JPS60227347A - Scanning type electron microscope - Google Patents

Scanning type electron microscope

Info

Publication number
JPS60227347A
JPS60227347A JP8182484A JP8182484A JPS60227347A JP S60227347 A JPS60227347 A JP S60227347A JP 8182484 A JP8182484 A JP 8182484A JP 8182484 A JP8182484 A JP 8182484A JP S60227347 A JPS60227347 A JP S60227347A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
vacuum
sample stage
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8182484A
Other languages
Japanese (ja)
Inventor
Naotake Saito
斉藤 尚武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8182484A priority Critical patent/JPS60227347A/en
Publication of JPS60227347A publication Critical patent/JPS60227347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy
    • H01J37/268Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To maintain a high vacuum condition by setting almost all lead wires to a sample and circuit elements to the outside of vacuum condition and sealing the inlet port of signal line to the vacuum chamber. CONSTITUTION:A sample 3 is placed above a sealed body 6 provided just below the sample. The sealing body 6 is mounted in such a manner that a flange 11 is removably mounted with hermetically sealed structure to an upper receptor 22 through a vacuum sealing material 12 and allows many signal lines to pass therethrough while keeping a highly vacuum sealing structure. The lines passing through the sealing body are connected to the connection end 28 of power supply in the side of atmospheric condition. Thereby, signal lines 7 and circut elements 8 to the sample 8 are all set outside the vacuum condition and influence by gas released from these signal lines 7 and circuit elements 8 can be eliminated perfectly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は走査形電子顕微鏡に係り、特に多数本の信号導
入線を有する半導体試料の動作状態を観察するのに好適
な走査形電子顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a scanning electron microscope, and particularly to a scanning electron microscope suitable for observing the operating state of a semiconductor sample having a large number of signal introduction lines.

〔発明の背景〕[Background of the invention]

近年、半導体の試料、特にLSIの動作状態を電子ビー
ムを用いて解析する手法が行なわれてきている。このよ
うな手法は、走査形電子顕微鏡によって実現できる。す
なわち、前記電子顕微鏡は、r−sr内部の信号の動作
周期に同期させて電子線(ビーム)をチョッピングし、
これをもってLSIの動作状態を観察するように構成さ
れたものである。かかる電子顕微鏡は、いわゆるストロ
ボ形電子顕微鏡と呼ばれているものである。
In recent years, methods have been used to analyze the operating state of semiconductor samples, especially LSIs, using electron beams. Such a technique can be realized with a scanning electron microscope. That is, the electron microscope chops the electron beam (beam) in synchronization with the operation cycle of the signal inside the r-sr,
It is configured to use this to observe the operating state of the LSI. Such an electron microscope is what is called a strobe type electron microscope.

かかる電子顕微鏡(以下、S E Mと称す)は、電子
銃から放出され電子レンズで収束された一次電子線を対
物レンズをもって試料室の試料テーブル上に搭載された
LSIなどの試料に照射し、■−1SIなどの試料から
放出される二次電子を二次電子を二次電子検出器で検出
してLSTなどの試料の状態を観察できるように構成さ
れている。
Such an electron microscope (hereinafter referred to as SEM) uses an objective lens to irradiate a sample such as an LSI mounted on a sample table in a sample chamber with a primary electron beam emitted from an electron gun and focused by an electron lens. (2) It is constructed so that the state of the sample such as LST can be observed by detecting the secondary electrons emitted from the sample such as -1SI with a secondary electron detector.

