留の還流として、下段精留の操作温度は20~100℃であり、下段精留の底部から蒸留する少量の重留分を含む不純物留分の塔底物流体は凝結した後に不凝ガスに形成し、中温変圧吸着工程に戻り、更に有効留分を回収し、凝結した後に形成する液体は吸収剤としてその後のアンモニア水脱炭工程に入り、HF精留の操作圧力は0.03~0.2Mpaである。
(4)中温変圧吸着工程からの濃縮ガスであり、吸込送風機によって0.03~0.2MPaまで増圧した後、アンモニア水、硫酸及びHF精留工程下段からの精留蒸留物が凝結した後に形成する液体に入り、5:3:2の比率に基づき、吸収剤としてのアンモニア水脱炭吸収塔を混合し、吸収塔底から形成する炭酸水素アンモニウム及びフッ化水素アンモニウム混合溶液を吐出し、直接フッ素ケイ酸法として調製するAHF生産過程における返料又は予備混合した反応物として、アンモニア水脱炭吸収塔の塔頂から流出する不凝ガスがその後の排気ガス吸収工程に入る、アンモニア水脱炭。
(5)HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合し、硫酸を吸収剤として排気ガス吸収塔に入り、吸収塔底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製するAHF生産過程の原料の循環使用に戻り、吸収塔の塔頂から流出する不凝ガスは、排ガスとして直接排出する、排気ガス吸収。
実施例2
図2が示す通り、実施例1を基礎として、原料ガスは蛍石法により調製するAHF生産過程の高濃度HFガスであり、NH又はCOの不純物留分がなく、アンモニア水脱炭工程を省くことができる。即ち、中温変圧吸着工程からの濃縮ガス蛍石法が調製するAHF生産過程における凝結工程に戻り、更に有効留分を回収する。
実施例3
実施例1と2を基礎として、上述の中温変圧吸着工程において1PSA吸着塔で装填する吸着剤構成比率は、アルミニウム:シリカゲル:分子篩=5:3:2であり、2PSA吸着塔で装填する吸着剤構成比率は4:2:4である。
In order to make the objects, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail. It should be noted that the specific examples described in this application are used only for the purpose of explaining the invention and are not intended to limit the invention. That is, the described embodiments are some, but not all embodiments of the present invention.
Example 1
As shown in FIG. 1, in the separation and purification method for refining industrial-level high-concentration HF into electronic-level FTrPSA, the source gas is non-aqueous hydrogen fluoride (AHF) prepared by the fluorite method and the fluorosilicic acid method. from industrial-level high-concentration hydrogen fluoride (HF) gas generated in the production process of HF with a concentration of 98% (v / v) has a water content (H 2 O) of 1%, and other impurities are sulfur dioxide (SO 2 ), silicon tetrafluoride (SiF 4 ), ammonia (NH 3 ), fluorosilicic acid (H 2 SiF 6 ), carbon dioxide (CO 2 ), chloride (calculated with HCl) The total is 0.9 to 1.0%, and the concentration of metal ions (Me+), mainly sodium (Na), magnesium (Mg), calcium (Ca), and arsenic (As) ions, is extremely high. Trace ppm level, fine particles (dss≧1 μm) greater than 100, temperature is 20-30° C., pressure is normal pressure, and the specific implementation steps consist of the following.
