JPS61194884A - Superconductive element ic - Google Patents

Superconductive element ic

Info

Publication number
JPS61194884A
JPS61194884A JP60034355A JP3435585A JPS61194884A JP S61194884 A JPS61194884 A JP S61194884A JP 60034355 A JP60034355 A JP 60034355A JP 3435585 A JP3435585 A JP 3435585A JP S61194884 A JPS61194884 A JP S61194884A
Authority
JP
Japan
Prior art keywords
film
superconducting
metal
superconductive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60034355A
Other languages
Japanese (ja)
Inventor
Yutaka Harada
豊 原田
Juichi Nishino
西野 壽一
Mutsuko Miyake
三宅 睦子
Masaaki Aoki
正明 青木
Ushio Kawabe
川辺 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60034355A priority Critical patent/JPS61194884A/en
Priority to EP85308009A priority patent/EP0181191B1/en
Priority to DE3588086T priority patent/DE3588086T2/en
Priority to EP95104470A priority patent/EP0667645A1/en
Publication of JPS61194884A publication Critical patent/JPS61194884A/en
Priority to US07/073,408 priority patent/US4884111A/en
Priority to US07/412,201 priority patent/US5126801A/en
Priority to US07/875,431 priority patent/US5311036A/en
Priority to US08/201,410 priority patent/US5442196A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make integration of superconductive elements such as three terminals etc. at high grade by a method wherein a metallic film and an insulated film are formed on a substrate, and an element is constituted of a superconductive metallic film and a semiconductor thin film possessing a restricted region on said insulated film. CONSTITUTION:An IC is constituted of a metallic film 101, an insulated film 102, a superconductive metal 103 and an island semiconductor thin film 104, which are wiring layers, on a substrate 100. A superconductive three terminal element is designated as a gate insulated film 102t, which is a portion where the film thickness of the insulated film 102 is made selectively thin, and the metallic layer 101 on the substrate 100 side is designated as a gate electrode 101t. The island semiconductor thin film 104 on the gate insulated film 102t becomes a channel layer 104t, then the superconductive metal 103 formed so as to cover the thin film 104t becomes superconductive electrodes 103t, 103t'. A superconductive electron pair is saturated out of the electrode 103t, 103t' to the channel layer 104t and then flows over the surface of the channel layer 104t. The flow of the electron pair is controlled by voltage impressed on a gate electrode 101t.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導素子集積回路に係り、特に半導体と超電
導金属との界面に流れる超電導電流を制御するスイッチ
ング素子やジョセフソン素子を高度に集積化する超電導
素子集積回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a superconducting element integrated circuit, and in particular to highly integrating switching elements and Josephson elements that control superconducting current flowing at the interface between a semiconductor and a superconducting metal. Related to superconducting element integrated circuits.

〔発明の背景〕[Background of the invention]

超電導スイッチング素子は当技術分野では周知であり、
ジョセフソン素子により代表される。ジョセフソン素子
は非常に薄いトンネル障壁によって隔てられた2つの超
電導体の間に零電圧の電流が流れるもので、この素子に
流れる電流を増加させること、又は素子に磁場を印加す
ることによって、この素子を超電導状態から電圧状態に
スイッチさせることができる。ジョセフソン素子は低消
費電力で、かつ高速でスイッチして高性能のスイッチン
グ性能を実現しているが、回路利得が小さく、否定回路
が構成できない等の欠点を合わせ持っている。これらの
欠点を補うべく、半導体装置電導体の界面を利用した超
電導三端子素子が提案されている(昭和59年11月1
0日付日経産業新聞、日刊工業新聞、日本工業新聞、電
波新聞、日本経済新聞)。この超電導三端子素子は2つ
の近接した超電導体電極を半導体に接触させ、その半導
体裏面に絶縁膜を介して制御電極を設けた構造である。
Superconducting switching elements are well known in the art;
It is represented by the Josephson element. A Josephson device is a device in which a zero-voltage current flows between two superconductors separated by a very thin tunnel barrier, and this can be reduced by increasing the current flowing through the device or by applying a magnetic field to the device. The device can be switched from a superconducting state to a voltage state. Josephson elements consume low power and switch at high speed, achieving high performance switching performance, but they also have drawbacks such as low circuit gain and the inability to form negative circuits. In order to compensate for these shortcomings, a superconducting three-terminal device that utilizes the interface of a conductor in a semiconductor device has been proposed (November 1, 1981).
Nikkei Sangyo Shimbun, Nikkan Kogyo Shimbun, Nippon Kogyo Shimbun, Dempa Shimbun, Nihon Keizai Shimbun) dated 0. This superconducting three-terminal element has a structure in which two adjacent superconducting electrodes are brought into contact with a semiconductor, and a control electrode is provided on the back surface of the semiconductor with an insulating film interposed therebetween.

