JPS61190042A - Spectral reflectivity variable alloy and recording material - Google Patents

Spectral reflectivity variable alloy and recording material

Info

Publication number
JPS61190042A
JPS61190042A JP60030449A JP3044985A JPS61190042A JP S61190042 A JPS61190042 A JP S61190042A JP 60030449 A JP60030449 A JP 60030449A JP 3044985 A JP3044985 A JP 3044985A JP S61190042 A JPS61190042 A JP S61190042A
Authority
JP
Japan
Prior art keywords
alloy
temperature
spectral reflectance
crystal structure
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60030449A
Other languages
Japanese (ja)
Inventor
Isao Ikuta
生田 勲
Yoshimi Kato
加藤 義美
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60030449A priority Critical patent/JPS61190042A/en
Publication of JPS61190042A publication Critical patent/JPS61190042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Abstract

PURPOSE:To provide a spectral reflectance variable alloy suitable for a recording medium by adding the selected third element at a specific ratio to a binary system of Fe-Zn or Fe-Al and cooling quickly the same from a molten metal. CONSTITUTION:The spectral reflectance variable alloy consists of one of 15-45wt% Fe and Zn and 35-50% Al and <=15% >=1 kinds selected from groups of IA, IIA, IVA, VA, VIA, VIIA, VIII, IB, IIB, IIIB, IVB, VB and rare earths. This alloy has the crystal structure different at the 1st temp. higher than a room temp. and the 2nd temp. lower than said temp. in a solid soln. state. More specifically, the alloy has the crystal structure different from the crystal structure by non-quick cooling at the low temp. when the alloy is quickly cooled from the high temp. The alloy has >=2 kinds of spectral reflectances at the same temp. and can be reversibly changed in the spectral rate when subjected to a heating treatment in a solid phase state. The alloy is used for the recording material by cooling quickly and solidifying the material from a vapor phase or directly from the liquid phase and forming the same into a non-bulk state, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な分光反射率可変合金及び記録材料に係り
、特に光・熱エネルギーが与えられることにより合金の
結晶構造の変化にともなう分光反射率変化を利用した情
報記録2表示、センサ等の媒体に使用可能な合金に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel alloy with variable spectral reflectance and a recording material, and in particular to a novel alloy with variable spectral reflectance and a recording material, and in particular, the spectral reflectance of the alloy changes as the crystal structure of the alloy changes due to the application of light and thermal energy. This invention relates to alloys that can be used as media for information recording, display, sensors, etc. that utilize change.

(発明の背景〕 近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザの光エネルギを情報の記録。
(Background of the Invention) In recent years, as the density of information recording has become higher and digitalization has progressed, various information recording and reproducing methods have been developed.In particular, information recording using laser light energy has been progressing.

消去、再生に利用した光ディスクは工業レアメタルNa
80 、1983 (光ディスクと材料)に記載されて
いるように磁気ディスクに比べ、高い記録密度が可能で
あり、今後の情報記録の有力な方式である。このうち、
レーザによる再生装置はコンパクト・ディスク(CD)
として実用化されている。
The optical disc used for erasing and playing is made of industrial rare metal Na.
80, 1983 (Optical Disks and Materials), it is possible to achieve higher recording density than magnetic disks, and will be a promising method for information recording in the future. this house,
The laser playback device is a compact disc (CD)
It has been put into practical use as

一方、記録可能な方式には追記型と書き換え可能型の大
きく2つに分けられる。前者は1回の書き込みのみが可
能であり、消去はできない、後者はくり返しの記録、消
去が可能な方式である。追記型の記録方法はレーザ光に
より記録部分の媒体を破壊あるいは成形して凹凸をつけ
、再生にはこの凹凸部分でのレーザ光の干渉による光反
射量の変化を利用する。この記録媒体にはTeやその合
金を利用して、その溶解、昇華による凹凸の成形が一般
的に知られている。この種の媒体では毒性など若干の問
題を含んでいる。書き換え可能性の記録媒体としては光
磁気材料が主流である。この方法は光エネルギを利用し
てキュリ一点あるいは補償点温度付近で媒体の局部的な
磁気異方性を反転させ記録し、その部分での偏光入射光
の磁気ファラデー効果及び磁気カー効果による偏光面の
回転量にて再生する。この方法は書き換え可能型の最も
有望なものとして数年後の実用化を目指し精力的な研究
開発が進められている。しかし、現在のところ偏光面の
回転量の大きな材料がなく多層膜化などの種々の工夫を
してもS/N、C/Nなどの出力レベルが小さいという
大きな問題がある。
On the other hand, recordable methods can be broadly divided into two types: write-once type and rewritable type. The former allows writing only once and cannot be erased, while the latter allows repeated recording and erasing. In the write-once type recording method, a laser beam is used to destroy or shape the recording portion of the medium to create unevenness, and for reproduction, a change in the amount of light reflected due to the interference of the laser beam at the uneven portion is used for reproduction. For this recording medium, it is generally known that Te or its alloy is used to form irregularities by melting and sublimating Te. This type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream as rewritable recording media. This method uses optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or the compensation point temperature, and the polarization plane of the polarized incident light at that part is caused by the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation. This method is considered to be the most promising rewritable method, and active research and development is underway with the aim of putting it into practical use in the next few years. However, there is currently no material with a large amount of rotation of the plane of polarization, and even with various measures such as multilayer film formation, there is a big problem that output levels such as S/N and C/N are low.

その他の書き換え可能型方式として記録媒体の非Goお
よびSnを添加した合金がある。
Other rewritable systems include non-Go and Sn-doped alloys of recording media.

しかし、この方式は非晶質相の結晶化部が低く、常温に
おける相の不安定さがディスクの信頼性に結びつく大き
な問題点である。
However, this method has a major problem in that the crystallization portion of the amorphous phase is low, and the instability of the phase at room temperature affects the reliability of the disk.

一方1色調変化を利用した合金として、特開昭57−1
40845号公報に記載の合金がある。この合金(12
〜15)wt%AQ−(1〜5)wt%Ni−残Cuよ
りなる合金でマルテンサイト変態温度を境にして、赤か
ら黄金色に可逆的に変化することを利用したものである
。マルテンサイト変態は温度の低下にともなって必然的
に生ずる変態のため、マルテンサイト変態温度以上に保
持した状態で得られる色調はマルテンサイト変調温度以
下にもってくることはできない、また逆にマルテンサイ
ト変態温度以下で得られる色調のものをマルテンサイト
変態温度以上にすると、変態をおこして別の色調に変化
してしまう、したがって、マルテンサイト変態の上下で
おこる2つの色調は同一温度で同時に得ることはできな
い、したがってこの原理では記録材料として適用するこ
とはできない。
On the other hand, as an alloy utilizing one color tone change, JP-A-57-1
There is an alloy described in Japanese Patent No. 40845. This alloy (12
-15) wt%AQ-(1-5) This is an alloy consisting of wt%Ni-remaining Cu, which utilizes the fact that it reversibly changes from red to golden color at the martensitic transformation temperature. Martensitic transformation is a transformation that inevitably occurs as the temperature decreases, so the color tone obtained when maintained above the martensitic transformation temperature cannot be brought below the martensitic modulation temperature, and conversely, martensitic transformation If a color tone that can be obtained at a temperature below this temperature is raised above the martensitic transformation temperature, it will undergo transformation and change to a different color tone.Therefore, it is impossible to obtain two color tones that occur above and below the martensitic transformation at the same time at the same temperature. Therefore, this principle cannot be applied as a recording material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、同一温度で部分的に異なった分光反射
率を保持することのできる分光反射率可変合金及び記録
材料を提供するにある。
An object of the present invention is to provide a variable spectral reflectance alloy and a recording material that can maintain partially different spectral reflectances at the same temperature.

