JPS6119042A - Sample chamber for charged particle ray device - Google Patents
Sample chamber for charged particle ray deviceInfo
- Publication number
- JPS6119042A JPS6119042A JP13712884A JP13712884A JPS6119042A JP S6119042 A JPS6119042 A JP S6119042A JP 13712884 A JP13712884 A JP 13712884A JP 13712884 A JP13712884 A JP 13712884A JP S6119042 A JPS6119042 A JP S6119042A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- container
- sample chamber
- charged particle
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims description 8
- 238000005192 partition Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 238000000926 separation method Methods 0.000 abstract 1
- 238000002955 isolation Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/266—Measurement of magnetic or electric fields in the object; Lorentzmicroscopy
- H01J37/268—Measurement of magnetic or electric fields in the object; Lorentzmicroscopy with scanning beams
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、走査形電子顕微鏡等の荷電粒子線装置の試料
室に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sample chamber of a charged particle beam device such as a scanning electron microscope.
第1図は、従来の走査形電子顕微鏡の構造である。ここ
では特にLSI等の試料を動作状態で観察するストロボ
方式の走査形電子顕微鏡を例示した。光学系を含む電子
銃1から電子ビームが放射され、試料2上を走査する。FIG. 1 shows the structure of a conventional scanning electron microscope. In particular, a strobe-type scanning electron microscope for observing samples such as LSIs in an operating state is exemplified here. An electron beam is emitted from an electron gun 1 including an optical system and scans over a sample 2.
この試料(L8I)にはリード線3が接続されている。A lead wire 3 is connected to this sample (L8I).
このリード線3を通して真空外にあるLSIの電源4か
らLSIを動作させる。試料2は真空外と機械的あるい
は電気的に繋った駆動部5でX−Y軸に移動できる。The LSI is operated from a power source 4 of the LSI outside the vacuum through this lead wire 3. The sample 2 can be moved along the X-Y axes by a drive unit 5 that is mechanically or electrically connected to the outside of the vacuum.
電子銃1は排気系6で、試料室7は試料室排気系8で排
気されている。LSIを動作させるには、数10本のリ
ード線3を接続させる必要がある。The electron gun 1 is exhausted by an exhaust system 6, and the sample chamber 7 is exhausted by a sample chamber exhaust system 8. In order to operate the LSI, it is necessary to connect several dozen lead wires 3.
また高速LSIでは、終端抵抗等を近接して設置する必
要もある。このため試料室7の真空度が低下してしまう
。この結果、測定・観察中に著しいコンタミネーション
が生じるようになり、像観察や電位測定に重大な障害を
与える事が多い。Furthermore, in high-speed LSIs, it is also necessary to install terminating resistors and the like in close proximity. For this reason, the degree of vacuum in the sample chamber 7 decreases. As a result, significant contamination occurs during measurement and observation, often causing serious problems in image observation and potential measurement.
本発明は、前述のコンタミネーションを減少ならしめる
荷電粒子線装置の試料室を提供することを目的とするも
のである。An object of the present invention is to provide a sample chamber for a charged particle beam device that reduces the aforementioned contamination.
上記目的を達成するために、本発明では、ガス放出の多
いリード線や終端抵抗等を真空的に分離して排気するよ
うに構成したものである。In order to achieve the above object, the present invention is configured so that lead wires, terminal resistors, and the like, which emit a large amount of gas, are vacuum-separated and evacuated.
以下、本発明の実施例を第2図を用いて説明する。電子
ビーム9は磁界レンズ10で試料(LSI)11上にフ
ォーカスされ、走査コイル(図では省略)で矩形状に走
査される。試料11は隔離板12に取付けられる。隔離
板12の円周には隔離ベローズ13が設けられている。Embodiments of the present invention will be described below with reference to FIG. The electron beam 9 is focused onto a sample (LSI) 11 by a magnetic field lens 10, and scanned in a rectangular shape by a scanning coil (not shown). Sample 11 is attached to separator 12 . An isolation bellows 13 is provided around the circumference of the isolation plate 12.