この素子では超電導体から半4体にしみ出した超電導電
子対による該2つの超電導電極間に流れる超電導電流を
、制御電極に印加する電圧で制御する。この素子はジョ
セフソン素子と同等の性能を有し、同時に高い利得が得
られ、さらに否定回路も構成できる。しかし、この超電
導三端子の構造は半導体ウェハーの裏面をエツチングす
ることにより穴をあけ、その穴の底面に制御電極を設け
るものである。一般に半導体ウェハーの厚さは500μ
m程度であり、この厚みの半導体ウェハーの裏面から表
面近くまで到達する穴をあけるにはウェハーの厚みと同
程度の穴寸法が必要である。このため従来の素子構造で
は素子寸法が大きくなる。またこの超電導三端子素子は
プレーナ構造となっていない。従って、従来の超電導三
端子素子の構造では素子を高度に集積化することは内壁
であった6 〔発明の目的〕 本発明は超電導三端子等の素子を高度に集積化すること
を目的とする。
In this element, the superconducting current flowing between the two superconducting electrodes due to the superconducting electron pairs seeping into the halves from the superconductor is controlled by the voltage applied to the control electrode. This element has performance equivalent to that of a Josephson element, can obtain a high gain, and can also be configured as a negative circuit. However, in the structure of this superconducting three terminal, a hole is formed by etching the back surface of a semiconductor wafer, and a control electrode is provided at the bottom of the hole. Generally, the thickness of semiconductor wafer is 500μ
In order to drill a hole that reaches from the back surface of a semiconductor wafer of this thickness to near the front surface, a hole size that is approximately the same as the thickness of the wafer is required. Therefore, in the conventional element structure, the element size becomes large. Furthermore, this superconducting three-terminal element does not have a planar structure. Therefore, in the conventional structure of a superconducting three-terminal element, the elements were highly integrated on the inner wall.6 [Object of the Invention] The present invention aims to highly integrate elements such as a superconducting three-terminal element. .

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明では、基板上に金属膜
と絶縁膜を形成し、該絶縁膜上に超電導金属膜と限定さ
れた領域を有する半導体薄膜とによって素子を形成する
ものである。このように素子を形成することにより素子
はプレーナ構造となり高度に集積化することが可能とな
る。超電導三端子素子を形成するには、素子の形成され
ている部分の絶縁膜の厚みを薄くし、金属膜を制御電極
とする。そして半導体薄膜の部分をチャネル層とし、超
電導金属膜をソース・ドレイン電極とする。
In order to achieve this object, the present invention forms a metal film and an insulating film on a substrate, and forms an element on the insulating film by a superconducting metal film and a semiconductor thin film having a limited area. By forming the element in this manner, the element has a planar structure and can be highly integrated. To form a superconducting three-terminal element, the thickness of the insulating film in the area where the element is formed is made thinner, and a metal film is used as the control electrode. Then, the semiconductor thin film portion is used as a channel layer, and the superconducting metal film is used as a source/drain electrode.

この超電導三端子はプレーナ構造となっているので高度
に集積化することが可能である。また、この超電導三端
子素子とジョセフソン素子や半導体素子等を同一のチッ
プ上に構成することにより、相互の特性を生かした高性
能な超電導素子集積回路を実現できる。
Since this superconducting three terminal has a planar structure, it can be highly integrated. Moreover, by configuring this superconducting three-terminal element, a Josephson element, a semiconductor element, etc. on the same chip, a high-performance superconducting element integrated circuit that takes advantage of their mutual characteristics can be realized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の一実施例である超電導素子集積回路の
断面図を示す。この実施例では超電導三端子素子T、拡
散抵抗D、金属薄膜抵抗R1静電容量Cの各素子が一つ
の基板上に集積化されている。この集積回路は、基本的
には次のような膜構造により構成されている。すなわち
、各素子が形成される基板100、配線層である金属膜
101、この金属膜101上に形成された絶縁膜102
、この絶縁膜102上に形成された超電導金属103リ
コン・ポリシリコン等の無機材料や樹脂等の・自機材料
が用いられる。金属膜101としてはAQ。
FIG. 1 shows a cross-sectional view of a superconducting element integrated circuit which is an embodiment of the present invention. In this embodiment, a superconducting three-terminal element T, a diffused resistor D, a metal thin film resistor R1, and a capacitor C are integrated on one substrate. This integrated circuit basically has the following membrane structure. That is, a substrate 100 on which each element is formed, a metal film 101 which is a wiring layer, and an insulating film 102 formed on this metal film 101.
The superconducting metal 103 formed on this insulating film 102 is made of an inorganic material such as silicon or polysilicon, or an organic material such as resin. The metal film 101 is AQ.

シリコンや、その他、窒化シリコン等のシリコン化合物
により絶縁材料、樹脂等の絶縁材料が用いられる。超電
導金属103としてpb系金金属材料Nb系金属材料等
が用いられる。半導体薄膜104としては、S i 、
 G a 、 G a P 、 G a A s 。
Insulating materials such as silicon, silicon compounds such as silicon nitride, and resins are used. As the superconducting metal 103, a pb-based gold metal material, an Nb-based metal material, or the like is used. As the semiconductor thin film 104, S i ,
G a , G a P , G a As .

GaSb、InP、InAs、InSb等の材料が用い
られる。これらはm結晶が望ましいが多結晶、非晶質で
あっても良い。また、この半導体薄膜には不純物を10
11〜10”am−3N度含有させる。例えばSiの場
合は不純物としてB、P。
Materials such as GaSb, InP, InAs, and InSb are used. These are preferably m-crystalline, but may be polycrystalline or amorphous. In addition, this semiconductor thin film was doped with impurities of 10
For example, in the case of Si, B and P are added as impurities.