〔発明の概要〕[Summary of the invention]

本発明は、鉄と、亜鉛15〜45重量%とアルミニウム
35〜50重量%の1つと5元素周期律表I A、 n
A、 IVA、 VA、 VIA、 VIA、 VI!
[。
The present invention combines iron, one of the following: 15-45% by weight of zinc and 35-50% by weight of aluminum, and one of the five elements of the periodic table IA, n
A, IVA, VA, VIA, VIA, VI!
[.

IB、JIB、mB、IVB、VB族及び希土類よりな
る第3成分から選ばれた1つ以上15重量%以下からな
ることを特徴とする分光反射率可変合金にある。
The variable spectral reflectance alloy is characterized by comprising at least 15% by weight of at least one third component selected from IB, JIB, mB, IVB, VB groups, and a third component consisting of rare earth elements.

即ち、本発明は、固体状態で室温より高い第1の温度(
高温)及び第1の温度より低い温度(低温)状態で異な
った結晶構造を有する合金において、該合金は前記高温
から急冷によって前記低温における非急冷による結晶構
造と異なる結晶構造を、有することを特徴とする分光反
射率可変合金にある。
That is, the present invention provides a first temperature higher than room temperature (
An alloy having different crystal structures at a temperature lower than the first temperature (high temperature) and at a temperature lower than the first temperature (low temperature), characterized in that the alloy has a crystal structure that differs from the crystal structure obtained by quenching from the high temperature to the crystal structure obtained by non-quenching at the low temperature. It is an alloy with variable spectral reflectance.

本発明合金は同相状態での加熱冷却処理により。The alloy of the present invention is heated and cooled in the same phase state.

同一温度で少なくとも2種の分光反射率を有し。It has at least two types of spectral reflectance at the same temperature.

可逆的に分光反射率を変えることのできるものである。This allows the spectral reflectance to be changed reversibly.

すなわち1本発明に係る合金は固相状態で少なくとも2
つの温度領域で結晶構造の異なった相を有し、それらの
内、高温相を急冷した状態と非急冷の標準状態の低温相
状態とで分光反射率が異なり、高温相温度領域での加熱
急冷と低温相温度領域での加熱冷却により結晶の相違又
は体積変化による凹凸の形成により分光反射率が可逆的
に変化するものである。
That is, the alloy according to the present invention has at least 2
It has phases with different crystal structures in two temperature regions, and among them, the spectral reflectance is different between the quenched state of the high temperature phase and the low temperature phase state of the non-quenched standard state. By heating and cooling in the low phase temperature region, the spectral reflectance changes reversibly due to the formation of irregularities due to crystal differences or volume changes.

本発明合金は可逆的反射率の変化についてその原理を第
1図を用いて説明する0図はA−B二元系合金の状態図
である。
The principle of reversible change in reflectance of the alloy of the present invention will be explained with reference to FIG. 1. FIG. 0 is a phase diagram of the AB binary alloy.

図のような状態図を持つA−B二元系合金でのAB工金
合金仮想する。この組成における合金の固相状態での温
度領域には3つの相状態がある。
An AB engineered metal alloy is assumed to be an AB binary alloy having the phase diagram shown in the figure. There are three phase states in the temperature range in the solid state of the alloy with this composition.

すなわちb単相、(b+a)相及び(a+c)相がある
、結晶構造はa、b、Qのそれぞれの単相状態で異なり
、従ってこれらの単独では当然であるが、これらの混合
相によってもこれらの光特性に対しても変化すると考え
られる。結晶構造の違いによる光学特性の違いとして分
光反射率について説明する++ T1での平衡状態では
Cr1ch  (a +C)相であるので合金の分光反
射率はCに近い。
In other words, there are b single phase, (b+a) phase, and (a+c) phase.The crystal structure is different for each single phase state of a, b, and Q.Therefore, it is natural for these alone, but also for a mixed phase of these. It is thought that these optical characteristics also change. The spectral reflectance will be explained as a difference in optical properties due to the difference in crystal structure.++ Since the alloy is in the Cr1ch (a + C) phase in the equilibrium state at T1, the spectral reflectance of the alloy is close to that of C.

これをT4まで加熱し、急冷するとb相がT1まで適冷
され、T1で合金はb相の分光反射率に変化する。更に
この適冷相をT1より高いT2に加熱冷却するとb相が
(a + c )相に変化しTiで最初のC相に近い分
光反射率に可逆的変化させることができる。このような
2つの加熱冷却処理を繰返すことにより1分光反射率を
可逆的に変化させることが可能である。
When this is heated to T4 and rapidly cooled, the b-phase is appropriately cooled to T1, and at T1, the alloy changes to the spectral reflectance of the b-phase. Further, when this appropriately cooled phase is heated and cooled to T2 higher than T1, the b phase changes to an (a + c) phase, and Ti can reversibly change the spectral reflectance to a value close to that of the initial C phase. By repeating such two heating and cooling processes, it is possible to reversibly change the 1-spectral reflectance.

第2図は、合金の加熱急冷過程における温度と。Figure 2 shows the temperature during the heating and quenching process of the alloy.

記録又は消去との関係図である。It is a relationship diagram with recording or erasing.

(合金組成) 本発明合金は、高温及び低温状態で異なった結晶構造を
有するもので、高温からの急冷によってその急冷された
結晶構造が形成されるものでなければならない、更に、
この急冷されて形成された相は所定の温度での加熱によ
って低温状態での結晶構造に変化するものでなければな
らない。
(Alloy Composition) The alloy of the present invention must have different crystal structures at high and low temperatures, and the rapidly cooled crystal structure must be formed by rapid cooling from a high temperature.
The phase formed by this rapid cooling must be able to change into a crystalline structure at a low temperature by heating at a predetermined temperature.

これらの観点から、鉄と、亜鉛15〜45重量%及びア
ルミニウムの35〜50重量%1つと、第3成分15重
量%以下との合金からなることが好ましい。
From these viewpoints, it is preferable to consist of an alloy of iron, 15 to 45% by weight of zinc, 35 to 50% by weight of aluminum, and 15% by weight or less of a third component.

第3成分は、高温の金属間化合物が安定で分光反射率の
変化温度すなわち固相変態点を用途によつて任意にコン
トロールする点から含有する。具体的には、元素周期律
表のIA、IIA、rVA。
The third component is included because the high-temperature intermetallic compound is stable and the temperature at which the spectral reflectance changes, that is, the solid phase transformation point, can be arbitrarily controlled depending on the application. Specifically, IA, IIA, rVA of the periodic table of elements.

VA、VIA、■A、■、I B、UB、II[B、I
VB。
VA, VIA, ■A, ■, I B, UB, II [B, I
VB.

VB族及び希土類の1種又は2種以上を含む。Contains one or more of VB group and rare earth elements.