(1) The raw material gas undergoes cold heat exchange between 60 and 70°C, and is pressurized to 0.2 to 0.3 MPa by a suction blower, and then enters the medium temperature pressure adsorption step in a two-stage pressure-pressure adsorption (PSA) composition, There are three first-stage PSA (1 # PSA) adsorption towers, one is for adsorption, and the other two adsorption towers are for depressurization and evacuation, respectively, for filling the raw material gas and desorbing the final filling. In the process, the raw gas enters from the bottom of the 1 # PSA adsorption tower, the operating pressure of 1 # PSA is 0.2-0.3 Mpa, the operating temperature is 60-70 ℃, the adsorption tower in the adsorption process The non-adsorbed phase gas flowing out from the top of the column is pure HF gas. Exported as electronic EL level hydrofluoric acid product, the pure HF liquid formed after condensation enters the next process, membrane separation, and the desorption gas flows out from the bottom of the 1 # PSA adsorption tower in the desorption process. enters from the bottom of the adsorption tower of the second stage PSA (2 # PSA) after pressure increase and cold heat exchange, 2 # PSA is composed of three adsorption towers, one adsorption tower is always in the adsorption state, the other The two adsorption towers are respectively in pressure reduction and evacuation, pure HF gas filling pressure and desorption state of final charge, adsorption and desorption cycle operation, the operating pressure of 2 # PSA adsorption tower is 0.2 ~ 0.3MPa. The operating temperature is 60 to 70 ° C., and the non-adsorbed phase intermediate gas flowing out from the top of the 2 # PSA adsorption tower in the adsorption state is mixed with the raw material gas and returned to 1 # PSA, and then adsorbed by 2 # PSA. The gas that flows out from the tower is the concentrated gas, which is then subjected to the ammonia water decarburization process, and the effective distillate is recovered by intermediate temperature pressure pressure adsorption.
(2) From the medium temperature pressure pressure adsorption process, the pure HF liquid formed after condensation is boosted to 1.6 MPa, the temperature is 60-70 ℃, enters the first-class inorganic ceramic membrane separation system, and the membrane pore size is 0.6 MPa. 2 to 0.4 micrometers, the film material is zirconia, titanium oxide and aluminum oxide composite film, the content of zirconia and titanium oxide exceeds aluminum oxide, the corrosion-resistant tetrafluoroethylene is used as the anticorrosion sealing material, and the multi-layer The membrane module forming the lane internal pressure type effluents purified pure HF liquid from the permeation side of the membrane, the content of SS particles larger than 1 μm in diameter is less than 25 units/milliliter (Ea/ml), and the following Entering the HF rectification process, the SS concentrate is concentrated on the non-permeable side of the membrane, cooled and sedimented, the SS particles are removed, the liquid is heated and pressurized, and then returned to the membrane separation system. Membrane separation to recover effective fractions.
(3) HF rectification is the purified pure HF liquid from the membrane separation process, and enters the rectification tower of the HF rectification process, and the rectification tower of this process adopts an upper and lower two-stage rectification composition, The purified pure HF liquid enters from the top of the lower rectification, the operating temperature of the upper rectification column is 18-30°C, and the light end impurity gas distilled from the top of the upper rectification column is mainly SO 2 , It is composed of low-boiling impurity fractions such as SiF4 , and after returning to the subsequent exhaust gas absorption process, the non-condensable gas formed after condensation from the bottom distillate of the upper rectification is AHF gas, with a purity of 99. Greater than 99%, as a direct electronic UP or UPS level AHF commodity gas, the liquid formed after condensation is used as the reflux of the upper rectification, the operating temperature of the lower rectification is 20-100 ℃, the lower rectification The bottom stream of the impurity fraction containing a small amount of heavy fraction distilled from the bottom of the is condensed to form a non-condensable gas, returned to the medium temperature pressure pressure adsorption step, and the effective fraction is recovered and condensed to form The resulting liquid enters the subsequent ammonia water decarburization process as an absorbent, and the operating pressure of HF rectification is 0.03-0.2 Mpa.
(4) Condensed gas from medium temperature pressure pressure adsorption process, after pressure increase to 0.03-0.2 MPa by suction blower, after condensation of aqueous ammonia, sulfuric acid and rectified distillate from lower stage of HF rectification process Entering the forming liquid, mixing ammonia water decarburization absorption tower as absorbent according to the ratio of 5:3:2, discharging the formed ammonium hydrogen carbonate and ammonium hydrogen fluoride mixed solution from the absorption tower bottom, As a return or premixed reactant in the AHF production process prepared as a direct fluorosilicic acid method, the non-condensable gas flowing out of the top of the ammonia water decarburization absorption tower enters the subsequent exhaust gas absorption process. charcoal.
(5) The light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarburization absorption tower, and the exhaust gas is mixed with sulfuric acid as an absorbent. It enters the absorption tower, forms a fluorosilicic acid solution from the bottom of the absorption tower, is discharged as a raw material, returns to the recycled use of the raw material in the AHF production process prepared by the fluorosilicic acid method, and flows out from the top of the absorption tower. Exhaust gas absorption, exhaust gas is discharged directly as exhaust gas.