As等が用いられる。尚、本実施例ではこの他に各素子
を保護するための保護膜105や配線層である金属膜1
01と基板10oを絶縁する絶縁膜106等が形成され
ている。基板100が極低温で絶縁体となる材料で形成
されているときは絶縁膜106を省略することができる
As, etc. are used. In addition, in this embodiment, a protective film 105 for protecting each element and a metal film 1 as a wiring layer are also used.
An insulating film 106 and the like are formed to insulate the substrate 10o from the substrate 10o. When the substrate 100 is made of a material that becomes an insulator at extremely low temperatures, the insulating film 106 can be omitted.

次に、本発明の超電導素子集積回路の基本的な素子であ
る超電導三端子素子Tの構成を説明する。
Next, the configuration of the superconducting three-terminal element T, which is a basic element of the superconducting element integrated circuit of the present invention, will be explained.

超電導三端子素子は絶縁膜102の膜厚が選択的に薄く
された箇所をゲート絶縁膜102tとし。
In the superconducting three-terminal element, a portion where the thickness of the insulating film 102 is selectively reduced is defined as a gate insulating film 102t.

その基板100側の金属膜101をゲート電極101t
とする。そしてゲート絶縁膜102’を上の島状の半導
体薄膜104がチャネル層104tとなり、この半導体
薄膜104tを覆うように形成された超電導金属103
が超電導電極103t。
The metal film 101 on the substrate 100 side is connected to the gate electrode 101t.
shall be. Then, an island-shaped semiconductor thin film 104 on top of the gate insulating film 102' becomes a channel layer 104t, and a superconducting metal 103 formed so as to cover this semiconductor thin film 104t.
is the superconducting electrode 103t.

103t’ となる。超電導電極103t、103t’
は例えば0.2μmの狭い間隔を置いて形成される。超
電導電極103t、013t’からはチャネル層104
tに超電導電子対がしみ出し、この超電導電子対は超電
導電極間のチャネル層104tの表面を流れる。この超
電導電子対の流れはゲート電極101tに印加する電圧
によって制御することができる。
103t'. Superconducting electrodes 103t, 103t'
are formed at narrow intervals of, for example, 0.2 μm. A channel layer 104 is formed from the superconducting electrodes 103t and 013t'.
Superconducting electron pairs seep out at t, and these superconducting electron pairs flow on the surface of the channel layer 104t between the superconducting electrodes. The flow of superconducting electron pairs can be controlled by the voltage applied to the gate electrode 101t.

即ちこの超電導三端子素子においては、超電導電極10
3tと103t’の間は、超電導電極材料の転移温度以
下に冷却した場合、超電導弱結合によって結ばれており
、そのために2つの超電導電極の間に流れる最大ジョセ
フソン電流ImはI m == 4 sΔ/2eR。
That is, in this superconducting three-terminal element, the superconducting electrode 10
3t and 103t' are connected by superconducting weak coupling when cooled below the transition temperature of the superconducting electrode material, and therefore the maximum Josephson current Im flowing between the two superconducting electrodes is I m == 4 sΔ/2eR.

により与えられる。ここにΔは超電導電極103t。is given by Here, Δ is the superconducting electrode 103t.

103t’のギャップエネルギー、eは素電荷、R,I
は該超電導弱結合の常電導トンネル抵抗である。なお、
2つの超電導電極103t、103t’の間隔は超電導
弱結合を形成するためには300nm以下に選ばれ、両
電極が空間的に分離されていることが望ましい。
103t' gap energy, e is elementary charge, R, I
is the normal conducting tunnel resistance of the superconducting weak coupling. In addition,
The distance between the two superconducting electrodes 103t and 103t' is selected to be 300 nm or less in order to form a superconducting weak bond, and it is desirable that the two electrodes are spatially separated.

ゲート電極101tに、超電導電極103を又は103
t’ に対して負又は正の電圧を印加した場合には、チ
ャネル層104tと絶縁膜102tの 荷が誘起されて、この電荷のためにトンネル障7として
の状態が変化し、R,がより大きな値に変化するために
電極103t、103t’の間に電圧を発生させること
なく流し得る最大ジョセフソン電流Inは減少する。尚
、ゲート電極101tは絶縁膜102に設けた貫通孔1
07を介して絶縁膜102上に形成された金属膜103
r’に接続され、他の素子等と接続されている。また、
超電導電極103t、103t’は超電導金属103お
よび半導体薄膜104上に形成された絶縁膜108の貫
通孔109,109’ を介して該絶縁膜108上に形
成された金属膜110,111にそれぞれ接続され、他
の素子等と接続されている。
A superconducting electrode 103 or 103 is attached to the gate electrode 101t.
When a negative or positive voltage is applied to t', a charge is induced in the channel layer 104t and the insulating film 102t, and the state of the tunnel barrier 7 changes due to this charge, and R becomes even more Since the value changes to a large value, the maximum Josephson current In that can flow between the electrodes 103t and 103t' without generating a voltage decreases. Note that the gate electrode 101t is formed in the through hole 1 provided in the insulating film 102.
Metal film 103 formed on insulating film 102 via 07
r', and is connected to other elements. Also,
The superconducting electrodes 103t and 103t' are connected to the metal films 110 and 111 formed on the insulating film 108 through the through holes 109 and 109' of the insulating film 108 formed on the superconducting metal 103 and the semiconductor thin film 104, respectively. , and are connected to other elements.