IA族の元素としてはリチウム、IIA族はマグネシウ
ム、カルシウム、rVA族はチタン、ジルコニウム、ハ
フニウム、VA族はバナジウム、ニオブ、タンタル、V
IA族はクロム、モリブデン、タングステン、■A族は
マンガン、■族はコバルト。
Group IA elements include lithium, Group IIA elements include magnesium and calcium, Group rVA elements include titanium, zirconium, and hafnium, and Group VA elements include vanadium, niobium, tantalum, and V.
Group IA is chromium, molybdenum, and tungsten, Group ■A is manganese, and Group ■ is cobalt.

ロジウム、イリジウム、ルテニウム、オスミウム。Rhodium, iridium, ruthenium, osmium.

ニッケル、パラジウム、白金、UB族は鋼、銀。Nickel, palladium, platinum, and the UB group are steel and silver.

金、IIB族は亜鉛(但し、亜鉛入りのときは除く)。Gold, and zinc for Group IIB (excluding cases containing zinc).

カドミウム、UB族はほう素、アルミニウム(但しアル
ミニウム入りのときは除く)、ガリウム。
Cadmium and the UB group include boron, aluminum (except when aluminum is included), and gallium.

インジウム(但し、インジウムを不可欠とするときは除
<)、IVB族は炭素、けい素、ゲルマニウム、錫、鉛
、VB族はりん、アンチモン、ビスマス、希土類として
はイツトリウム、ランタン、セリウム、サマリウム、ガ
ドリニウム、テルビウム。
Indium (except when indium is essential), IVB group is carbon, silicon, germanium, tin, lead, VB group is phosphorus, antimony, bismuth, rare earths are yttrium, lanthanum, cerium, samarium, gadolinium ,terbium.

ジスプロシウム、ルテニウムが特に好ましい。Dysprosium and ruthenium are particularly preferred.

(ノンバルクとその製造法) 本発明合金は反射率の可変性を得るために材料の加熱急
冷によって過冷相を形成できるものが必要である。高速
で情報の製作及び記憶させるには材料の急熱急冷効果の
高い熱容量の小さいノンバルクが望ましい。即ち、所望
の微小面積に対して投入されたエネルギーによって実質
的に所望の面積部分だけが深さ全体にわたって基準とな
る結晶構造と異なる結晶構造に変り得る容積を持つノン
バルクであることが望ましい、従って、所望の微小面積
によって高密度の情報を製作するには、熱容量の小さい
ノンバルクである箔、膜、細線あるいは粉末等が望まし
い、記録密度として、20メガビット/d以上となるよ
うな微小面積での情報ノ製作には0.01〜0.2  
μmの膜厚とするのがよい、一般に金属間化合物は塑性
加工が難しい。
(Non-bulk and manufacturing method thereof) In order to obtain reflectance variability, the alloy of the present invention must be able to form a supercooled phase by heating and rapidly cooling the material. In order to create and store information at high speed, it is desirable to use a non-bulk material with a high rapid heating and cooling effect and a small heat capacity. In other words, it is desirable to be a non-bulk material having a volume that allows substantially only a desired area portion to change to a crystal structure different from the standard crystal structure throughout the depth by energy input to a desired minute area. To produce high-density information in a desired micro area, it is desirable to use non-bulk materials such as foils, films, thin wires, or powders with low heat capacity. 0.01-0.2 for information production
It is preferable to have a film thickness of μm. In general, intermetallic compounds are difficult to plastically work.

従って、箔、膜、細線あるいは粉末にする手法として材
料を気相あるいは液相から直接急冷固化させて所定の形
状にすることが有効である。これらの方法にはPVD法
(蒸着、スパッタリング法等)、CVD法、溶錫を高速
回転する高熱伝導性を有する部材からなる。特に金属ロ
ール円周面上に注湯して急冷凝固させる溶湯急冷法、電
気メッキ、化学メッキ法等がある。膜あるいは粉末状の
材料を利用する場合、基板上に直接形成するか、塗布し
て基板上に接着することが効果的である。塗布する場合
、粉末を加熱しても反応などを起こさないバインダーが
よい。また、加熱による材料の酸化等を防止するため、
材料表面、基板上に形成した膜あるいは塗布層表面をコ
ーティングすることも有効である。
Therefore, it is effective to directly rapidly cool and solidify the material from the gas phase or liquid phase to form it into a predetermined shape as a method for producing foil, film, thin wire, or powder. These methods include a PVD method (vapor deposition, sputtering method, etc.), a CVD method, and a member having high thermal conductivity that rotates molten tin at high speed. In particular, there are molten metal quenching methods in which molten metal is poured onto the circumferential surface of a metal roll and rapidly solidified, electroplating methods, chemical plating methods, and the like. When using a film or powder material, it is effective to form it directly on the substrate or to apply it and adhere it to the substrate. When applying, a binder that does not cause any reaction even when the powder is heated is preferred. In addition, to prevent oxidation of the material due to heating,
It is also effective to coat the surface of a material, a film formed on a substrate, or a coating layer.

箔又は細線の溶湯急冷法によって形成するのが好ましく
、厚さ又は直径0.1 m以下が好ましい。
It is preferably formed by quenching a molten metal of foil or thin wire, and preferably has a thickness or diameter of 0.1 m or less.

特に0.1  μm以下の結晶粒径の箔又は細線を製造
するには0.05 mm以下の厚さ又は直径が好ましい
In particular, a thickness or diameter of 0.05 mm or less is preferred for producing foil or thin wire with a crystal grain size of 0.1 μm or less.

粉末は、溶湯を気体又は液体の冷媒とともに噴霧させて
水中に投入させて急冷するガイアトマイズ法によって形
成させることが好ましい。その粒径は、 0.1 wn
以下が好ましく、特に粒径1μm以下の超微粉が好まし
い。
The powder is preferably formed by a Gaia atomization method in which molten metal is atomized together with a gaseous or liquid refrigerant and then poured into water to be rapidly cooled. Its particle size is 0.1 wn
The following are preferable, and ultrafine powder with a particle size of 1 μm or less is particularly preferable.

膜は前述の如く蒸着、スパッタリング、CVD媒気メッ
キ、化学メッキ等によって形成できる。
The film can be formed by vapor deposition, sputtering, CVD medium plating, chemical plating, etc. as described above.

特に、0.1 μm以下の膜厚を形成するにはスパッタ
リングが好ましい、スパッタリングは目標の全組成のコ
ントロールが容易にできる。
In particular, sputtering is preferable to form a film with a thickness of 0.1 μm or less, and sputtering allows easy control of the target overall composition.

(組織) 本発明合金は、高温及び低温において異なる結晶構造を
有し、高温からの急冷によって高温における結晶構造を
低温で保持される過冷相の組成を有するものでなければ
ならない。高温では不規則格子の結晶構造を有するが、
急冷相は一例として規則格子を有する金属間化合物が好
ましい。光学的性質を大きく変化させることのできるも
のとして本発明合金はこの金属間化合物を主に形成する
合金が好ましく、特に合金全体が金属間化合物を形成す
る組成が好ましい、この金属間化合物は電子合物と呼ば
れ、特に3/2電子化合物(平均外殻電子濃度e / 
aが3/2)の合金組成付近のものが良好である。
(Structure) The alloy of the present invention has different crystal structures at high and low temperatures, and must have a composition of an undercooled phase that maintains the crystal structure at high temperature at low temperature by rapid cooling from high temperature. At high temperatures, it has an irregular lattice crystal structure, but
The quenching phase is preferably an intermetallic compound having a regular lattice, for example. As the alloy of the present invention can greatly change optical properties, it is preferable to use an alloy that mainly forms this intermetallic compound, and it is particularly preferable that the entire alloy forms an intermetallic compound. 3/2 electron compounds (average outer shell electron concentration e /
An alloy composition in the vicinity of a=3/2) is good.