しかして、上記SEMで、試料であるLSIの動作状態
を観察するためには、まず、ストロボSEMの試料ステ
ージにLSIを搭載し、かつ外部からの信号線を試料ス
テージ上の試料であるLSIに接続して、次いで、外部
駆“動電源より上記信号線の一部を介して供給された電
圧により上記LSIを動作させ、その動作状態下におい
て、−法主子線をLSIの内部信号の動作周期に同期さ
せてチョッピングし、これにより得られた二次電子像を
観察すればよいのである。
Therefore, in order to observe the operating state of an LSI sample using the SEM, the LSI must first be mounted on the sample stage of the strobe SEM, and a signal line from the outside must be connected to the LSI sample on the sample stage. Then, the LSI is operated by a voltage supplied from an external drive power supply through a part of the signal line, and under that operating state, the - main and child lines are connected to the operating cycle of the internal signal of the LSI. All you have to do is chop it in synchronization with , and observe the resulting secondary electron image.

ところで、かかるSEMの場合、外部からの信号線は試
料室内の真空中に100本以上も持込まれること、加え
て該信号線は外部の影響を受けないようにするため二眠
構造とされたシールド線を使用せざるを得ないことから
、信号線からの放出ガスが多くなり、真空的には非常に
悪い構成とならざるを得なかった。
By the way, in the case of such a SEM, more than 100 signal lines from the outside are brought into the vacuum inside the sample chamber, and in addition, the signal lines are shielded with a double-sided structure to prevent them from being influenced by the outside. Since wires had to be used, a large amount of gas was released from the signal wires, and the configuration had to be extremely poor in terms of vacuum.

また、前記ストロボSEMは加速電圧を0.5〜1 [
KV)の如く非常に低い電圧状態で使用しなければなら
ない必然性から逆に真空度については、非常に高く維持
されることが要求されている。
In addition, the strobe SEM has an acceleration voltage of 0.5 to 1[
On the contrary, it is required that the degree of vacuum be maintained at a very high level because it is necessary to use it at a very low voltage state such as KV).

したがって、前述の如く信号線を大量に導入することは
高真空状態を維持する上で好ましくないのである。
Therefore, it is not preferable to introduce a large number of signal lines as described above in order to maintain a high vacuum state.

さらに、m察するLSIは、一般のSEM試料と異なり
、大形試料に属することから試料室や試料ステージが大
形とならざるを得ず、試料を交換する毎に試料室全体を
大気にさらすと、排気時間に長時間を必要とする等の問
題点も生じている。
Furthermore, unlike general SEM samples, the LSI used for m-detection belongs to large samples, so the sample chamber and sample stage must be large, and the entire sample chamber must be exposed to the atmosphere every time the sample is replaced. However, there are also problems such as the need for a long time for evacuation.

加えて、実際の試料の動作状態においては、試料のごく
近傍に回転素子(抵抗等)を組込み等の処理が容易にで
きる必要性があるものの、二九らの回路素子を試料室の
真空中に持込むと前記信号線と同様に放出ガスがあるこ
とから、低加速観察に必要な高真空に維持しなければな
らないとする要求に反してしまうことになる。
In addition, in the actual operating state of the sample, it is necessary to easily incorporate rotating elements (resistance, etc.) in the close vicinity of the sample, but it is necessary to easily incorporate rotating elements (such as resistors) in the close vicinity of the sample. If the line is brought into the air, gas will be emitted like the signal line, which violates the requirement to maintain the high vacuum necessary for low-acceleration observation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高真空状態を維持できる走査形電子顕
微鏡を提供することにある。
An object of the present invention is to provide a scanning electron microscope that can maintain a high vacuum state.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は試料への導入線のほ
とんどと回路素子とを真空外とし、かつ信号線の真空室
への導入口を気密封じ方式(ハーメチックシール方式)
とし、このシールと試料とを最短距離で接続可能となし
たものである。
In order to achieve the above object, the present invention employs a method in which most of the lead-in wires to the sample and the circuit elements are outside the vacuum, and the lead-in port of the signal wire to the vacuum chamber is hermetically sealed (hermetic seal method).
This allows the seal and the sample to be connected over the shortest distance.