このように基板とは別にチャネル層となる半導体薄膜を
設けて素子を構成したので超電導三端子素子Tはプレー
ナ構造となり高集積化が可能となる。
Since the element is constructed by providing a semiconductor thin film serving as a channel layer separately from the substrate, the superconducting three-terminal element T has a planar structure and can be highly integrated.

また他の素子との集積化が容易となる。Furthermore, integration with other elements becomes easy.

この超電導三端子素子Tと同一基板上に集積化されてい
る拡散抵抗りは、絶縁[102上の半導体薄[104d
とこの両端に接続する電極膜である金属111103 
d 、 103 d’ カラm成すレ、103dは超電
導電極103t’ と接続されている。
The diffused resistor integrated on the same substrate as this superconducting three-terminal element T is a semiconductor thin film [104d
Metal 111103 which is the electrode film connected to both ends of this
d and 103d', and 103d is connected to the superconducting electrode 103t'.

また、金属薄膜抵抗Rは絶縁膜102上に形成された金
属抵抗薄膜112の両端に電極膜として金属膜103r
、103r’ を接続した構造となっている。金属抵抗
薄膜の材料としては常電導金属材料5例えばA u +
 A K g M o t Cr + A Q +Ta
、Nb、Wを主体とした化合物や合金が用いられる。
Further, the metal thin film resistor R is a metal film 103r as an electrode film on both ends of the metal resistive thin film 112 formed on the insulating film 102.
, 103r' are connected. As the material of the metal resistive thin film, a normal conductive metal material 5 such as A u +
A K g M o t Cr + A Q +Ta
, Nb, and W are used.

静電容量Cは絶al11102を選択的に薄くした箇所
102Cの上下に電極として金属膜103c。
The capacitance C is made by forming a metal film 103c as an electrode above and below a portion 102C where Al 11102 is selectively thinned.

101cを設けることにより構成される。尚、金属膜1
01′は配線として用いられている。このように基板1
00、金属膜101、絶縁膜102、超電導金属膜10
3.島状の半導体薄膜104を超電導素子集積回路の基
本的な構成要素とすることにより超電導三端子素子や他
の素子をすべて基板の表面に形成することができるので
窩度に集積化することが可能となる。また1本実施例で
は各素子がすべて絶縁筒内に埋め込まれた理想的な構造
となっているので、寄生容量が小さくなり素子が高速度
で動作するという効果を有する。
101c. In addition, metal film 1
01' is used as a wiring. In this way, the board 1
00, metal film 101, insulating film 102, superconducting metal film 10
3. By using the island-shaped semiconductor thin film 104 as a basic component of the superconducting element integrated circuit, the superconducting three-terminal element and other elements can all be formed on the surface of the substrate, making it possible to integrate them in a single hole. becomes. Furthermore, this embodiment has an ideal structure in which all the elements are embedded in an insulating cylinder, so that the parasitic capacitance is reduced and the elements operate at high speed.

次に、第1図に示す超電導素子集積回路の基本的な素子
である超電導二端子素子1゛を作製する工程の一例を第
2図を用いて説明する。
Next, an example of a process for manufacturing a superconducting two-terminal element 1'', which is a basic element of the superconducting element integrated circuit shown in FIG. 1, will be explained using FIG. 2.

シリコン単結晶基板200の上に絶縁膜102となる酸
化膜層を作り、その一部を選択的に薄くし、ゲート絶縁
n!J102 tとなる部分を形成する。
An oxide film layer that will become the insulating film 102 is formed on the silicon single crystal substrate 200, and a part of the oxide film layer is selectively thinned to form gate insulation n! Form the part that will become J102t.

これは例えば、シリコン単結晶表面を熱酸化して厚い酸
化膜を作成し、選択的にその酸化膜をエツチングし、そ
の後薄い酸化膜を作製することによりこの酸化膜構造に
することができる。本実施例では絶縁膜102の膜厚を
2000人とし、ゲート絶縁膜の膜厚を200人とした
(第2図(a))。
This oxide film structure can be obtained, for example, by thermally oxidizing the silicon single crystal surface to create a thick oxide film, selectively etching the oxide film, and then creating a thin oxide film. In this example, the thickness of the insulating film 102 was 2000, and the thickness of the gate insulating film was 200 (FIG. 2(a)).

その後ボロンを1019■−2程度含有するようにイオ
ン打込みすることにより島状の半導体薄膜104となる
チャネル層104′を形成する(第2図(b))。その
後金属膜101を3000人形成することによりゲート
電t4101tを作製する(第2図(C))。さらに絶
a吸106、基板100をその表面に積層する。基板の
厚みは200μm程度になるようにした(第2図(d)
)。この状態でシリコン単結晶基板200を裏面からエ
ツチングする。これは例えばシリコンの異方性エツチン
グを利用することにより、不純物濃度の薄い部分だけを
エツチングし、不純物:a度の濃いチャネル層104′
だけを残すようにすることができる。
Thereafter, ions are implanted to contain boron of about 10@19 -2 to form a channel layer 104' which becomes an island-shaped semiconductor thin film 104 (FIG. 2(b)). Thereafter, a gate electrode t4101t is produced by forming 3000 metal films 101 (FIG. 2(C)). Further, a vacuum 106 and a substrate 100 are laminated on the surface thereof. The thickness of the substrate was set to about 200 μm (Figure 2 (d)).
). In this state, silicon single crystal substrate 200 is etched from the back side. For example, by using anisotropic etching of silicon, only the part with a low impurity concentration is etched, and the channel layer 104' with a high impurity concentration is etched.
You can leave only the