また、本発明合金は固相変態、特に共析変態又は包析変
態を有する合金組成が好ましく、その合金は高温からの
急冷と非急冷によって分光反射率の差の大きいものが得
られる。
Further, the alloy of the present invention preferably has an alloy composition having solid phase transformation, particularly eutectoid transformation or enveloping transformation, and the alloy can be obtained with a large difference in spectral reflectance by quenching from high temperature and non-quenching.

本発明合金は超微細結晶粒を有する合金が好ましく、特
に結晶粒径は0.1  μm以下が好ましい。
The alloy of the present invention preferably has ultrafine crystal grains, and the grain size is particularly preferably 0.1 μm or less.

即ち、結晶粒は可視光領域の波長の値より小さいのが好
ましいが、半導体レーザ光の波長の値より小さいもので
もよい。
That is, the crystal grains are preferably smaller than the wavelength of visible light, but may be smaller than the wavelength of semiconductor laser light.

また、基板上に形成された膜の熱容量を低減させること
から、その膜を記録単位の最小程度の大きさにエツチン
グなどにより区切ることができる。
In addition, since the heat capacity of the film formed on the substrate is reduced, the film can be divided into the minimum size of the recording unit by etching or the like.

(特性) 本発明の分光反射率可変合金及び記録材料は、可視光領
域における分光反射率を同一温度で少なくとも2種類形
成させることができる。即ち、高温からの急冷によって
形成された結晶構造(組織)を有するものの分光反射率
が非急冷によって形成された結晶構造(組織)を有する
ものの分光反射率と異なっていることが必要である。
(Characteristics) The variable spectral reflectance alloy and recording material of the present invention can form at least two types of spectral reflectance in the visible light region at the same temperature. That is, it is necessary that the spectral reflectance of a material having a crystal structure (structure) formed by rapid cooling from a high temperature is different from that of a material having a crystal structure (structure) formed by non-quenching.

また、急冷と非急冷によって得られるものの分光反射率
の差は5%以上が好ましく、特に10%以上有すること
が好ましい。分光反射率の差が大きければ、目視による
色の識別が容易であり、後で記載する各種用途において
顕著な効果がある。
Further, the difference in spectral reflectance obtained by quenching and non-quenching is preferably 5% or more, particularly preferably 10% or more. If the difference in spectral reflectance is large, it is easy to visually identify the color, and this has a significant effect in various uses described later.

分光反射させる光源として、電磁波であれば可視光以外
でも使用可能であり、赤外線、紫外線なども使用可能で
ある。
As a light source for spectrally reflecting, electromagnetic waves other than visible light can be used, and infrared rays, ultraviolet rays, etc. can also be used.

本発明合金のその他の特性として、電気抵抗率。Other properties of the alloy of the present invention include electrical resistivity.

光の屈折率、光の偏光率、光の透過率なども分光反射率
と同様に可逆的に変えることができ、信号。
The refractive index of light, the polarization rate of light, and the transmittance of light can also be changed reversibly in the same way as spectral reflectance.

文字2図形、記号等の各種情報の記録、再生、消去9表
示、センサー等の再生、検出手段として利用することが
できる。
It can be used as a means for recording, reproducing, erasing, displaying various information such as characters, figures, symbols, etc., reproducing sensors, etc., and detecting means.

分光反射率は合金の表面あらさ状態に関係するので、前
述のように少なくとも可視光領域において10%以上有
するように少なくとも目的とする部分において鏡面にな
っているのが好ましい。
Since the spectral reflectance is related to the surface roughness of the alloy, it is preferable that at least the intended portion has a mirror surface so as to have 10% or more in the visible light region as described above.

(用途) 本発明合金は、加熱急冷によって部分的又は全体に結晶
構造の変化による電磁波の光分反射率。
(Applications) The alloy of the present invention has an optical reflectance of electromagnetic waves due to a partial or total change in crystal structure due to heating and rapid cooling.

電気抵抗率、屈折率、偏光率、透過率等の物理的又は電
気的特性を変化させ、これらの特性の変化を利用して記
録1表示、センサー等の素子に使用することができる。
Physical or electrical properties such as electrical resistivity, refractive index, polarization index, transmittance, etc. can be changed, and changes in these properties can be used for use in elements such as recording, display, and sensors.

情報等の記録の手段として、電気及び電流の形での電気
エネルギー、電磁波(可視光、輻射熱。
As a means of recording information, etc., electrical energy in the form of electricity and current, electromagnetic waves (visible light, radiant heat) are used.

赤外線、紫外線、写真用閃光ランプの光、電子ビーム、
陽子線アルゴンレーザ、半導体レーザ等のレーザ光線、
熱等)を用いることができ、特にその照射による分光反
射率の変化を利用して光ディスクの記録媒体に利用する
のが好ましい。光ディスクには、ディジタルオーディオ
ディスク(DAD又はコンパクトディスク)、ビデオデ
ィスク、メモリーディスクなどがあり、これらに使用可
能である。本発明合金を光ディスクの記録媒体に使用す
ることにより再生専用型、追加記録型、書換型ディスク
装置にそれぞれ使用でき、特に書換型ディス装置におい
てきわめて有効である。
Infrared rays, ultraviolet rays, photographic flash lamp light, electron beams,
Laser beams such as proton beam argon laser, semiconductor laser, etc.
In particular, it is preferable to utilize the change in spectral reflectance caused by irradiation in the recording medium of an optical disk. Optical discs include digital audio discs (DAD or compact discs), video discs, memory discs, and the like, and can be used for these. By using the alloy of the present invention in the recording medium of an optical disc, it can be used in read-only type, additional recording type, and rewritable type disc devices, and is particularly effective in rewritable type disc devices.

本発明合金を光デイスク式の記録媒体に使用した場合の
記録及び再生の原理の例は次の通りである。先ず、記録
媒体を局部的に加熱し該加熱後の急冷によって高温度領
域での結晶構造を低温度領域で保持させて所定の情報を
記録し、又は高温相をベースとして、局部的に加熱して
高温相中に局部的に低温相によって記録し、記録部分に
光を照射して加熱部分と非加熱部分の光学的特性の差を
検出して情報を再生することができる。更に情報として
記録された部分を記録時の加熱温度より低い温度又は高
い温度で加熱し記録された情報を消去することができる
。光はレーザ光線が好ましく、特に短波長レーザが好ま
しい1本発明の加熱部分と非加熱部分との反射率が50
0nm又は800nm付近の波長において最も大きいの
で、このような波長を有するレーザ光を再生に用いるの
が好ましい、記録、再生には同じレーザ源が用いられ、
消去に記録のものよりエネルギー密度を小さくした他の
レーザ光を照射するのが好ましい。
An example of the principle of recording and reproduction when the alloy of the present invention is used in an optical disk type recording medium is as follows. First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or the high temperature phase is used as a base to locally heat the recording medium. Information can be reproduced by recording locally in a low-temperature phase during a high-temperature phase, and by irradiating the recorded portion with light and detecting the difference in optical characteristics between the heated portion and the non-heated portion. Furthermore, the recorded information can be erased by heating the portion recorded as information at a temperature lower or higher than the heating temperature at the time of recording. The light is preferably a laser beam, and particularly preferably a short wavelength laser.1 The reflectance between the heated part and the non-heated part of the present invention is 50.
Since it is largest at a wavelength near 0 nm or 800 nm, it is preferable to use a laser beam having such a wavelength for reproduction.The same laser source is used for recording and reproduction,
For erasing, it is preferable to irradiate another laser beam with a lower energy density than that for recording.