Example 2
As shown in FIG. 2, on the basis of Example 1, the raw material gas is the high-concentration HF gas in the AHF production process prepared by the fluorite method, without the impurity fraction of NH3 or CO2 , and the ammonia water decarburization process. can be omitted. That is, the condensed gas from the medium temperature pressure pressure adsorption step returns to the condensation step in the AHF production process prepared by the fluorite process to recover more effective fractions.
Example 3
Based on Examples 1 and 2, the adsorbent composition ratio loaded in the 1 # PSA adsorption tower in the above medium temperature pressure pressure adsorption process is aluminum:silica gel:molecular sieve=5:3:2, and in the 2 # PSA adsorption tower The adsorbent composition ratio to be loaded is 4:2:4.

以上、上述の実施例は本出願の具体的な実施方法を表し、その説明はより具体的で詳細にしているが、本出願の特許請求の範囲が求める保護の範囲を制限するものとして理解してはならない。なお。本出願の技術の分野における通常の知識を有する者は、本出願の発明の技術的思想の前提下において、若干の変形と改善をすることができ、それらはいずれも本出願の保護の範囲に属する。 While the foregoing examples represent specific implementations of the present application, and the description thereof is more specific and detailed, they should be understood as limiting the scope of protection sought by the claims of the present application. must not. note that. Under the premise of the technical idea of the invention of this application, a person with ordinary knowledge in the technical field of this application can make some modifications and improvements, which are all within the scope of protection of this application. belongs to

Claims (6)

(1)原料ガスは、50~80℃の間で冷熱交換され、0.2~0.3MPaまで増圧された後、二段変圧吸着(PSA)から構成される中温変圧吸着工程に入り、各段変圧吸着は少なくとも2以上の吸着塔により構成され、少なくとも1の吸着塔は吸着工程にあり、残りの吸着塔は、逆方向減圧又は真空排気、昇圧又は最終充填その他の異なる段階の脱離工程にあり、原料ガスは第一段PSA(1PSA)吸着塔の塔底から入り、1PSAの操作圧力は0.2~0.3MPaであり、操作温度50~80℃であり、吸着工程にある吸着塔の塔頂から流出する非吸着相ガスは純HFガスであり、凝結した後の不凝ガスは精密濾過され、脱イオン水を吸収した後、得られる濃度が40~49%であるHF水溶液が一般的な電子ELレベルフッ化水素酸商品として輸出され、凝結した後に形成された純HFは次の工程である膜分離に入り、脱離工程にある1PSA吸着塔の塔底から流出する脱離ガスは、増圧して冷熱交換した後、第二段PSA(2PSA)の吸着塔の塔底から入り、2PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は50~80℃であり、吸着工程にある2PSA吸着塔の塔頂から流出する非吸着相の中間ガスは、原料ガスと混合し、1PSA吸着塔に戻り、2PSA吸着塔の塔底から流出する脱離ガスは濃縮ガスであり、その後のアンモニア水脱炭工程に入り、更に有効留分を回収する、中温変圧吸着工程と、
(2)中温変圧吸着工程から凝結されて形成された純HF液体は、1.0~1.6MPaまで増圧され、温度は50~80℃であり、1級又は2級から構成される無機セラミック膜又はステンレス鋼膜分離システムに入り、膜孔径は1マイクロメートル未満であり、膜を透過した側から浄化純HF液体を流出させ、直径が1μmより大きいSS粒子の含量は25(個)単位/ミリリットル(Ea/ml)未満であり、次の工程であるHF精留に入り、膜を透過していない側にSS粒子濃縮液を濃縮させ、冷却、沈殿させた後、SS粒子を除去し、液体を加熱加圧した後、膜分離システムに戻し、更に有効留分を回収する、膜分離工程と、
(3)膜分離工程からの浄化純HF液体がHF精留工程の精留塔に入り、本工程の精留塔は、上下二段階の精留の構成を採用し、浄化純HF液体は、下段精留の頂部又は上段精留の底部から入り、上段精留塔の塔頂から取り除いた軽留分不純物ガスはその後の排気ガス吸収工程に戻り、上段精留の底部又は下段精留の頂部の蒸留物が凝結した後に形成する不凝ガスはAHFガスであり、純度は99.99%より大きく、直接に電子UP又はUSPレベルAHFの商品ガスとし、凝縮した後形成される液体は、上段又は下段精留の回流とし、下段精留の底部から蒸留された少量の重留分を含む不純物留分の塔底物の流体が凝結した後に形成する不凝ガスは温変圧吸着工程に戻り、更に有効留分を回収し、凝結した後に形成する液体を吸収剤として、次の工程であるアンモニア水脱炭に入る、HF精留工程と、
(4)中温変圧吸着工程からの濃縮ガスは、常圧又は僅かな過圧まで増圧した後、アンモニア水、硫酸及びHF精留工程下段から精留した蒸留物が凝結した後に形成した液体に入り、比率に基づき、吸収剤としてのアンモニア水脱炭吸収塔を混合し、吸収塔底から形成された炭酸水素アンモニウムとフッ化水素アンモニウムとの混合溶液から吐出し、直接フッ素ケイ酸法としてAHF生産過程における返料又は予備混合した反応物質を調製する、アンモニア水脱炭工程と
を含むことを特徴とする工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