本実施例では前述のイオン打込みとこのエツチングによ
りチャネル層104′の膜厚を1000人とした。尚、
この時点でチャネル層104′を表とする(第2図(e
))。その後チャネル層104′を選択エツチングし、
超電導三端子素子Tのチャネル層104tどなる部分を
形成する(第2図(f))。この後絶縁膜102を選択
エツチングして貫通孔107を形成し、さらに金属抵抗
薄膜112を形成する(第2図(g))、その後、ゲー
ト電極102tに接続する金属ff1103r’ と超
電導電極103t、103t’ となる金属膜を300
0人形成する。また5超電導電tli 103tと10
3t’の間隔は200nmとなるようにした(第2図(
h))。この後選択的に形成された貫3M孔109,1
09’ を有する絶a[1i108を作製する。そして
、該絶R膜108上に超電導電極103t、1031;
’ に接続する金a膜110゜111を形成する。これ
らの形状を形成するにはりフトオフ法やエツチング法等
を用いれば良い(第2図(i))、この後保護膜105
を形成すれば、第1図に示す超電導素子集積回路の基本
的な素子である超電導三端子素子を構成できる。尚。
In this embodiment, the thickness of the channel layer 104' was set to 1000 by the above-mentioned ion implantation and etching. still,
At this point, the channel layer 104' is exposed (FIG. 2(e)
)). After that, the channel layer 104' is selectively etched,
A portion of the channel layer 104t of the superconducting three-terminal element T is formed (FIG. 2(f)). After that, the insulating film 102 is selectively etched to form a through hole 107, and a metal resistive thin film 112 is further formed (FIG. 2(g)). Thereafter, a metal ff1103r' connected to the gate electrode 102t, a superconducting electrode 103t, The metal film with a thickness of 103t' is 300
Form 0 people. Also 5 superconducting tli 103t and 10
The interval of 3t' was set to 200 nm (Fig. 2 (
h)). After this, the through 3M holes 109, 1 were selectively formed.
09' is produced. Then, superconducting electrodes 103t, 1031 are placed on the absolute R film 108;
'A gold a film 110° 111 connected to To form these shapes, a lift-off method, an etching method, etc. may be used (FIG. 2(i)). After this, the protective film 105 is
By forming this, a superconducting three-terminal element, which is a basic element of the superconducting element integrated circuit shown in FIG. 1, can be constructed. still.

第2図に示す工程は代表的な例を示すものであって、工
程の順序を変えることや、他の方法を採用しても第1図
に示す超電導素子集積回路を作製することができる。例
えば、第2図(b)のイオン打込みを第2図(a)の絶
縁膜102を形成する前に行ないチャネル層104′を
形成することは可能である。さらに第2図(b)におい
てイオン打込みを選択的に行ない、第2図(e)におい
てシリコン単結晶基板200をエツチングした時にチャ
ネル層104tとなるシリコン単結晶の島を直接形成す
ることも可能である。さらにMBE技術、レーザアニー
ル技術等を活用してチャネル層104tを形成しても良
い。
The steps shown in FIG. 2 are representative examples, and the superconducting element integrated circuit shown in FIG. 1 can be manufactured by changing the order of the steps or using other methods. For example, it is possible to form the channel layer 104' by performing the ion implantation shown in FIG. 2(b) before forming the insulating film 102 shown in FIG. 2(a). Furthermore, when ion implantation is selectively performed in FIG. 2(b) and the silicon single crystal substrate 200 is etched in FIG. 2(e), it is also possible to directly form silicon single crystal islands that will become the channel layer 104t. be. Furthermore, the channel layer 104t may be formed using MBE technology, laser annealing technology, or the like.

第3図〜第8図に本発明の他の実施例を示す。Other embodiments of the present invention are shown in FIGS. 3 to 8.

第3図の実施例では超電導三端子素子Tおよび拡散抵抗
りの島状のシリコン単結晶304t、304dを高濃度
部分とし、その他の部分313を低濃度の単結晶として
いる。すなわち、超電導三端子素子Tのチャネル層30
4を等が低濃度部分に埋め込まれたようになっている。
In the embodiment shown in FIG. 3, the superconducting three-terminal element T and the island-shaped silicon single crystals 304t and 304d of the diffused resistor are made into high concentration parts, and the other part 313 is made into a low concentration single crystal. That is, the channel layer 30 of the superconducting three-terminal element T
4 etc. are embedded in the low concentration area.

シリコン単結晶の低濃度部313は極低温、例えば液体
ヘリウム温度で絶縁体となり、素子間に絶縁物が挾まれ
た形になるので、素子分離が可能となる。これは例えば
第2図(f)において、単結晶部分104′をエツチン
グするかわりに、チャネル層104tの不純物と逆性の
不純物を低濃度部313となるところにイオン打込みす
ることにより作製される。
The low concentration portion 313 of the silicon single crystal becomes an insulator at an extremely low temperature, for example, the temperature of liquid helium, and an insulator is sandwiched between the elements, so that element isolation is possible. For example, in FIG. 2(f), instead of etching the single crystal portion 104', this is fabricated by ion-implanting an impurity having the opposite property to the impurity of the channel layer 104t into the low concentration portion 313.