また、本発明合金を記録媒体に用いたディスクは情報が
記録されているか否かが目視で判別できる大きなメリッ
トがある。
Further, a disk using the alloy of the present invention as a recording medium has a great advantage in that it can be visually determined whether information is recorded or not.

表示として、特に可視光での分光反射率を部分的に変え
ることができるので塗料を使用せずに文字9図形、記号
等を記録することができ、それらの表示は目視によって
識別することができる。また、これらの情報は消去する
ことができ、記録と消去のくり返し使用のほか、永久保
存も可能である。その応用例として時計の文字盤、アク
セサリ−などがある。
As a display, it is possible to partially change the spectral reflectance in visible light, so characters, shapes, symbols, etc. can be recorded without using paint, and these displays can be visually identified. . Furthermore, this information can be erased, and in addition to being used repeatedly by recording and erasing, it is also possible to store it permanently. Examples of its applications include clock faces and accessories.

センサーとして、特に可視光での分光反射率の変化を利
用する温度センサーがある。予め高温相に変る温度が分
っている本発明の合金を使用したセンサーを測定しよう
とする温度領域に保持し、その適冷によって適冷相を保
持させることによっておおよその温度検出ができる。
As a sensor, there is a temperature sensor that utilizes changes in spectral reflectance, especially in visible light. Approximate temperature detection can be made by holding a sensor using the alloy of the present invention, whose temperature at which it changes to a high temperature phase is known in advance, in the temperature range to be measured, and maintaining the appropriate cool phase by cooling it appropriately.

(11造法) 本発明は、固体状態で室温より高い第1の温度と該第1
の温度より低い第2の温度とで異なった結晶構造を有す
る前述した化学組成の合金表面の一部に、前記第1の温
度より急冷して前記第2の温度における結晶構造と異な
る結晶構造を有する領域を形成し、前記急冷されて形成
された結晶構造を有する領域と前記第2の温度での結晶
構造を有する領域とで異なった分光反射率を形成させる
ことを特徴とする分光反射率可変合金の製造法にある。
(11 Manufacturing Method) The present invention provides a first temperature higher than room temperature in a solid state and a first temperature higher than room temperature in a solid state.
A part of the surface of the alloy having the chemical composition described above, which has a crystal structure different from that at the second temperature lower than the temperature, is rapidly cooled from the first temperature to form a crystal structure different from the crystal structure at the second temperature. and forming a region having a crystal structure formed by the rapid cooling and forming a different spectral reflectance between the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. It is in the manufacturing method of the alloy.

更に、本発明は固体状態で室温より高い第1の温度と該
第1の温度より低い第2の温度で異なった結晶構造を有
する前述した化学組成の合金表面の全部に、前記第1の
温度から急冷して前記第2の温度における結晶構造と異
なる結晶構造を形成させ5次いで前記合金表面の一部を
前記第2の温度に加熱して前記第2の温度における結晶
構造を有する領域を形成し、前記急冷されて形成された
結晶構造を有する領域と前記第2の温度における結晶構
造を有する領域とで異なった分光反射率を形成させるこ
とを特徴とする分光反射率可変合金の製造法にある。
Furthermore, the present invention provides a method for applying the first temperature to the entire surface of the alloy having the chemical composition described above, which has a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in a solid state. 5. Then, a part of the alloy surface is heated to the second temperature to form a region having the crystal structure at the second temperature. and forming different spectral reflectances in the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. be.

第1の温度からの冷却速度は102℃/秒以上、より好
ましくは103℃/秒以上が好ましい。
The cooling rate from the first temperature is preferably 102° C./second or more, more preferably 103° C./second or more.

〔発明の実施例〕[Embodiments of the invention]

実施例l Fe−Zn合金を溶湯急冷法により箔状に成形してその
色調変化2分光反射率などを調べた。
Example 1 A Fe-Zn alloy was formed into a foil by a molten metal quenching method, and its color tone change, 2-spectral reflectance, etc. were investigated.

Feに10〜50wt%のZnを含む各種合金をアルゴ
ン雰囲気中高肩波炉で溶解し、約4m径の棒状に凝固さ
せ、5〜Log程度の重さに切断して溶湯急冷用母合金
とした。
Various alloys containing Fe and 10 to 50 wt% Zn were melted in a high shoulder wave furnace in an argon atmosphere, solidified into a rod shape with a diameter of about 4 m, and cut into pieces with a weight of about 5 to Log to prepare a master alloy for quenching molten metal. .

溶湯急冷法には一般に知られる単ロール型装置を用いた
1石英製のノズルに母合金を装入し再溶解し高速で回転
するロール(300mφ)外周上に注湯して厚さ約50
μm、幅5ffiのリボン状箔を作製した。この箔を電
気炉により各温度2分加熱水冷して箔の色をll!察し
た。箔の色は約650℃以上の熱処理したものとそれ以
下で処理したものでは明らかに異なった。これらは室温
で高温のものは黒赤色であり、それ以下のものは灰白色
であった。この高温の色と低温色は可視光から近赤外光
領域での分光反射率において十分な差が認められた。ま
た、高温領域(650℃以上)から急冷して色を変えた
箔を650℃以下の比較的高い温度(350℃以上)で
熱処理すると色は低温の色に変わる。その後、高温から
の急冷と低温での加熱冷却を繰り返すと室温での箔の色
は可逆的に変化した。なお、箔の一部をライターやバー
ナーなどで局部加熱すると2つの色を共存させることが
でき、表示素子としても応用できることを確認した。
The molten metal quenching method uses a generally known single-roll type device.1 The master alloy is charged into a quartz nozzle, remelted, and poured onto the outer periphery of a roll (300 mφ) rotating at high speed to a thickness of about 50 mm.
A ribbon-shaped foil with a width of 5ffi and a thickness of μm was produced. Heat this foil in an electric furnace for 2 minutes at each temperature and cool it with water to change the color of the foil! I guessed it. The color of the foils was clearly different between those heat-treated at temperatures above about 650°C and those heat-treated below. Those at room temperature and high temperature were black red, and those at lower temperatures were grayish white. A sufficient difference in spectral reflectance from visible light to near-infrared light was observed between the high-temperature color and the low-temperature color. Furthermore, when a foil that has changed color by rapid cooling from a high temperature range (650°C or higher) is heat treated at a relatively high temperature (350°C or higher) of 650°C or lower, the color changes to the low temperature color. Thereafter, by repeating rapid cooling from a high temperature and heating and cooling at a low temperature, the color of the foil at room temperature changed reversibly. It was also confirmed that by locally heating a part of the foil with a lighter or burner, it is possible to make two colors coexist, and that it can also be used as a display element.

