JPS6230831A - Spectral reflectance-variable alloy and recording material - Google Patents
Spectral reflectance-variable alloy and recording materialInfo
- Publication number
- JPS6230831A JPS6230831A JP60169851A JP16985185A JPS6230831A JP S6230831 A JPS6230831 A JP S6230831A JP 60169851 A JP60169851 A JP 60169851A JP 16985185 A JP16985185 A JP 16985185A JP S6230831 A JPS6230831 A JP S6230831A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- temperature
- spectral reflectance
- temp
- crystal structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24304—Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24308—Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は新規な分光反射率可変合金及び記録材料に係り
、特に光・熱エネルギーが与えられることにより合金の
結晶構造の変化にともなう分光反射率変化を利用した情
報記録2表示、センサ等の媒体に使用可能な合金に関す
る。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel alloy with variable spectral reflectance and a recording material, and in particular to a novel alloy with variable spectral reflectance and a recording material, and in particular, the spectral reflectance of the alloy changes as the crystal structure of the alloy changes due to the application of light and thermal energy. This invention relates to alloys that can be used as media for information recording, display, sensors, etc. that utilize change.
近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザの光エネルギーを情報の記録、消去、再生に利用
した光ディスクは工業レアメタルN1180.1983
(光ディスクと材料)に記載されているように磁気ディ
クスに比べ、高い記録密度が可能であり、今後の情報記
録の有力な方式である。このうち、レーザによる再生装
置はコンパクト・ディスク(CD)として実用化されて
いる。一方、記録可能な方式には追記型と書き換え可能
型の大きく2つに分けられる。前者は1回の書き込みの
みが可能であり、消去はできない。後者はくり返しの記
録、消去が可能な方式である。In recent years, as information recording becomes more dense and digital, various information recording and reproducing methods are being developed. In particular, optical discs that use laser light energy for recording, erasing, and reproducing information are manufactured using industrial rare metal N1180.1983.
As described in (Optical Disks and Materials), higher recording densities are possible than magnetic disks, and this will be a promising method for information recording in the future. Among these, laser playback devices have been put into practical use as compact discs (CDs). On the other hand, recordable methods can be broadly divided into two types: write-once type and rewritable type. The former can only be written once and cannot be erased. The latter is a method that allows repeated recording and erasing.
追記型の記録方式はレーザ光により記録部分の媒体を破
壊あるいは形成して凹凸をつけ、再生にはこの凹凸部分
でのレーザ光の干渉による光反射量の変化を利用するや
この記録媒体にはTeやその合金を利用して、その溶解
、昇華による凹凸の成形が一般的に知られている。この
種の媒体では毒性など若干の問題を含んでいる。書き換
え可能型の記録媒体としては光磁気材料が主流である。In the write-once type recording method, a laser beam destroys or forms the recording area of the medium to make it uneven, and for reproduction, the change in the amount of light reflection due to the interference of the laser beam on the uneven area is used. It is generally known to form irregularities by melting and sublimating Te or its alloys. This type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream for rewritable recording media.
この方法は光エネルギーを利用してキュリ一点あるいは
補償点温度付近で媒体の局部的な磁気異方性を反転させ
記録し、その部分での偏光入射光の磁気ファラデー効果
及び磁気−効果による偏光面の回転量にて再生する。こ
の方法は書き換え可能型の最も有望なものとして数年後
の実用化を目指し精力的な研究開発が進められている。This method utilizes optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or compensation point temperature, and the polarization plane of the polarized incident light at that part due to the magnetic Faraday effect and magnetic effect. Play with the amount of rotation. This method is considered to be the most promising rewritable method, and active research and development is underway with the aim of putting it into practical use in the next few years.
しかし、現在のところ偏光面の回転量の大きな材料がな
く多層膜化などの種々の工夫をしてもS/N、C/Nな
どの出力レベルが小さいという大きな問題がある。その
他の書き換え可能型方式として記録媒体の非晶質と結晶
質の可逆的相変化による反射率変化を利用したものがあ
る。例えばナショナル テクニカルレポート(Nati
onal Technical Report)V o
Q 29 Na 5 (1983)に記載TeOxに
少量のGeおよびSnを添加した合金がある。However, there is currently no material with a large amount of rotation of the plane of polarization, and even with various measures such as multilayer film formation, there is a big problem that output levels such as S/N and C/N are low. Other rewritable systems utilize reflectance changes due to reversible phase changes between amorphous and crystalline recording media. For example, the National Technical Report (Nati
onal Technical Report) Vo
There is an alloy in which small amounts of Ge and Sn are added to TeOx described in Q 29 Na 5 (1983).
しかし、この方式は非晶質相の結晶化部が低く、常温に
おける相の不安定さがディスクの信頼性に結びつく大き
く問題点である。However, this method has a major problem in that the crystallized portion of the amorphous phase is low and the instability of the phase at room temperature affects the reliability of the disk.