第4図の実施例では、ジョセフソン接合Jを第1図に示
す超電導三端子素子T等とともに集積化している。ジョ
セフソン接合Jは、金属膜103により形成した下部電
極403 、jと金属膜415梵 により形成した上部電極415jをトンネル障富C 層414を介して接合するととも、金属膜101により
形成した制御II&401j・401j’ を絶縁膜1
02を介して設けてなる。ジョセフソン接合Jの作成は
、リフトオフ法によるパターン作成、プラズマ酸化によ
るトンネル障壁層の作成などの従来の作成プロセスを用
いて容易に行うことができる。尚本実施例では、絶縁膜
416上に超電導金属膜417を形成している。超電導
金属膜417第5図に示す実施例では、第2図(d)の
工程の前に絶縁膜518、超電導金属膜519を形成 
  ドして得られるもので、超電導金属膜519は極低
   え温において磁気シールド面、接地面としての効
果   前を有する。
In the embodiment shown in FIG. 4, the Josephson junction J is integrated with the superconducting three-terminal element T shown in FIG. 1, etc. The Josephson junction J connects the lower electrodes 403 and 401j formed by the metal film 103 and the upper electrode 415j formed by the metal film 415 through the tunnel barrier C layer 414, and also connects the lower electrodes 403 and 401j formed by the metal film 101 to each other via the tunnel barrier C layer 414.・401j' as insulating film 1
02. The Josephson junction J can be easily created using conventional manufacturing processes such as pattern creation using a lift-off method and creation of a tunnel barrier layer using plasma oxidation. In this embodiment, a superconducting metal film 417 is formed on the insulating film 416. Superconducting metal film 417 In the embodiment shown in FIG. 5, an insulating film 518 and a superconducting metal film 519 are formed before the step in FIG. 2(d).
The superconducting metal film 519 functions as a magnetic shielding surface and a grounding surface at extremely low temperatures.

第6図の実施例は第1図に示す実施例にさらに   ジ
MO8素子Mを集積化する例である。絶縁[1102る
に形成した貫通孔を介して、島状の半導体薄膜    
の104により形成したチャネル層604mに金属  
 の膜101で形成されたソース電極601m、ドレ 
  トイン電極601m’が接触している。また、該ソ
   1−ス・ドレイン電極の中間に絶縁膜102を介
し   7て金属膜101より成るゲート電極が形成さ
れて   ゲいる。チャネル層604mの上方には金属
層103     のからなる電極603mが設けられ
ている。電極    ス603mはチャネル層604m
にバイアス電圧を   体印加し、MO8素子素子しき
い値を制御すること   そ゛ ができる。尚、チャネ
ル層604mに別途不純物   すイオンを打込み、不
純物濃度を変えることにより   ゲO8素子Mのしき
い値を制御することもできる。
The embodiment shown in FIG. 6 is an example in which a di-MO8 element M is further integrated in the embodiment shown in FIG. An island-shaped semiconductor thin film is inserted through the through hole formed in the insulation layer.
Metal is applied to the channel layer 604m formed by 104 of
The source electrode 601m formed of the film 101, the drain
The toe-in electrode 601m' is in contact. Further, a gate electrode made of a metal film 101 is formed between the source and drain electrodes with an insulating film 102 interposed therebetween. An electrode 603m made of the metal layer 103 is provided above the channel layer 604m. Electrode 603m is channel layer 604m
It is possible to control the threshold voltage of the MO8 element by applying a bias voltage to the MO8 element. Note that the threshold value of the GeO8 element M can also be controlled by separately implanting impurity ions into the channel layer 604m and changing the impurity concentration.

また、チャネル層604mにソース電極601mレイン
電極601m’ を接続するためには、例ば第2図に示
す工程で、第2図(c)の工程のに絶all!!102
に貫通孔を形成しておけば良い。
Moreover, in order to connect the source electrode 601m and the rain electrode 601m' to the channel layer 604m, for example, the process shown in FIG. 2 (c) is absolutely necessary! ! 102
It is sufficient to form a through hole in the.

第7図の実施例は第1図に示す実施例にさらにヤンクシ
ョンFET51、又はS2を集積化す例である。ジャン
クションFET51は、島状半導体薄膜704S1の下
方から絶a膜102貫通孔を介して金属膜101で形成
されンゲー電極70181を接触させ、上方には金属膜
03で形成されたソース、ドレイン電極703 S 1
 。
The embodiment shown in FIG. 7 is an example in which a junction FET 51 or S2 is further integrated in the embodiment shown in FIG. The junction FET 51 contacts the contact electrode 70181 formed of the metal film 101 from below the island-shaped semiconductor thin film 704S1 through the through hole of the insulating film 102, and above the source and drain electrodes 70181 formed of the metal film 03. 1
.