実施例2 実施例1と同様な方法で溶解凝固させた合金を機械加工
により粉末状に成形した。この粉末について実施例1と
同様な熱処理をした結果、はぼ同じ可逆的色調変化が得
られ、粉末においても箔と同等の現象を示した。
Example 2 An alloy melted and solidified in the same manner as in Example 1 was molded into powder by machining. When this powder was subjected to the same heat treatment as in Example 1, almost the same reversible color change was obtained, and the powder also showed the same phenomenon as the foil.

実施例3 実施例1と同様な方法で溶解し、約120mmφの円筒
状に凝固させたインゴットから厚さ5ms。
Example 3 An ingot with a thickness of 5 ms was melted in the same manner as in Example 1 and solidified into a cylindrical shape of approximately 120 mmφ.

直径Loomの円板を切り出し、スパッタ蒸着用のター
ゲットとした。
A disk with a diameter of Loom was cut out and used as a target for sputter deposition.

スパッタ蒸着法としてはDC−マグネトロン型を使用し
、基板には約26m径、厚さ1.21の硬質ガラス円板
を用いた。基板温度200”C、スパッタパワー150
W、ガス(Ar)分圧20mTorrの条件でスパッタ
蒸着し、約1100n厚の薄膜を作製した。なお、膜面
には保護膜としてRF−Xパッタニよ)JA12.O,
またはSin、  を約50nm厚さ蒸着させた。
A DC-magnetron type sputter deposition method was used, and a hard glass disk with a diameter of about 26 m and a thickness of 1.21 cm was used as the substrate. Substrate temperature 200”C, sputter power 150
Sputter deposition was performed under conditions of W and gas (Ar) partial pressure of 20 mTorr to produce a thin film with a thickness of about 1100 nm. In addition, RF-X Pattani) JA12. O,
or Sin, was deposited to a thickness of about 50 nm.

この合金薄膜について実施例1と同様の熱処理を施した
。その結果、室温での薄膜の色は、加熱急冷条件により
実施例1と同様の可逆的変化を示し、それに伴い可視光
から近赤外領域の分光反射率も変化した。従って、この
ような薄膜においても可逆的な色調及び分光反射率変化
があることが分った。
This alloy thin film was subjected to the same heat treatment as in Example 1. As a result, the color of the thin film at room temperature showed a reversible change similar to that in Example 1 depending on the heating and quenching conditions, and the spectral reflectance from visible light to near-infrared light also changed accordingly. Therefore, it was found that even in such a thin film, there is a reversible change in color tone and spectral reflectance.

実施例4 実施例3と同様な方法で作製したスパッタ蒸着合金膜に
ついてレーザ光による記録、再生、消去を実施した。レ
ーザ光としては半導体レーザ(波長830nm)もしく
はArレーザ(波長488nm)を用いた。低温熱処理
後の薄膜にレーザ光を膜面パワーで10〜50mW、ビ
ーム径を約2〜10μm程度まで変え、照射した。その
結果、照射部は高温(650℃以上)に加熱急冷した際
に相当する色に変化した。このようにしてレーザ光を走
査させて線を描き、そこを横切るように低パワーレーザ
を走査させ、反射率変化を直流電圧に変換して調べた結
果、線に対応した電気変化が認められ、電気的再生が可
能であることを確認した。
Example 4 A sputter-deposited alloy film produced in the same manner as in Example 3 was subjected to recording, reproduction, and erasing using a laser beam. As the laser light, a semiconductor laser (wavelength: 830 nm) or an Ar laser (wavelength: 488 nm) was used. The thin film after the low-temperature heat treatment was irradiated with laser light at a film surface power of 10 to 50 mW and a beam diameter of about 2 to 10 μm. As a result, the irradiated area changed to a color corresponding to when it was heated and rapidly cooled to a high temperature (650° C. or higher). As a result of scanning a line with a laser beam in this way, scanning a low-power laser across the line, and converting the change in reflectance into a DC voltage, an electrical change corresponding to the line was observed. We confirmed that electrical regeneration is possible.

このように描いた線は膜全体を350℃程度に加熱する
か、パワー密度の低いレーザ光を照射すると消えた。
The lines drawn in this way disappeared when the entire film was heated to about 350° C. or when it was irradiated with a laser beam of low power density.

以上のことからこの合金薄膜についてレーザ光による記
録、再生及び消去を確認した。
From the above, it was confirmed that this alloy thin film could be recorded, reproduced, and erased by laser light.

実施例5 Fe−Aα合金を溶湯急冷法により箔状に成形してその
色調変化2分光反射率などを調べた。
Example 5 A Fe-Aα alloy was formed into a foil shape by a molten metal quenching method, and its color tone change, 2-spectral reflectance, etc. were investigated.

Feに30〜55 w、t%のAtを含む各種合金をア
ルゴン雰囲気中高周波炉で溶解し、約4■径の棒状に凝
固させ、5〜Log程度の重さに切断して溶湯急冷用母
合金とした。
Various alloys containing Fe and 30 to 55 w, t% of At are melted in a high-frequency furnace in an argon atmosphere, solidified into rods with a diameter of about 4 cm, and cut into pieces with a weight of about 5 to Log to prepare a matrix for quenching the molten metal. It was made into an alloy.

溶湯急冷法には一般に知られる単ロール型装置を用いた
。石英製のノズルに母合金を装入し再溶解し高速で回転
するロール(300xφ)外周上に注湯して厚さ約50
μm、幅5mのリボン状箔を作製した。この箔の色を電
気炉により各温度2分加熱水冷して箔の色を観察した。
A commonly known single roll type device was used for the molten metal quenching method. The master alloy is charged into a quartz nozzle, remelted, and poured onto the outer periphery of a roll (300 x φ) rotating at high speed to a thickness of about 50 mm.
A ribbon-shaped foil with a diameter of 5 m and a width of 5 m was produced. The color of the foil was observed by heating it in an electric furnace for 2 minutes at each temperature and cooling it with water.

箔の色は約1100℃以上の熱処理したものとそれ以下
で処理したものでは明らかに異なった。これらは室温で
高温のものは黒紫色であり、それ以下のものは灰白色で
あった。この高温の色と低温色は可視光から近赤外光領
域での分光反射率において十分な差が認められた。また
、高温領域(1100℃以上)から急冷して色を変えた
箔を1100℃以下の比較的高い温度(600℃以上)
で熱処理すると色は低温の色に変わる。その後、高温か
らの急冷と低温での加熱冷却を繰り返すと室温での箔の
色は可逆的に変化した。なお、箔の一部をライターやバ
ーナーなどで局部加熱すると2つの色が共存し1表示素
子としても応用できることを確認した。
The color of the foils was clearly different between those heat-treated at temperatures above about 1100°C and those heat-treated below. Those at room temperature and high temperature were black-purple, and those at lower temperatures were grayish-white. A sufficient difference in spectral reflectance from visible light to near-infrared light was observed between the high-temperature color and the low-temperature color. In addition, foil that has been rapidly cooled to change color from a high temperature range (1100°C or higher) can be heated to a relatively high temperature below 1100°C (600°C or higher).
When heat treated at , the color changes to the low temperature color. Thereafter, by repeating rapid cooling from a high temperature and heating and cooling at a low temperature, the color of the foil at room temperature changed reversibly. Furthermore, it was confirmed that when a part of the foil is locally heated with a lighter or burner, the two colors coexist, making it possible to apply it as a single display element.