一方、色調変化を利用した合金として、特開昭57−1
40845がある。この合金は(12−15)wt%A
Q、 −(1〜5 ) w t%Ni−残Cuよすな
る合金でマルテンサイト変態温度を境にして、赤から黄
金色に可逆的に変化することを利用したものである。マ
ルテンサイト変態は温度を低下にともなって必然的に生
ずる変態のため、マルテンサイト変態温度以上に保持し
た状態で得られる色調はマルテンサイト変調温度以下に
もってくることはできない、また逆にマルテンサイト変
態温度以下で得られる色調のものをマルテンサイト変態
温度以上にすると、変態をおこして別の色調に変化して
しまう。したがって、マルテンサイト変態の上ドでおこ
る2つの色調は同一温度で同時に得ることはできない、
したがってこの原理では記録材料として適用することは
できない。On the other hand, as an alloy utilizing color tone change, JP-A-57-1
There are 40845. This alloy is (12-15)wt%A
Q, -(1 to 5) wt% This is an alloy consisting of Ni and residual Cu, which takes advantage of the fact that it changes reversibly from red to gold at the martensitic transformation temperature. Martensitic transformation is a transformation that inevitably occurs as the temperature decreases, so the color tone obtained when the temperature is maintained above the martensitic transformation temperature cannot be brought below the martensitic modulation temperature, and conversely, the martensitic transformation If a color tone obtained at a temperature below this temperature is heated above the martensitic transformation temperature, the color tone will undergo transformation and change to a different color tone. Therefore, the two color tones that occur during the upper stage of martensitic transformation cannot be obtained simultaneously at the same temperature.
Therefore, this principle cannot be applied as a recording material.
本発明の目的は、同一温度で部分的に異なった分光反射
率を保持することのできる分光反射率可変合金及び記録
材料を提供するにある。An object of the present invention is to provide a variable spectral reflectance alloy and a recording material that can maintain partially different spectral reflectances at the same temperature.
本発明は銀を主成分とし重量で亜鉛30〜46%及びカ
ドミウム10%以下1A、2Aと4A。The main component of the present invention is 1A, 2A and 4A, with silver as the main component, 30 to 46% zinc and 10% or less cadmium by weight.
5A、6A、7A、8. IB、2B、3B、4B。5A, 6A, 7A, 8. IB, 2B, 3B, 4B.
5B族、希土類の1種または2種以上を合計で15重量
%以下を含む合金からなることを特徴とする分光反射率
可変合金である。The variable spectral reflectance alloy is characterized by being made of an alloy containing 15% by weight or less of one or more of group 5B and rare earth elements in total.
即ち、本発明は1反体状態で室温より高い第1の温度(
高温)及び第1の温度より低い温度(低温)状態で異な
った結晶構造を有する合金において、該合金は前記高温
からの急冷によって前記低温における非急冷による結晶
構造と異なる結晶構造を有することを特徴とする分光反
射率可変合金にある。That is, the present invention provides a first temperature higher than room temperature (
An alloy having different crystal structures at a temperature lower than the first temperature (high temperature) and at a temperature lower than the first temperature (low temperature), characterized in that the alloy has a crystal structure different from that obtained by non-quenching at the low temperature due to quenching from the high temperature. It is an alloy with variable spectral reflectance.
本発明合金は固相状態での加熱冷却処理により、同一温
度で少なくとも2種の分光反射率を有し、可逆的に分光
反射率を変えることのできるものである。すなわち、本
発明の係る合金は固相状態で少なくとも2つの温度領域
で結晶構造の異なった相を有し、それらの内、高温相を
急冷した状態と非急冷の標準状態の低温相状態とで分光
反射率が異なり、高温和温度領域での加熱急冷と低温和
温度領域での加熱冷却により分光反射率が可逆的に変化
するものである。The alloy of the present invention has at least two types of spectral reflectance at the same temperature by heating and cooling treatment in a solid state, and the spectral reflectance can be changed reversibly. That is, the alloy according to the present invention has phases with different crystal structures in at least two temperature ranges in a solid state, and among these, the high temperature phase is quenched and the low temperature phase is a non-quenched standard state. The spectral reflectance is different, and the spectral reflectance changes reversibly by heating and cooling in a high sum temperature range and heating and cooling in a low sum temperature range.
本発明合金の可逆的反射率の変化についてその原理を第
1図を用いて説明する0図はX−Y二元系合金の状態図
でありα固溶体とβ、γ金属間化合物が存在する。A組
成の合金を例にとると、この合金は同相状態において、
β単相、(β+γ)相及び(α+γ)相がある。結晶構
造はα、β。The principle of the reversible change in reflectance of the alloy of the present invention will be explained using FIG. 1. FIG. 0 is a phase diagram of an X-Y binary alloy, in which an α solid solution and β, γ intermetallic compounds are present. Taking an alloy with composition A as an example, in the in-phase state, this alloy has
There are β single phase, (β+γ) phase and (α+γ) phase. The crystal structure is α, β.