(1) The raw material gas undergoes cold heat exchange between 50 and 80° C. and is pressurized to 0.2 to 0.3 MPa, and then enters a medium temperature pressure pressure adsorption process consisting of two-stage pressure pressure adsorption (PSA), Each stage pressure pressure adsorption is composed of at least two or more adsorption towers, at least one adsorption tower is in the adsorption process, and the remaining adsorption towers are reverse depressurization or evacuation, pressurization or final filling and other different stages of desorption. In the process, the feed gas enters from the bottom of the first stage PSA (1 # PSA) adsorption tower, the operating pressure of 1 # PSA is 0.2-0.3 MPa, the operating temperature is 50-80 ℃, The non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption step is pure HF gas, and the non-condensed gas after condensation is precision filtered, and after absorbing deionized water, the concentration obtained is 40 to 49. % HF aqueous solution is exported as a general electronic EL level hydrofluoric acid commodity, and the pure HF formed after condensation enters the next process, membrane separation, into the 1 # PSA adsorption tower in the desorption process. The desorbed gas flowing out from the bottom of the tower is pressurized and subjected to cold heat exchange, and then enters the bottom of the adsorption tower of the second stage PSA (2 # PSA), and the operating pressure of the 2 # PSA adsorption tower is 0.2-0. .3 MPa, the operating temperature is 50-80° C., and the non-adsorbed phase intermediate gas flowing out from the top of the 2 # PSA adsorption tower in the adsorption process is mixed with the raw material gas and fed to the 1 # PSA adsorption tower. Returning, the desorbed gas flowing out from the bottom of the 2 # PSA adsorption tower is a concentrated gas, and enters the subsequent ammonia water decarburization step to recover the effective fraction, a medium temperature pressure pressure adsorption step,
(2) The pure HF liquid condensed and formed from the medium-temperature pressure-pressure adsorption step is pressurized to 1.0-1.6 MPa, the temperature is 50-80° C., and the inorganic Enter the ceramic membrane or stainless steel membrane separation system, the membrane pore size is less than 1 micrometer, the clarified pure HF liquid flows out from the permeated side of the membrane, and the content of SS particles with a diameter greater than 1 micrometer is 25 units. / milliliter (Ea/ml), enter the next step, HF rectification, concentrate the SS particle concentrate on the non-permeated side of the membrane, cool and precipitate, and then remove the SS particles. , a membrane separation step of heating and pressurizing the liquid, returning it to the membrane separation system, and recovering the effective fraction;
(3) The purified pure HF liquid from the membrane separation process enters the rectification column of the HF rectification process, and the rectification column in this process adopts the configuration of upper and lower two-stage rectification, and the purified pure HF liquid is The light end impurity gas that enters from the top of the lower rectification or the bottom of the upper rectification and is removed from the top of the upper rectification column returns to the subsequent exhaust gas absorption step, and enters the bottom of the upper rectification or the top of the lower rectification. The non-condensable gas formed after condensation of the distillate is AHF gas, the purity is greater than 99.99%, directly into the electronic UP or USP level AHF commodity gas, and the liquid formed after condensation is the upper or as a circulation stream of the lower rectification, the non-condensable gas formed after condensation of the bottom fluid of the impurity fraction containing a small amount of heavy fraction distilled from the bottom of the lower rectification is returned to the temperature pressure pressure adsorption step, Furthermore, an HF rectification step in which the effective fraction is recovered and the liquid formed after condensation is used as an absorbent to enter the next step, ammonia water decarburization,