隔離ベローズ13の先端には滑シリング14が取付けら
れ、試料室上壁を形成している磁界レンズ10の下面を
滑シながら、試料11を試料室15の真空雰囲気と分離
している。試料11は磁界し/ズ10のレンズ孔を通し
て排気口16から排気される。この部分はガス放出の少
ない部品等で構成されているため高い真空(10−’〜
10−”l’orr)に保つことができる。ところが、
試料室15内にはリード線17や終端抵抗18が含まれ
ているため高真空を作ることが困難で101〜10−’
Torrがせいぜいである。隔離板12と隔離ベローズ
13で試料11を高真空側にもっていったのはこの所以
である。隔離板12はX軸ステージ19aとY軸ステー
ジ19b上に固定されている。このX軸ステージ19a
とY軸ステージ19bは真空外に置かれた駆動部20で
、駆動軸21a、21bを介して任意に移動できる。リ
ード線17はハーメチックシール22を介して真空外に
取り出され、LSI電源23に接続されている。試料室
15は排気口28で排気される。A slide ring 14 is attached to the tip of the isolation bellows 13, and separates the sample 11 from the vacuum atmosphere of the sample chamber 15 while sliding on the lower surface of the magnetic field lens 10 forming the upper wall of the sample chamber. The sample 11 is subjected to a magnetic field and is exhausted from the exhaust port 16 through the lens hole of the lens 10. This part is made up of parts that emit little gas, so it is under a high vacuum (10-'~
10-"l'orr). However,
Since the sample chamber 15 contains the lead wire 17 and the terminal resistor 18, it is difficult to create a high vacuum.
Torr is at most. This is why the sample 11 was moved to the high vacuum side using the isolation plate 12 and the isolation bellows 13. The separator 12 is fixed on an X-axis stage 19a and a Y-axis stage 19b. This X-axis stage 19a
The Y-axis stage 19b is a drive unit 20 placed outside the vacuum, and can be moved arbitrarily via drive shafts 21a and 21b. The lead wire 17 is taken out of the vacuum via a hermetic seal 22 and connected to an LSI power supply 23. The sample chamber 15 is evacuated through an exhaust port 28 .
試料11から電子ビーム9の照射で生じた2次電子24
は吸収円筒25(例えば+50V印加)で磁界レンズ1
0の上方に導かれ、反射グリッド26でエネルギー選別
され42次電子検出器27に検出される。この検出方法
で試料11内の電位の分布を知ることが可能となる。Secondary electrons 24 generated by irradiation of the electron beam 9 from the sample 11
is the absorption cylinder 25 (for example, +50V applied) and the magnetic field lens 1
0, is energy-selected by a reflection grid 26 and detected by a 42nd order electron detector 27. This detection method makes it possible to know the potential distribution within the sample 11.
第3図は本発明の他の実施例である。ウエーノ・内の微
小寸法を測定する電子ビーム測長様に応用した例である
。測長機は半導体プロセス中で用いられるためストロボ
方式の走査形電子顕微鏡以上にコンタミネーションを嫌
う装置でおる。このため、試料微動機構からのガス放出
の影響をさけるため本発明を適用した。本実施例では試
料はウェーハ29で、ウェーハ29は隔離ベローズ13
、滑りリング14を備えた隔離カセット30内にセット
される。これらが一体として、試料微動ステージ(X軸
ステージ19a、Y軸ステージ19b)上に置かれる。FIG. 3 shows another embodiment of the invention. This is an example of application to electron beam length measurement for measuring minute dimensions inside Ueno. Since length measuring machines are used in semiconductor processes, they are more sensitive to contamination than strobe-type scanning electron microscopes. Therefore, the present invention was applied to avoid the influence of gas release from the sample fine movement mechanism. In this example, the sample is a wafer 29, and the wafer 29 is an isolation bellows 13.
, set in an isolation cassette 30 with a sliding ring 14. These are placed together on a sample fine movement stage (X-axis stage 19a, Y-axis stage 19b).