また、本発明は、−上記構造に対して試料ステージの一
ヒ面に設けたエアーロック手段を付加し、エアーロック
手段と試料ステージとの間にできる最小限の容積のみを
大気圧にするだけで試料交換できるようにしたものであ
る。
Furthermore, the present invention has the following advantages: - An air lock means provided on one side of the sample stage is added to the above structure, and only the minimum volume created between the air lock means and the sample stage is brought to atmospheric pressure. This allows samples to be exchanged.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

図は本発明に係る走査形電子顕微鏡の実施例を示す概略
断面図である。図において、図示しない電子銃から放出
され図示しない電子レンズをもって収束された一次電子
線1は試料3の図示上部に設けられた最終の収束(対物
)レンズ5により試料ステージに搭載された試料3上に
焦点がしぼられて照射される。このとき、試料3の表面
より発生した二次電子2は、対物レンズ5の孔及びその
前面を覆った加速電極4Aの電場と前記対物レンズ5の
磁場との作用により図示の如く上方に導かれ、対物レン
ズ5よりも図示上部に設けられた二次電子検出器4Bに
よって検出きれるようになっている。ここで、試料3を
搭載する試料ステージの構成について述べる。
The figure is a schematic cross-sectional view showing an embodiment of a scanning electron microscope according to the present invention. In the figure, a primary electron beam 1 emitted from an electron gun (not shown) and converged by an electron lens (not shown) is directed onto a sample 3 mounted on a sample stage by a final converging (objective) lens 5 provided at the upper part of the sample 3. is focused and irradiated. At this time, the secondary electrons 2 generated from the surface of the sample 3 are guided upward as shown in the figure by the action of the hole of the objective lens 5 and the electric field of the accelerating electrode 4A covering the front surface thereof and the magnetic field of the objective lens 5. , can be detected by the secondary electron detector 4B provided above the objective lens 5 in the figure. Here, the configuration of the sample stage on which the sample 3 is mounted will be described.

試料3は、それの直下に設置された気密体(ハーメチッ
クシール)6の上に搭載される。
The sample 3 is mounted on a hermetic seal 6 placed directly below it.

この気密体6は、そのフランジ11を真空シール材12
を介して上部受体22に着脱可能でかつ気密シールされ
る構造で取付けられている。この気密体6は真空の気密
を維持しながら信号線が多数貫通しているものの、それ
らの気密は充分に保たれる構造を有しており、真空側に
て前記貫通した線に試料3の端子が接続されている。一
方前記気密体6の貫通した線には大気圧側にて一定の抵
抗値をもって端末処理したリード線7が接続されたり、
あるいは回路素子8が接続されたりしており、これらは
電源への接続端28に接続されている。尚、リード、I
i7は試料ステージの移動に対して力が加わらないよう
なフレキシブル構造のものが好ましい。試料3を保持す
る気密体6及びフランジ11を保持する試料ステージの
上部受体22はY方向(図示紙面に対して垂直方向)に
移動するY移動台23と一体となっており、Ys動体は
Yレール24を介してYガイド25にY方向に移動可能
に支持されている。また、Yガイド25はX移動台26
上に搭載され固着されている。X移動台26はXガイド
27にX方向(図示左右方向)に移動可能に支持されて
いる。
This airtight body 6 has a flange 11 with a vacuum sealing material 12
It is detachably attached to the upper receiver 22 via a structure that is airtightly sealed. Although this airtight body 6 has a structure in which a large number of signal lines pass through it while maintaining vacuum airtightness, it has a structure that sufficiently maintains their airtightness, and the sample 3 is attached to the penetrated wires on the vacuum side. Terminals are connected. On the other hand, a lead wire 7 whose terminal is treated with a certain resistance value on the atmospheric pressure side is connected to the wire passing through the airtight body 6,
Alternatively, circuit elements 8 are connected, and these are connected to a connection end 28 to a power source. Furthermore, Reed, I
It is preferable that i7 has a flexible structure so that no force is applied to the movement of the sample stage. The airtight body 6 that holds the sample 3 and the upper supporter 22 of the sample stage that holds the flange 11 are integrated with a Y moving table 23 that moves in the Y direction (perpendicular to the plane of the drawing), and the Ys moving body It is supported by a Y guide 25 via a Y rail 24 so as to be movable in the Y direction. In addition, the Y guide 25 is
It is mounted and fixed on top. The X moving table 26 is supported by an X guide 27 so as to be movable in the X direction (horizontal direction in the drawing).