(4) The concentrated gas from the medium-temperature pressure-pressure adsorption step, after being pressurized to normal pressure or a slight overpressure, into the liquid formed after condensation of aqueous ammonia, sulfuric acid and the rectified distillate from the lower stage of the HF rectification step. Ammonium hydrogen carbonate and ammonium hydrogen fluoride mixed solution formed from the bottom of the absorption tower is discharged from the absorption tower bottom, and AHF is directly used as a fluorosilicic acid method. Ammonia water decarburization step to prepare a return or premixed reactant in the production process.
工程(1)に記載の原料ガスは、蛍石法又はフッ素ケイ酸法が調製する非水フッ化水素(AHF)生産過程において生成される工業レベル高濃度フッ化水素(HF)のガス、含有濃度が95~99%(v/v)であるHF、及び硫酸(HSO)、水(HO)、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)、金属イオン(Me+)及び微細粒子(SS)その他の不純物留分によるものであり、Me+は、主に水溶性のナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンとし、SS粒子の直径は1マイクロメートル(μm)より大きく、温度は20~60℃であり、圧力は常圧又は微圧である
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
The raw material gas described in step (1) contains industrial-level high-concentration hydrogen fluoride (HF) gas produced in the non-aqueous hydrogen fluoride (AHF) production process prepared by the fluorite method or the fluorosilicic acid method. HF at a concentration of 95-99% (v/v) and sulfuric acid (H 2 SO 4 ), water (H 2 O), sulfur dioxide (SO 2 ), silicon tetrafluoride (SiF 4 ), ammonia (NH 3 ), fluorosilicic acid (H 2 SiF 6 ), carbon dioxide (CO 2 ), chloride (calculated with HCl), metal ions (Me+) and fine particles (SS) and other impurity fractions, and Me+ is mainly water-soluble sodium (Na), magnesium (Mg), calcium (Ca), arsenic (As) ions, the diameter of the SS particles is greater than 1 micrometer (μm), the temperature is 20-60 ° C. The separation and purification method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1, wherein the pressure is normal pressure or micro-pressure.
工程(2)の中膜分離システムのマイクロフィルタ膜又は限外濾過膜を膜モジュールとする
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
The separation and purification of industrial-level high-concentration HF to electronic-level FTrPSA according to claim 1, wherein the microfilter membrane or ultrafiltration membrane of the media separation system in step (2) is a membrane module. purification method.
HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合して、硫酸を吸収剤とする排気ガス吸収塔に入り、吸収塔の底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製する非水フッ化水素AHF生産過程の原料循環使用に直接戻ることができ、吸収塔の塔頂から流出する不凝ガスを排ガスとして直接排出する、排気ガス吸収工程も含む
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
The light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarburization absorption tower, and the exhaust gas is absorbed using sulfuric acid as an absorbent. Entering the tower, forming a fluorosilicic acid solution from the bottom of the absorption tower, discharging it as a raw material, can be directly returned to the raw material recycling use in the non-aqueous hydrogen fluoride AHF production process prepared by the fluorosilicic acid method, and the absorption tower The separation and purification for refining industrial-level high-concentration HF to electronic-level FTrPSA according to claim 1, further comprising an exhaust-gas absorption step in which the non-condensable gas flowing out from the top of the column is directly discharged as exhaust gas. Method.