03S1’ を設けた構造である。この構造では−上電
極701S1と島状の半導体薄膜70481間にはショ
ットキ障壁が形成されている。ソードレイン電極703
31,703S1’ と半導薄111704S1を抵抗
性の接触とするためには。
03S1' is provided. In this structure, a Schottky barrier is formed between the upper electrode 701S1 and the island-shaped semiconductor thin film 70481. Sword drain electrode 703
In order to make resistive contact between 31,703S1' and the semiconductor thin film 111704S1.

の部分に高濃度の不純物をさらにイオン打込みれば良い
。このような構造にすることにより、−上電極7018
1に印加する電圧でソース・ドレイン電極間の抵抗を制
御するジャンクションFET素子が得られる。尚、ソー
ス・ドレイン電極703S1,703SL’の間隔を狭
くすれば(例えば0.2μm)、超電導体より成るソー
ス・ドレイン電極703S1,703SL’ から島状
の半導体薄M704S1にしみ出した超電導電子対の流
れをゲート電極701S1に印加する電圧で制御する超
電導三端子素子を構成することもできる。ジャンクショ
ンFET52はジャンクションFET51と同じ構造の
ソース、ドレイン電極703S2,703S2’の間に
第2のゲート電極703S2’を設けた構造である。尚
、第1のゲート電極701S2絶縁膜102の貫通孔を
介して金属ff703に接続し、この配線を介して第1
.第2のゲート電極を接続すれば、高利得のFETを実
現できる。また第1.第2のゲート電極を入力端子とし
て独立に使えばOR(NOR)又はAND (NAND
)の論理動作を行える。尚、第2のゲート電極703 
S 2’が超電導体でできているため、第2のゲート電
極703S2’から島状の半導体薄膜704S2にしみ
出した超電導電子対の流れを第1のゲート電極7QIS
2に印加する電圧で制御する超電導三端子素子を構成す
ることもできる。
It is sufficient to further ion-implant high-concentration impurities into the portion. By having such a structure, - the upper electrode 7018
A junction FET element is obtained in which the resistance between the source and drain electrodes is controlled by the voltage applied to the junction FET. Note that if the distance between the source/drain electrodes 703S1, 703SL' is narrowed (for example, 0.2 μm), superconducting electron pairs seeping out from the source/drain electrodes 703S1, 703SL' made of superconductors into the island-shaped semiconductor thin M704S1 are reduced. It is also possible to configure a superconducting three-terminal element in which the flow is controlled by the voltage applied to the gate electrode 701S1. The junction FET 52 has the same structure as the junction FET 51, with a second gate electrode 703S2' provided between source and drain electrodes 703S2 and 703S2'. Note that the first gate electrode 701S2 is connected to the metal ff703 through a through hole in the insulating film 102, and the first
.. By connecting the second gate electrode, a high gain FET can be realized. Also number 1. If the second gate electrode is used independently as an input terminal, OR (NOR) or AND (NAND
) can perform logical operations. Note that the second gate electrode 703
Since S 2' is made of a superconductor, the flow of superconducting electron pairs leaking from the second gate electrode 703S2' to the island-shaped semiconductor thin film 704S2 is transferred to the first gate electrode 7QIS.
It is also possible to configure a superconducting three-terminal element controlled by the voltage applied to the two terminals.

第8図の実施例では、第1図の実施例にさらに他の構造
の超電導三端子素子を構成した例である。
The embodiment shown in FIG. 8 is an example in which a superconducting three-terminal element having a different structure from the embodiment shown in FIG. 1 is constructed.

この実施例に示す超電導三端子素子は金属膜103で形
成された電極803t、803t’の間に、同様に金属
膜103で形成されて電極803t’を新たに設けた構
造である。金属膜103は超電5゛ 導材料であるため、電極803t’かヂ島状の半導体薄
膜、804tにしみ出した超電導電子対の流 αg 御 以上述べたごとく、本発明の実施例では基板とは別個に
超電導三端子素子等を構成するための限定された領域を
有する半導体薄膜を形成しているので集積回路状の素子
はプレーナ構造にできる。
The superconducting three-terminal element shown in this embodiment has a structure in which an electrode 803t', also formed of the metal film 103, is newly provided between the electrodes 803t, 803t' formed of the metal film 103. Since the metal film 103 is a superconducting material, the flow αg of superconducting electron pairs seeping into the electrode 803t' or the island-shaped semiconductor thin film 804t. Since a semiconductor thin film having a limited area for separately forming a superconducting three-terminal element or the like is formed, an integrated circuit-like element can have a planar structure.

そのため高集積度の集積回路が実現できる。また本実施
例による集積回路では素子が絶縁膜で分離されているた
めにその寄生容量が小さくできるので、より高速のスイ
ッチング動作を実現できる。
Therefore, a highly integrated circuit can be realized. Furthermore, in the integrated circuit according to this embodiment, since the elements are separated by an insulating film, the parasitic capacitance thereof can be reduced, so that higher-speed switching operation can be realized.