以上説明した試料ステージは試料室15内の高真空側に
設けられている。しかして、試料室■5の下部室壁14
の底抜端部と試料ステージの上部受体22の一端部とは
ベローズ13をもって接続され、これにより気密が保た
れる構造としたものである。
The sample stage described above is provided on the high vacuum side within the sample chamber 15. Therefore, the lower chamber wall 14 of the sample chamber ■5
The bottomed end of the sample stage and one end of the upper receiver 22 of the sample stage are connected by a bellows 13, thereby maintaining airtightness.

以上の構造によれば、試料3への信号線7及び回路素子
8は真空外にすべて設置することができるので、これら
信号線7や回路素子8からの放出ガスによる影響を皆無
にすることができる。
According to the above structure, the signal line 7 to the sample 3 and the circuit element 8 can all be installed outside the vacuum, so the influence of the gas released from the signal line 7 and the circuit element 8 can be completely eliminated. can.

試料3をSEMの外部に取り出したり、SEMの内部の
試料ステージに搭載すること、すなわち試料を交換する
ためのエアーロック手段の構造については以下に説明す
る。
The structure of the air lock means for taking out the sample 3 outside the SEM and mounting it on the sample stage inside the SEM, that is, for exchanging the sample, will be described below.

試料室15の一部より出入れ可能にした薄い弁体19及
びこの弁体19に設けたシール材20は、大気左側から
図示矢符A、B方向に操作できるバルブ駆動軸21によ
り駆動可能となっている。図の状態は試料3を設置した
使用状態を示しているが、図示矢符A方向に弁体19を
移動し、弁体19の一端がバルブ受体18に当接する位
置で停止せしめると、上部受台22.シール材20.弁
体19及び気密体6で囲まれる空間が形成されて、その
空間は試料室15と隔離されることになる。
A thin valve body 19 that can be taken in and out from a part of the sample chamber 15 and a sealing material 20 provided on this valve body 19 can be driven by a valve drive shaft 21 that can be operated from the left side of the atmosphere in the directions of arrows A and B in the figure. It has become. The state shown in the figure shows the usage state in which the sample 3 is installed, but when the valve body 19 is moved in the direction of the arrow A in the figure and stopped at the position where one end of the valve body 19 comes into contact with the valve receiver 18, the upper cradle 22. Sealing material 20. A space surrounded by the valve body 19 and the airtight body 6 is formed, and this space is isolated from the sample chamber 15.

もちろん、新しい試N3を気密体6の上部に搭載して図
示の如く設置したときには、該軸21を図示矢符B方向
に移動せしめて、図示の状態とすればよい。
Of course, when a new sample N3 is mounted on the upper part of the airtight body 6 and installed as shown in the figure, the shaft 21 may be moved in the direction of the arrow B in the figure to obtain the state shown in the figure.

上述の如き構成において、該軸21を図示矢符A方向に
移動し、試料ステージの上部受体22の一部に設けたバ
ルブ受体18にはめ込み、駆動軸21を強く押すことに
より、弁体19をステージの上部受体22の上面に押付
けてエアーロックする。このようにすることにより、−
弁体19と上部受体22と気密体6で囲れた最小限の空
間がエアーロックされる。そして、フランジ11の一部
に設けられた排管9及びその先端に取付けられたバルブ
10より空気導入し気密体6を取り外す、しかして、気
密体6上の試料3を新したものに交換し、再び気密体6
を上部受体22に取り付ける。
In the above-described configuration, the shaft 21 is moved in the direction of arrow A in the figure, fitted into the valve receiver 18 provided in a part of the upper receiver 22 of the sample stage, and the valve body is moved by strongly pressing the drive shaft 21. 19 is pressed against the upper surface of the upper receiver 22 of the stage to form an air lock. By doing this, −
A minimum space surrounded by the valve body 19, the upper receiver 22, and the airtight body 6 is air-locked. Then, air is introduced through the exhaust pipe 9 provided on a part of the flange 11 and the valve 10 attached to the tip thereof, and the airtight body 6 is removed, and the sample 3 on the airtight body 6 is replaced with a new one. , airtight body 6 again
is attached to the upper receiver 22.