前記の中温変圧吸着工程における吸着塔には、活性酸化アルミニウム、シリカゲルと分子篩とが装填されており、1PSA吸着塔に装填される吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比率は(4-6):(2-4):(1-3)であり、2PSA吸着塔で装填する吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比は(3-5):(1-3):(3-5)である
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
The adsorption tower in the medium temperature pressure pressure adsorption step is loaded with activated aluminum oxide, silica gel and molecular sieve . (4-6):(2-4):(1-3) and the weight ratio of aluminum oxide:silica gel:molecular sieve in the adsorbent composition loaded in the 2 # PSA adsorption tower is (3-5):( 1-3): The separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA according to claim 1, characterized in that (3-5).
上述のHF精留工程の上段精留の底部又は下段精留の頂部からの蒸留物が凝結した後に形成する不凝ガスは、AHFガスであり、純度は99.99%より大きく、更に凝結してAHF液体を形成した後、フッ素交換樹脂に入り、更にMe+を除去し、UPSS電子レベルのAHF液体を形成し、脱イオン水と任意に調合して、HF溶液を形成することができ、半導体業界の各種濃度の需要を満たすことができる
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法。
The non-condensable gas formed after condensation of the distillate from the bottom of the upper rectification or the top of the lower rectification of the HF rectification process described above is AHF gas, with a purity greater than 99.99%, and further condensed. to form an AHF liquid, then enter a fluorine exchange resin to further remove Me+ to form a UPSS electronic level AHF liquid, which can optionally be mixed with deionized water to form an HF solution, and a semiconductor The separation and purification method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1, which can meet the various concentration demands of the industry.
JP2022506378A 2020-12-16 2021-05-18 Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA Pending JP2023524919A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011490114.0A CN112607707B (en) 2020-12-16 2020-12-16 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
CN202011490114.0 2020-12-16
PCT/CN2021/094244 WO2022127018A1 (en) 2020-12-16 2021-05-18 Ftrpsa separation and purification method for refinement of electronic-grade hf from industrial-grade high-concentration hf

Publications (1)

Publication Number Publication Date
JP2023524919A true JP2023524919A (en) 2023-06-14

Family

ID=75239835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022506378A Pending JP2023524919A (en) 2020-12-16 2021-05-18 Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA

Country Status (3)

Country Link
JP (1) JP2023524919A (en)
CN (1) CN112607707B (en)
WO (1) WO2022127018A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112607707B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
CN113735063B (en) * 2021-09-26 2023-04-18 金宏气体股份有限公司 Purification device and purification process for 9N electronic grade HF
CN115385772A (en) * 2022-07-04 2022-11-25 中船(邯郸)派瑞特种气体股份有限公司 Purification method of electronic-grade monofluoromethane
CN115160105A (en) * 2022-07-08 2022-10-11 苏州金宏气体股份有限公司 Method and device for purifying hexafluoro-1,3-butadiene by using eddy current technology
CN115650173A (en) * 2022-11-02 2023-01-31 屈发全 Preparation method for producing electronic-grade hydrochloric acid by using byproduct HCL of R134A device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062930A (en) * 1973-05-31 1977-12-13 Bohdan Zawadzki Method of production of anhydrous hydrogen fluoride
JP2691036B2 (en) * 1989-11-24 1997-12-17 三菱重工業株式会社 Method for removing impurities from solution after gypsum separation
US5827492A (en) * 1993-01-28 1998-10-27 E. I. Du Pont De Nemours And Company Hydrogen chloride purification process
FR2918579B1 (en) * 2007-07-13 2010-01-01 Air Liquide PROCESS FOR PURIFYING CO2-CONTAINING GAS BY INTEGRATION OF ADSORPTION PURIFICATION UNIT
CN102092684A (en) * 2011-01-06 2011-06-15 苏州晶瑞化学有限公司 Method for preparing electronic grade ultrahigh purity hydrofluoric acid
CN102502498B (en) * 2011-10-19 2014-08-20 甘肃银光聚银化工有限公司 Method for separating and recovering chlorine and oxygen of hydrogen chloride oxidation gas mixture by use of PSA (Pressure Swing Adsorption) technology
CN103043613B (en) * 2013-01-17 2014-09-24 昆明道尔森科技有限公司 Preparation method of fluoride
JP6483465B2 (en) * 2015-02-17 2019-03-13 住友精化株式会社 Method for producing hydrogen chloride