隔離カセツ)30を試料微動ステージに設置すると滑り
リング14が磁界レンズ10の下面に接触し、真空的に
、試料29が試料室15と分離され、磁界レンズ10の
孔を通して上部の排気口16から真空排気される。When the isolation cassette 30 is placed on the sample fine movement stage, the sliding ring 14 comes into contact with the lower surface of the magnetic field lens 10, and the sample 29 is separated from the sample chamber 15 in a vacuum, and is discharged from the upper exhaust port 16 through the hole of the magnetic field lens 10. It is evacuated.
この構造の結果、ウェーハ試料29を高真空下で寸法測
定等に供することが可能となる。試料29をセットした
隔離カセットは、バルブ31を開け、交換棒32を差し
込み、隔離カセットを試料交換室33内に移動させるこ
とができ、この後パルプ31を閉じ、試料交換室33を
大気にし、交換窓34を開け、ウェーハ試料29と共に
隔離カセット30を取シ出すことができる。試料交換室
33の真空排気や大気圧への空気導入は排気口35から
行う。ウェーハ29から、−次電子9の照射で放出され
た2次電子24は吸引円筒25で磁界レンズ10内に導
かれ、貫通し、加速グリッド36(例えば10(1v)
でさらに2次電子を加速し、2次電子検出器27へ導か
れる。測長機では2次電子の全量を測定すればよいので
反射グリッドは不要である。また、ここでは2次電子検
出器を1つのみ設けた例を示したが、対称に2個おるい
は4個にすることで、試料の形状をより強く検知するこ
とも可能である。As a result of this structure, it becomes possible to subject the wafer sample 29 to dimensional measurements and the like under high vacuum. The isolation cassette with the sample 29 set therein can be moved into the sample exchange chamber 33 by opening the valve 31 and inserting the exchange rod 32. After this, the pulp 31 is closed and the sample exchange chamber 33 is brought into the atmosphere. The exchange window 34 can be opened and the isolation cassette 30 together with the wafer sample 29 can be taken out. Evacuation of the sample exchange chamber 33 and introduction of air to atmospheric pressure are performed through the exhaust port 35. The secondary electrons 24 emitted from the wafer 29 by the irradiation with the -order electrons 9 are guided into the magnetic field lens 10 by the suction cylinder 25, penetrate the magnetic field lens 10, and pass through the acceleration grid 36 (for example, 10 (1v)
The secondary electrons are further accelerated and guided to a secondary electron detector 27. Since the length measuring machine only needs to measure the total amount of secondary electrons, a reflection grid is not necessary. Moreover, although an example in which only one secondary electron detector is provided is shown here, it is also possible to more strongly detect the shape of the sample by symmetrically providing two or four secondary electron detectors.
以上説明したように、本発明によれば、試料を高真空内
において、測定に供することができる。As explained above, according to the present invention, a sample can be subjected to measurement in a high vacuum.
見方を変えるならば、本発明を実施すると、これまでガ
ス放出の少いように注意していた試料微動機構構造に設
計的な自由度を与えることができる。From a different point of view, by implementing the present invention, a degree of freedom in design can be given to the sample fine movement mechanism structure, which has hitherto been taken care of to minimize gas release.
第1図は従来の試料室構造を示す図、第2図は本発明の
一実施例を示す図、第3図は本発明の他の実施例を示す
図である。FIG. 1 is a diagram showing a conventional sample chamber structure, FIG. 2 is a diagram showing one embodiment of the present invention, and FIG. 3 is a diagram showing another embodiment of the present invention.