次に、前記排管9から真空予備排気し、前記空間が試料
室15の真空度と同じになったり、再び該軸21を図示
矢符B方向に動かし図示の状態とする。このようにして
なるので、試料3を囲む最小限の空間のみを大気圧及び
真空予備排気すれば良く、従来の試料室15の全体に空
気を導入して試料交換をし再び真空状態としていた方式
と比較し、試料交換時間は50〜100分の1の時間で
すみ利点が生じた。また、試料室15内は従来と比べ1
00〜1000位良い高真空が保持される。
Next, preliminary evacuation is performed from the exhaust pipe 9, and the vacuum level of the space becomes the same as that of the sample chamber 15, and the shaft 21 is again moved in the direction of the arrow B in the figure to bring it into the state shown in the figure. In this way, only the minimum space surrounding the sample 3 needs to be preliminarily evacuated to atmospheric pressure and vacuum; the conventional method was to introduce air into the entire sample chamber 15, exchange the sample, and return to a vacuum state. Compared to the previous method, the sample exchange time was 50 to 100 times shorter, resulting in an advantage. In addition, the inside of the sample chamber 15 is 1.
A high vacuum of about 0.00 to 1000 is maintained.

尚、試料3の取出しは、一体となった気密体6、フラン
ジ11をベローズ13の内径を通して下側に取り出すも
のである。また、試料室15の排気は室壁16の一部に
取付けた排管17を通して排気できる。
Note that the sample 3 is taken out by taking out the integrated airtight body 6 and flange 11 downward through the inner diameter of the bellows 13. Further, the sample chamber 15 can be exhausted through an exhaust pipe 17 attached to a part of the chamber wall 16.

試料室15は、上記室壁16と、下部室壁14とに、符
号Cの部分で2分割できる構造となっている。したがっ
て、試料ステージの組込み、保守点検等が容易にできる
。また、実施例においては、弁体19は5 (mm)以
下の薄肉の弁体としたため。
The sample chamber 15 has a structure that can be divided into two parts at a portion C into the chamber wall 16 and the lower chamber wall 14. Therefore, installation of the sample stage, maintenance and inspection, etc. can be easily performed. Furthermore, in the embodiment, the valve body 19 was a thin valve body of 5 (mm) or less.

対物レンズ5と試料3との間の距離すなわちり−キング
デイスタンスを小さくでき、試料3が大形であるにもか
かわらず、高分解能の観察を容易にすることができた。
The distance between the objective lens 5 and the sample 3, that is, the sliding distance, could be reduced, and even though the sample 3 was large, high-resolution observation could be facilitated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、試料への信号線
や回路素子等の如く放出ガスの大きいものを真空外に取
り出せる構造としたことにより、試料室の到達真空度は
、従来方式と比較して100〜1000位向上し、これ
により、試料の汚染が1/100〜1./1000軽減
され、かつ汚染による分解能の低下や、装置自身の保守
期間を長く保つことができるという効果がある。
As explained above, according to the present invention, the ultimate vacuum degree of the sample chamber is lower than that of the conventional method by adopting a structure in which items such as signal lines to the sample, circuit elements, etc. that emit large amounts of gas can be taken out of the vacuum. This is an improvement of 100 to 1000 times compared to that of the previous model, and as a result, the contamination of the sample is reduced by 1/100 to 1. /1000, and has the effect of preventing deterioration of resolution due to contamination and extending the maintenance period of the device itself.