CN105749699B (en) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 Full-temperature-range pressure swing adsorption gas separation, purification and purification method
CN207468194U (en) * 2017-09-19 2018-06-08 新昌县七星街道春强机械厂 A kind of device for preparing super clean, high purified hydrofluoric acid
CN109929585A (en) * 2017-12-19 2019-06-25 何巨堂 Condense the hydrocarbon material process for selective hydrogenation of middle matter hydrocarbon in the gas phase of reuse reaction product
CN108658042B (en) * 2018-05-29 2019-11-08 四川天采科技有限责任公司 A kind of LED-MOCVD processing procedure tail gas Quan Wencheng pressure-variable adsorption full constituent recycling and reusing method
CN208440279U (en) * 2018-06-29 2019-01-29 江西天行化工有限责任公司 A kind of process units of super clean, high purified hydrofluoric acid
KR102156096B1 (en) * 2018-08-28 2020-09-15 연세대학교 산학협력단 Adsorbents with sulphur hexafluoride selectivity and method for gas separation using the same
CN109351144A (en) * 2018-11-30 2019-02-19 东华工程科技股份有限公司 The purification production system and technique of converter gas
CN109985487B (en) * 2019-04-03 2021-04-27 天津大学 Fluent-based optimization method for pressure swing adsorption carbon capture
CN111848337A (en) * 2020-07-28 2020-10-30 安徽东至广信农化有限公司 Method for recovering methyl chloride by membrane separation technology
CN111994874B (en) * 2020-09-03 2022-07-19 福建天甫电子材料有限公司 Preparation method of electronic-grade hydrofluoric acid
CN112744788B (en) * 2020-12-16 2022-09-23 四川天采科技有限责任公司 Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF (hydrogen fluoride) produced by fluosilicic acid method
CN112661115B (en) * 2020-12-16 2022-09-09 浙江天采云集科技股份有限公司 Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF produced by fluorite method
CN112607707B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade

Also Published As

Publication number Publication date
CN112607707B (en) 2022-05-20
CN112607707A (en) 2021-04-06
WO2022127018A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
JP2023524919A (en) Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA
CN105347307B (en) A kind of water-eliminating method of hydrogen chloride gas
TW200843839A (en) Method and apparatus for the recovery and re-use of process gases
KR20160008531A (en) Method for purifying hydrogen chloride
CN104973573B (en) A kind of preparation method of the preparation method and high-pure hydrofluoric acid of high-purity hydrogen fluoride
CN110606490B (en) Synthesis and purification method of high-purity silicon tetrafluoride
WO2023202270A1 (en) Method for graded utilization of fluorine and silicon resources in phosphate ore
JP2008537720A (en) Purification of nitrogen trifluoride
JP2023535850A (en) Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method
CN107673351A (en) A kind of production method of high-pureness carbon dioxide
CN110589770A (en) Preparation method of electronic-grade hydrofluoric acid
CN111186820A (en) Production process and production system of high-purity sulfuric acid
CN112591711B (en) High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas
CN215101986U (en) High-purity electronic grade chlorine purification apparatus for producing
CN112661115B (en) Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF produced by fluorite method
CN113321184B (en) High-purity electronic-grade chlorine purification production device and technology thereof
CN111994873B (en) Method and device for producing high-purity hydrobromic acid by adopting industrial grade hydrogen bromide gas
KR101955015B1 (en) method and APPARATUS for recovering nitrous oxide
CN104529692B (en) A kind of method of purifying hexafluoroethane
CN106345264A (en) Method for purifying organic fluorine gas by using novel impurity decomposing agent
CN211871381U (en) High-purity sulfuric acid production system
CN112744787B (en) FTrPSA separation and purification method for deeply defluorinating and drying HCl gas containing high-concentration HF
JP2008143775A (en) Hydrogen separation/collection method and hydrogen separation/collection facility
CN100374184C (en) A process and apparatus for purifying hydrogen bromide
CN112744788B (en) Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF (hydrogen fluoride) produced by fluosilicic acid method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404