Claims (1)
状観察、寸法測定、電位測定等を行う荷電粒子線装置に
おいて、上部に開口をもつた容器内に試料を固定し、該
容器を試料微動台に設置し、かつ、該容器の上面を試料
室上壁の下面に接触させ容器内の真空排気を試料室上壁
に開けられた開口を通して行うようにしたことを特徴と
する荷電粒子線装置の試料室。 2、開口をもつた前記容器内にLSI等の電子素子のみ
を置き、該電子素子を動作させるためのリード線、抵抗
等を容器底板を真空隔壁として前記容器外に配置したこ
とを特徴とする特許請求の範囲第1項記載の荷電粒子線
装置の試料室。 3、開口をもつた前記容器の側壁をベローズで形成した
ことを特徴とする特許請求の範囲第1項または第2項記
載の荷電粒子線装置の試料室。[Claims] 1. In a charged particle beam device that scans finely focused charged particles onto a sample to observe the shape, size, and potential of the sample, the sample is placed in a container with an opening at the top. The container is fixed, and the container is placed on a sample fine movement table, and the top surface of the container is brought into contact with the lower surface of the upper wall of the sample chamber, and the inside of the container is evacuated through an opening made in the upper wall of the sample chamber. A sample chamber of a charged particle beam device featuring: 2. Only an electronic device such as an LSI is placed in the container having an opening, and lead wires, resistors, etc. for operating the electronic device are placed outside the container using the bottom plate of the container as a vacuum partition. A sample chamber of a charged particle beam device according to claim 1. 3. A sample chamber of a charged particle beam apparatus according to claim 1 or 2, wherein a side wall of the container having an opening is formed of a bellows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13712884A JPS6119042A (en) | 1984-07-04 | 1984-07-04 | Sample chamber for charged particle ray device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13712884A JPS6119042A (en) | 1984-07-04 | 1984-07-04 | Sample chamber for charged particle ray device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6119042A true JPS6119042A (en) | 1986-01-27 |
Family
ID=15191474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13712884A Pending JPS6119042A (en) | 1984-07-04 | 1984-07-04 | Sample chamber for charged particle ray device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6119042A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6444555U (en) * | 1987-09-11 | 1989-03-16 | ||
CN110299275A (en) * | 2019-07-03 | 2019-10-01 | 业成科技(成都)有限公司 | Driven rod and scanning electron microscope |
-
1984
- 1984-07-04 JP JP13712884A patent/JPS6119042A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6444555U (en) * | 1987-09-11 | 1989-03-16 | ||
CN110299275A (en) * | 2019-07-03 | 2019-10-01 | 业成科技(成都)有限公司 | Driven rod and scanning electron microscope |
CN110299275B (en) * | 2019-07-03 | 2021-07-30 | 业成科技(成都)有限公司 | Transmission rod and scanning electron microscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3993094B2 (en) | Sheet beam inspection system | |
TWI417928B (en) | Electron beam apparatus, inspection apparatus using electron beam and method for determining exposure conditions | |
US7411191B2 (en) | Inspection system by charged particle beam and method of manufacturing devices using the system | |
JP3820964B2 (en) | Sample observation apparatus and method using electron beam | |
US9390886B2 (en) | Electro-optical inspection apparatus using electron beam | |
JP3661592B2 (en) | Pattern inspection device | |
CN106783493B (en) | A kind of vacuum atmosphere processing unit, sample observation system and method | |
US20040159787A1 (en) | Electron beam system | |
US20070145267A1 (en) | Portable scanning electron microscope | |
JP4939235B2 (en) | Sheet beam inspection system | |
TW539845B (en) | Sheet beam-type inspection device | |
JPS6119042A (en) | Sample chamber for charged particle ray device | |
CN206332001U (en) | A kind of vacuum atmosphere processing unit and sample observation system | |
JP3132796B2 (en) | Method for observing semiconductor device and scanning electron microscope used therefor | |
JPS61267246A (en) | Foreign matter detector | |
JP3771130B2 (en) | Signal detection method in electron beam apparatus, signal detection apparatus, and device manufacturing method using the electron beam apparatus | |
JP2000146780A (en) | Manipulator and probe device using the same as well as sample preparation device and sample observation device | |
JPS60227347A (en) | Scanning type electron microscope | |
JPH1074808A (en) | Physical and chemical device, semiconductor manufacturing device, and inspection device using charged particle ray | |
JP2003323861A (en) | Pattern test device using electron beam, as well as manufacturing method of semiconductor device using the same | |
JPS6247938A (en) | Sample chamber for charged corpuscular ray device | |
JPS63201551A (en) | Surface contamination observing instrument | |
JPS5940451A (en) | Electron beam device | |
WO2007070475A2 (en) | Scanning electron microscope with crt-type electron optics | |
JP2006210367A (en) | Electron beam device |