実施例6 実施例5と同様な方法で溶解凝固させた合金を機械加工
により粉末状に成形した。この粉末について実施例5と
同様な熱処理をした結果、はぼ同じ可逆的色調変化が得
られ、粉末においても箔と同等の現象を示した。
Example 6 An alloy melted and solidified in the same manner as in Example 5 was molded into powder by machining. When this powder was subjected to the same heat treatment as in Example 5, almost the same reversible color change was obtained, and the powder also showed the same phenomenon as the foil.

実施例7 実施例5と同様な方法で溶解し、約120−φの円筒状
に凝固させたインゴットから厚さ5IIIl。
Example 7 A 5IIIl thick ingot was melted in the same manner as in Example 5 and solidified into a cylindrical shape of about 120-φ.

直径100■の円板を切り出し、スパッタ蒸着用のター
ゲットとした。
A disk with a diameter of 100 cm was cut out and used as a target for sputter deposition.

スパッタ蒸着法としてはDC−マグネトロン型を使用し
、基板には約2611Il径、厚さ1.2 +mの硬質
ガラス円板を用いた。基板温度200℃、スパッタパワ
ー150W、ガス(Ar)分圧20mTorrの条件で
スパッタ蒸着し、約1100n厚の薄膜を作製した。な
お、膜面には保護膜としてRF−スパッタによりA Q
 、0.またはSin、を約50nm厚さ蒸着させた。
A DC-magnetron type sputter deposition method was used, and a hard glass disk with a diameter of about 2611 Il and a thickness of 1.2 + m was used as the substrate. Sputter deposition was performed under the conditions of a substrate temperature of 200° C., a sputtering power of 150 W, and a gas (Ar) partial pressure of 20 mTorr to produce a thin film with a thickness of about 1100 nm. In addition, AQ was applied to the film surface by RF sputtering as a protective film.
,0. Or, Sin was deposited to a thickness of about 50 nm.

この合金薄膜について実施例5と同様の熱処理を施した
。その結果、室温での薄膜の色は、加熱急冷条件により
実施例5と同様の可逆的変化を示し、それに伴い可視光
から近赤外領域の分光反射率も変化した。従って、この
ような薄膜においても可逆的な色調及び分光反射率変化
があることが分った。
This alloy thin film was subjected to the same heat treatment as in Example 5. As a result, the color of the thin film at room temperature showed a reversible change similar to that in Example 5 depending on the heating and quenching conditions, and the spectral reflectance from visible light to near-infrared light also changed accordingly. Therefore, it was found that even in such a thin film, there is a reversible change in color tone and spectral reflectance.

実施例8 実施例7と同様な方法で作製したスパッタ蒸着合金膜に
ついてレーザ光による記録、再生、消去を実施した。レ
ーザ光としては半導体レーザ(波長830nm)もしく
はArレーザ(波長488nm)を用いた。低温熱処理
後の薄膜にレーザ光を膜面パワーで10〜50mW、ビ
ーム径を約2〜10μm程度まで変え、照射した。その
結果、照射部は高温(1100℃以上)に加熱急冷した
際に相当する色に変化した。このようにしてレーザ光を
固査させて線を描き、そこを横切るように低パワーレー
ザを走査させ、反射率変化を直流電圧に変換して調べた
結果、線に対応した電圧変化が認められ、電気的再生が
可能であることを確認した。
Example 8 A sputter-deposited alloy film produced in the same manner as in Example 7 was subjected to recording, reproduction, and erasing using a laser beam. As the laser light, a semiconductor laser (wavelength: 830 nm) or an Ar laser (wavelength: 488 nm) was used. The thin film after the low-temperature heat treatment was irradiated with laser light at a film surface power of 10 to 50 mW and a beam diameter of about 2 to 10 μm. As a result, the irradiated area changed to a color corresponding to when it was heated and rapidly cooled to a high temperature (1100° C. or higher). In this way, we fixedly scanned the laser beam to draw a line, scanned it with a low-power laser across it, and converted the change in reflectance into DC voltage. As a result, we observed a voltage change corresponding to the line. It was confirmed that electrical regeneration is possible.

このように描いた線は膜全体を600℃程度に加熱する
か、パワー密度の低いレーザ光を照射すると消えた。反
射率の変化は体積変化による凹凸によっても生じる。
The lines drawn in this way disappeared when the entire film was heated to about 600° C. or when it was irradiated with a laser beam of low power density. Changes in reflectance are also caused by unevenness due to volume changes.

以上のことからこの合金薄膜についてレーザ光による記
録、再生及び消去を確認した。
From the above, it was confirmed that this alloy thin film could be recorded, reproduced, and erased by laser light.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、結晶−結晶相間転移による色もしくは
反射率の可逆的変化を利用した新規な記録材料が得られ
る。
According to the present invention, a novel recording material that utilizes a reversible change in color or reflectance due to crystal-crystal phase transition can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、異種結晶相関の相変化の可逆的変化を説明す
るために示した二元系合金状態図、第2図は、合金の加
熱冷却過程における温度と記録又は消去の関係を示す説
明図である。
Figure 1 is a binary alloy phase diagram shown to explain the reversible phase change of the correlation between different types of crystals. Figure 2 is an explanation showing the relationship between temperature and recording or erasing during the heating and cooling process of the alloy. It is a diagram.

Claims (1)