また、本発明によれば、試料への接続回路素子は真空外
にあるため、回路素子の選択や取付は作業も簡単でかつ
真空的な配慮や制約を受けることなく、回路の動作のみ
を考慮した素子を選択することができる効果もある。
In addition, according to the present invention, since the circuit elements connected to the sample are outside the vacuum, the selection and installation of the circuit elements is easy and is not subject to vacuum considerations or restrictions, and only the operation of the circuit is considered. There is also the effect that it is possible to select elements that are

さらに、本発明によれば、試料ステージの上部受体上面
を薄板弁体でエアーロックできるようにしてなるので、
真空蒸気溶績が非常に小さくなり、交換に要する時間が
大幅に短縮できる効果がある。
Furthermore, according to the present invention, the upper surface of the upper receiver of the sample stage can be air-locked with a thin plate valve body.
Vacuum steam melting becomes extremely small, which has the effect of greatly shortening the time required for replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す概略断面図である。 3・・・試料、4A・・・加速電極、4B・・・二次電
子検出器、5・・・対物レンズ、6・・・気密体、7・
・・シールド線、8・・・回路素子、11・・・プラン
ジ、12・・・真空シール材、13・・・ベローズ、1
4・・・下部室壁、15・・・試料室、16・・・上部
室壁、18・・・バルブ受体、19・・・弁体、20・
・・シール材、21・・・バルブ駆動軸、22・・・上
部受体。
The figure is a schematic sectional view showing an embodiment of the present invention. 3... Sample, 4A... Accelerating electrode, 4B... Secondary electron detector, 5... Objective lens, 6... Airtight body, 7...
... Shield wire, 8... Circuit element, 11... Plunge, 12... Vacuum sealing material, 13... Bellows, 1
4... Lower chamber wall, 15... Sample chamber, 16... Upper chamber wall, 18... Valve receiver, 19... Valve body, 20...
... Seal material, 21 ... Valve drive shaft, 22 ... Upper receiver.

Claims (1)

【特許請求の範囲】 ■、電子銃から放出され電子レンズで収束された一次電
子線を対物レンズをもって試料室の試料ステージに搭載
された試料に照射し、かつ試料ステージの試料に各部か
ら各種信号を与える電線を備えてなる走査形電子顕微鏡
において、前記試料ステージは、試料搭載部に信号線が
貫通された気密体を用い、前記気密体の信号線の真空側
を試料に接続可能となすと共に、前記気密体の信号線の
大気側に前記電線や回路素子を接続して構成されてなる
ことを特徴とする走査形電子顕微鏡。 2、電子銃から放出され電子レンズで収束された一次電
子線を対物レンズをもって試料室の試料ステージに搭載
された試料に照射し、かつ試料ステージの試料に外部か
ら各種信号を与える電線を備えてなる走査形電子顕微鏡
において、前記試料ステージは、試料搭載部に信号線が
貫通された気密体を用い、前記気密体の信号線の真空側
を試料に接続可能となすと共に、前記気密体の信号線の
大気側に、前記電線や回路素子を接続して構成され、前
記試料ステージの上部に、外部から操作可能であり試料
を含む小空間を試料室から隔離するエアーロック手段を
設けてなることを特徴とする走査形電子顕微鏡。 3、特許請求の範囲第2項において、上記エアーロック
手段は、試料ステージの上部受体に接触してシール効果
を出すシール材を設けた弁体と、この弁体を外部より操
作駆動するバルブ駆動軸と、前記弁体に当接するバルブ
受体とからなることを特徴とする走査形電子顕微鏡。
[Claims] (1) A primary electron beam emitted from an electron gun and focused by an electron lens is irradiated onto a sample mounted on a sample stage in a sample chamber using an objective lens, and various signals are sent from various parts to the sample on the sample stage. In a scanning electron microscope equipped with an electric wire that provides . A scanning electron microscope characterized in that the electric wire and circuit element are connected to the atmosphere side of the signal line of the airtight body. 2. A primary electron beam emitted from an electron gun and focused by an electron lens is irradiated onto a sample mounted on a sample stage in a sample chamber using an objective lens, and is equipped with electric wires that send various signals to the sample on the sample stage from the outside. In this scanning electron microscope, the sample stage uses an airtight body through which a signal line is passed through the sample mounting part, and the vacuum side of the signal line of the airtight body can be connected to the sample, and the signal line of the airtight body can be connected to the sample. The electric wire and circuit element are connected to the atmosphere side of the line, and an air lock means is provided above the sample stage, which is operable from the outside and isolates a small space containing the sample from the sample chamber. A scanning electron microscope featuring: 3. In claim 2, the air lock means includes a valve body provided with a sealing material that comes into contact with the upper receiver of the sample stage to produce a sealing effect, and a valve that operates and drives this valve body from the outside. A scanning electron microscope comprising a drive shaft and a valve receiver that abuts the valve body.
JP8182484A 1984-04-25 1984-04-25 Scanning type electron microscope Pending JPS60227347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8182484A JPS60227347A (en) 1984-04-25 1984-04-25 Scanning type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8182484A JPS60227347A (en) 1984-04-25 1984-04-25 Scanning type electron microscope