〔発明の効果〕〔Effect of the invention〕

本発明によjbば、超電導三端子素子等の素子をプレー
ナ構造とすることができるので、素子を高度に集積化す
ることが可能となる。
According to the present invention, an element such as a superconducting three-terminal element can be formed into a planar structure, so that it is possible to highly integrate the elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である超電導素子集積回路の
断面図、第2図は第1図に示す超電導素子集積回路の作
製工程の一例を示す断面図、第3図〜第8図は本発明の
他の実施例である超電導素子集積回路の断面図である。 100・・・基板、101・・・金属膜、102・・・
絶縁膜、103・・・超電導金属膜、104・・・島状
の半導体薄代理人 弁理士 小川勝馬゛・−゛ ′f3z図 Zz  図 草 3  図 第 4 図 ■ 5 図 ¥J 6 図 石 3 図
FIG. 1 is a sectional view of a superconducting element integrated circuit that is an embodiment of the present invention, FIG. 2 is a sectional view showing an example of the manufacturing process of the superconducting element integrated circuit shown in FIG. 1, and FIGS. 3 to 8 FIG. 2 is a cross-sectional view of a superconducting element integrated circuit according to another embodiment of the present invention. 100...Substrate, 101...Metal film, 102...
Insulating film, 103...Superconducting metal film, 104...Island-shaped semiconductor thin agent Patent attorney Katsuma Ogawa figure

Claims (1)

【特許請求の範囲】 1、所定基板と、該基板上に形成された金属膜と、該金
属膜上に形成された絶縁膜を少なくとも有し、超電導金
属膜と所望の領域を有する半導体薄膜とを前記絶縁膜上
に形成することにより少なくとも一つの素子を構成した
ことを特徴とする超電導素子集積回路。 2、特許請求の範囲第1項において、前記金属膜を制御
電極とし、かつ前記超電導金属膜をソースおよびドレイ
ン電極、前記半導体薄膜をチャネル層とした素子を少な
くとも一つ有することを特徴とする超電導素子集積回路
。 3、特許請求の範囲第1項または第2項において、前記
絶縁膜に選択的に貫通孔を形成し、前記金属膜と超電導
金属膜とを接続したことを特徴とする超電導素子集積回
路。 4、特許請求の範囲第1項乃至第3項のいずれかにおい
て、前記半導体薄膜はシリコン単結晶薄膜であることを
特徴とする超電導素子集積回路。
[Claims] 1. A semiconductor thin film having at least a predetermined substrate, a metal film formed on the substrate, and an insulating film formed on the metal film, and having a superconducting metal film and a desired region. A superconducting element integrated circuit, characterized in that at least one element is constructed by forming on the insulating film. 2. A superconductor according to claim 1, comprising at least one element in which the metal film is used as a control electrode, the superconducting metal film is used as a source and drain electrode, and the semiconductor thin film is used as a channel layer. Element integrated circuit. 3. A superconducting element integrated circuit according to claim 1 or 2, characterized in that a through hole is selectively formed in the insulating film to connect the metal film and the superconducting metal film. 4. A superconducting element integrated circuit according to any one of claims 1 to 3, wherein the semiconductor thin film is a silicon single crystal thin film.
JP60034355A 1984-11-05 1985-02-25 Superconductive element ic Pending JPS61194884A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60034355A JPS61194884A (en) 1985-02-25 1985-02-25 Superconductive element ic
EP85308009A EP0181191B1 (en) 1984-11-05 1985-11-04 Superconducting device
DE3588086T DE3588086T2 (en) 1984-11-05 1985-11-04 Superconductor arrangement
EP95104470A EP0667645A1 (en) 1984-11-05 1985-11-04 Superconducting device
US07/073,408 US4884111A (en) 1984-11-05 1987-07-13 Superconducting device
US07/412,201 US5126801A (en) 1984-11-05 1989-09-25 Superconducting device
US07/875,431 US5311036A (en) 1984-11-05 1992-04-29 Superconducting device
US08/201,410 US5442196A (en) 1984-11-05 1994-02-24 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034355A JPS61194884A (en) 1985-02-25 1985-02-25 Superconductive element ic

Publications (1)

Publication Number Publication Date
JPS61194884A true JPS61194884A (en) 1986-08-29

Family

ID=12411846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034355A Pending JPS61194884A (en) 1984-11-05 1985-02-25 Superconductive element ic

Country Status (1)

Country Link
JP (1) JPS61194884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470982B2 (en) 2004-03-24 2008-12-30 A.L.M.T. Corp. Substrate for semiconductor device and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470982B2 (en) 2004-03-24 2008-12-30 A.L.M.T. Corp. Substrate for semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
US4649627A (en) Method of fabricating silicon-on-insulator transistors with a shared element
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US4430662A (en) Superconductive tunnel junction integrated circuit
JPS6276645A (en) Structure of composite semiconductor crystal
US5126801A (en) Superconducting device
JPS6321351B2 (en)
JPH09148587A (en) Semiconductor device
US5071832A (en) Field effect type josephson transistor
JPH05343686A (en) Semiconductor device and manufacture thereof
JPS61194884A (en) Superconductive element ic
JP3402905B2 (en) Semiconductor element
JPH0217943B2 (en)
US5859444A (en) Semiconductor device
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS62131588A (en) Manufacture of superconductive transistor
JP4003981B2 (en) Semiconductor device
JPH0710007B2 (en) Superconducting transistor integrated circuit
JPS63318755A (en) Semiconductor device
JP3411370B2 (en) Semiconductor device manufacturing method and semiconductor device
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPH065795B2 (en) Semiconductor device
JP3092160B2 (en) High-speed device and high-speed memory device
JPS5843574A (en) Field effect transistor
JPH06181312A (en) Manufacture of semiconductor device
JPS6489366A (en) Semiconductor device