【特許請求の範囲】 1、鉄と、亜鉛15〜45重量%及びアルミニウム35
〜50重量%の1つと、元素周期律表 I A、IIA、IV
A、VA、VIA、VIIA、VIII、 I B、IIB、IIIB、
IVB、VB族及び希土類から選ばれた1つ以上15重量
%以下からなることを特徴とする分光反射率可変合金。 2、固体状態で室温より高い第1の温度と該第1の温度
より低い第2の温度で異なつた結晶構造を有する合金表
面の一部が、前記第1の温度からの急冷によつて前記第
2の温度における結晶構造と異なつた結晶構造を有し、
他は前記第2の温度における結晶構造を有し前記急冷さ
れた結晶構造とは異なつた分光反射率を有することを特
徴とする特許請求の範囲第1項に記載の分光反射率可変
合金。 3、前記合金は金属間化合物を有することを特徴とする
特許請求の範囲第1項又は第2項に記載の光分反射率可
変合金。 4、前記第1の温度は固相変態点より高い温度であるこ
とを特徴とする特許請求の範囲第1項〜第3項のいずれ
か1項に記載の分光反射率可変合金。 5、前記急冷によつて形成された結晶構造を有するもの
の分光反射率と非急冷によつて形成された前記低温にお
ける結晶構造を有するものの分光反射率との差が5%以
上であることを特徴とする特許請求の範囲第1項〜第4
項のいずれか1項に記載の分光反射率可変合金。 6、前記合金の分光反射率は波400〜1000nmで
10%以上であることを特徴とする特許請求の範囲第1
項〜第5項のいずれか1項に記載の分光反射率可変合金
。 7、前記合金はノンバルク材であることを特徴とする特
許請求の範囲第1項〜第6項のいずれか1項に記載の分
光反射率可変合金。 8、前記合金は結晶粒径が0.1μm以下であることを
特徴とする特許請求の範囲第1項〜第7項のいずれか1
項に記載の分光反射率可変合金。 9、前記合金は薄膜、箔、ストリップ、粉末及び細線の
いずれかであることを特徴とする特許請求の範囲第1項
〜第8項のいずれかに記載の分光反射率可変合金。 10、鉄と、亜鉛15〜45重量%とアルミニウム35
〜50重量%の1つと、元素周期律表 I A、IIA、IV
A、VA、VIA、VIIA、VIII、 I B、IIB、IIIB、
IVB、VB族及び希土類から選ばれた第3成分の1つ以
上15重量%以下の合金からなることを特徴とする記録
材料。 11、固体状態で室温より高い第1の温度と該第1の温
度より低い第2の温度とで異なつた結晶構造を有する合
金であつて、該合金表面の少なくとも一部が前記第1の
温度からの急冷によつて前記第2の温度における結晶構
造と異なつた結晶構造を形成する合金組成を有すること
を特徴とする特許請求の範囲第10項に記載の記録材料
。 12、前記合金の溶湯を、回転する高熱伝導性部材から
なるロール円周面上に注湯し凝固して得た箔又は細線よ
りなることを特徴とする特許請求の範囲第10項又は第
11項に記載の記録材料。 13、前記合金を、蒸着又はスパッタリングによつて堆
積して得た薄膜よりなることを特徴とする特許請求の範
囲第10項又は第11項に記載の記録材料。 14、前記合金の溶湯を、液体又は気体の冷却媒体を用
いて噴霧して得た粉末よりなることを特徴とする特許請
求の範囲第10項又は第11項に記載の記録材料。
[Claims] 1. Iron, 15-45% by weight of zinc and 35% by weight of aluminum
~50% by weight of one of the Periodic Table of Elements I A, IIA, IV
A, VA, VIA, VIIA, VIII, I B, IIB, IIIB,
A variable spectral reflectance alloy comprising at least 15% by weight of one or more selected from IVB, VB groups, and rare earth elements. 2. A part of the alloy surface having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in the solid state is formed by rapid cooling from the first temperature. having a crystal structure different from the crystal structure at the second temperature,
2. The variable spectral reflectance alloy according to claim 1, wherein the other alloy has a crystal structure at the second temperature and has a spectral reflectance different from that of the rapidly cooled crystal structure. 3. The variable light spectral reflectance alloy according to claim 1 or 2, wherein the alloy contains an intermetallic compound. 4. The variable spectral reflectance alloy according to any one of claims 1 to 3, wherein the first temperature is higher than a solid phase transformation point. 5. The difference between the spectral reflectance of the material having a crystal structure formed by the rapid cooling and the spectral reflectance of the material having the crystal structure at the low temperature formed by non-quenching is 5% or more. Claims 1 to 4, which are
The variable spectral reflectance alloy according to any one of the items. 6. Claim 1, characterized in that the spectral reflectance of the alloy is 10% or more in the wavelength range of 400 to 1000 nm.
The variable spectral reflectance alloy according to any one of Items 1 to 5. 7. The variable spectral reflectance alloy according to any one of claims 1 to 6, wherein the alloy is a non-bulk material. 8. Any one of claims 1 to 7, wherein the alloy has a crystal grain size of 0.1 μm or less.
The variable spectral reflectance alloy described in . 9. The variable spectral reflectance alloy according to any one of claims 1 to 8, wherein the alloy is any one of a thin film, foil, strip, powder, and thin wire. 10. Iron, 15-45% by weight of zinc and 35% aluminum
~50% by weight of one of the Periodic Table of Elements I A, IIA, IV
A, VA, VIA, VIIA, VIII, I B, IIB, IIIB,
A recording material comprising an alloy containing one or more and 15% by weight or less of a third component selected from Group IVB, Group VB, and rare earth elements. 11. An alloy having different crystal structures in a solid state at a first temperature higher than room temperature and a second temperature lower than the first temperature, wherein at least a part of the alloy surface is at the first temperature. 11. The recording material according to claim 10, wherein the recording material has an alloy composition that forms a crystal structure different from the crystal structure at the second temperature when quenched from the temperature. 12. The foil or thin wire obtained by pouring the molten metal of the alloy onto the circumferential surface of a rotating roll made of a highly thermally conductive member and solidifying it.Claim 10 or 11 Recording materials listed in Section. 13. The recording material according to claim 10 or 11, characterized in that it is a thin film obtained by depositing the alloy by vapor deposition or sputtering. 14. The recording material according to claim 10 or 11, characterized in that it is made of a powder obtained by spraying the molten metal of the alloy using a liquid or gaseous cooling medium.
JP60030449A 1985-02-20 1985-02-20 Spectral reflectivity variable alloy and recording material Pending JPS61190042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60030449A JPS61190042A (en) 1985-02-20 1985-02-20 Spectral reflectivity variable alloy and recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030449A JPS61190042A (en) 1985-02-20 1985-02-20 Spectral reflectivity variable alloy and recording material

Publications (1)

Publication Number Publication Date
JPS61190042A true JPS61190042A (en) 1986-08-23

Family

ID=12304220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030449A Pending JPS61190042A (en) 1985-02-20 1985-02-20 Spectral reflectivity variable alloy and recording material

Country Status (1)

Country Link
JP (1) JPS61190042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218742A (en) * 2013-05-07 2014-11-20 現代自動車株式会社 Abrasion resistant alloy having composite microstructure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218742A (en) * 2013-05-07 2014-11-20 現代自動車株式会社 Abrasion resistant alloy having composite microstructure

Similar Documents

Publication Publication Date Title
JPS6169935A (en) Spectral reflectance variable alloy and recording material
JPS6119749A (en) Spectral reflectance variable alloy and recording material
JPS61195943A (en) Alloy having variable spectral reflectance and recording material
JPS61190042A (en) Spectral reflectivity variable alloy and recording material
JPS61190028A (en) Alloy having variable spectral reflectance and recording material
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPS61190031A (en) Alloy having variable spectral reflectance and recording material
JPS61195949A (en) Alloy having variable spectral reflectance and recording material
JPS61190034A (en) Alloy having variable spectral reflectance and recording material
JPS61190033A (en) Alloy having variable spectral reflectance and recording material
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS61190032A (en) Alloy having variable spectral reflectance and recording material
JPS61190038A (en) Alloy having variable spectral reflectance and recording material
JPS62112742A (en) Spectral reflectivity variable alloy
JPS6137936A (en) Alloy and recording material capable of varying spectroreflectance
JPS61190037A (en) Alloy having variable spectral reflectance and recording material
JPS61190027A (en) Alloy having variable spectral reflectance and recording material
JPS61133356A (en) Alloy capable of varying spectral reflectance and recording material
JPS61133350A (en) Alloy capable of varying spectral reflectance and recording material
JPS61190029A (en) Alloy having variable spectral reflectance and recording material
JPS6119746A (en) Spectral reflectance variable alloy and recording material
JPS6176638A (en) Variable spectral reflectivity alloy and recording material
JPS6230831A (en) Spectral reflectance-variable alloy and recording material
JPS61133352A (en) Alloy capable of varying spectral reflectance and recording material
JPS6134153A (en) Alloy having variable spectral reflectance and recording material