Publications (1)

Publication Number Publication Date
JPS60227347A true JPS60227347A (en) 1985-11-12

Family

ID=13757226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8182484A Pending JPS60227347A (en) 1984-04-25 1984-04-25 Scanning type electron microscope

Country Status (1)

Country Link
JP (1) JPS60227347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444555U (en) * 1987-09-11 1989-03-16
US5124645A (en) * 1991-04-24 1992-06-23 The United States Of America As Represented By The Secretary Of The Air Force Transmission electron microscope (TEM) power probe for in-situ viewing of electromigration and operation of an integrated circuit or microprocessor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444555U (en) * 1987-09-11 1989-03-16
US5124645A (en) * 1991-04-24 1992-06-23 The United States Of America As Represented By The Secretary Of The Air Force Transmission electron microscope (TEM) power probe for in-situ viewing of electromigration and operation of an integrated circuit or microprocessor

Similar Documents

Publication Publication Date Title
US9406480B2 (en) Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP4863593B2 (en) Method and apparatus for increasing secondary ion yield
JP6218403B2 (en) X-ray tube equipped with a field emission electron gun and X-ray inspection apparatus using the same
JP2013020918A (en) Charged particle beam device
US20050052103A1 (en) Small electron gun
JPS6130377B2 (en)
JP2001319608A (en) Micro-focusing x-ray generator
KR100587619B1 (en) Nondestructive inspection apparatus
US3852596A (en) Cold cathode gaseous discharge device for producing electrons in an x-ray fluorescence analysis apparatus
JPS60227347A (en) Scanning type electron microscope
JP4581824B2 (en) Particle beam microscope and member moving mechanism for vacuum analyzer
GB2186737A (en) Specimen chamber for scanning electron beam instruments
JP2002310959A (en) Electron beam analyzer
CN109075002B (en) Charged particle microscope and sample imaging method
US3582645A (en) Combined field and impact ionization source for mass spectrometers
JP2007066715A (en) Test piece chamber differential exhaust apparatus
JPS6119042A (en) Sample chamber for charged particle ray device
JP4306110B2 (en) Open X-ray tube
JP3679763B2 (en) Electron beam irradiation apparatus, scanning electron microscope apparatus, X-ray analyzer
JP2002025484A (en) Micro focus x-ray generating device
JPS6247938A (en) Sample chamber for charged corpuscular ray device
JP2003234080A (en) Electron beam irradiation apparatus
CN117096003A (en) Electron gun and semiconductor inspection apparatus
JPH0536771A (en) Device testing device
JP2002056797A (en) Charged-particle beam equipment