γのそれぞれ単相状態で異なり、これら単独及び混合相
においてそれぞれ光学的性質、たとえば分光反射率は異
なる。このような合金はT1温度。The single phase state of γ is different, and the optical properties, such as spectral reflectance, are different in these single phase and mixed phase. Such an alloy has a T1 temperature.
一般的に室温であるが、(α+γ)相が安定である。こ
れをT4温度まで加熱急冷するとβ相がT4温度まで急
冷する。この状態は(α+γ)相とは異なるため、分光
反射率も異なってくる。この急冷β相合金をTO温度以
下のT、温度まで加熱冷却するとβ相は(α+γ)相に
変態し、分光反射率は最初の状態に戻る。このような2
つの加熱冷却処理を繰返すことにより、分光反射率を可
逆的に変化させることが可能である。Generally, the (α+γ) phase is stable at room temperature. When this is heated and rapidly cooled to T4 temperature, the β phase is rapidly cooled to T4 temperature. Since this state is different from the (α+γ) phase, the spectral reflectance is also different. When this rapidly cooled β-phase alloy is heated and cooled to a temperature T below the TO temperature, the β phase transforms into an (α+γ) phase, and the spectral reflectance returns to its initial state. 2 like this
By repeating two heating and cooling processes, it is possible to reversibly change the spectral reflectance.
(合金組成)
本発明合金は、高温及び低温状態で異なった結晶構造を
有するもので、高温からの急冷によってその急冷された
結晶構造が形成されるものでなければならない。更に、
この急冷されて形成された相は所定の温度での加熱によ
って低温状態での結晶構造に変化するものでなければな
らない。(Alloy Composition) The alloy of the present invention has different crystal structures at high and low temperatures, and the rapidly cooled crystal structure must be formed by rapid cooling from a high temperature. Furthermore,
The phase formed by this rapid cooling must be able to change into a crystalline structure at a low temperature by heating at a predetermined temperature.
これらの観点から銀を主成分とし、重量で亜鉛30〜4
6%及びカドミウム10%以下を含む合金組成が好まし
い、CdはA E −Z n =元系において、Zn量
が36%以下ではβ′相(ピンク色)が経時変化により
β′→ξ相になり、ピンク色が銀白色化してしまう。こ
れがCdを添加することにより経時変化を防止できる効
果がある。Cdの量としては1.5〜7.5重量%が特
に好ましい。From these points of view, silver is the main component, and zinc is 30 to 4 by weight.
An alloy composition containing 6% and 10% or less of cadmium is preferred. Cd is in the A E -Z n = elemental system, and when the amount of Zn is 36% or less, the β' phase (pink color) changes to the β' → ξ phase due to changes over time. The pink color turns silvery white. Adding Cd has the effect of preventing this change over time. The amount of Cd is particularly preferably 1.5 to 7.5% by weight.
さらに、高温の金属間化合物が安定で分光反射率の変化
温度、すなわち、同相変態点を用途によって任意にコン
トロールする点からは1A、2A。Furthermore, the high-temperature intermetallic compounds are stable and the temperature at which the spectral reflectance changes, that is, the in-phase transformation point, can be controlled arbitrarily depending on the application, such as 1A or 2A.
4A、5A、6A、7A、8.IB、3B、4B。4A, 5A, 6A, 7A, 8. IB, 3B, 4B.
5B族元素及び希土類の1種または2種以上の元素を合
計で15重量%以下を含む合金が良好である。具体的に
はIA族の元素としてリチウム、2A族はマグネシウム
、カルシウム、4A族はチタン、ジルコニウム、ハフニ
ウム、5A族はバナジウム、ニオム、タンタル、6A族
はクロム、モリブデン、タングステン、7A族はマンガ
ン、8族はコバルト、ロジウム、イリジウム、鉄、ルテ
ニウム、オスミウム、ニッケル、パラジウム、白金、I
B族は銅、銀、金、3B族はホウ素、アルミニウム、ガ
リウム、インジウム、4B族は炭素。An alloy containing a total of 15% by weight or less of one or more of Group 5B elements and rare earth elements is good. Specifically, Group IA elements include lithium, Group 2A elements include magnesium and calcium, Group 4A elements include titanium, zirconium, and hafnium, Group 5A elements include vanadium, niomium, and tantalum, Group 6A elements include chromium, molybdenum, and tungsten, and Group 7A elements include manganese. Group 8 is cobalt, rhodium, iridium, iron, ruthenium, osmium, nickel, palladium, platinum, I
Group B is copper, silver, and gold; group 3B is boron, aluminum, gallium, and indium; and group 4B is carbon.
ケイ素、ゲルマニウム、スズ、釦、5B族はリン。Silicon, germanium, tin, button, and group 5B is phosphorus.
アンチモン、ビスマス、希土類としてはイツトリウム、
ランタン、セリウム、サマリウム、ガドリニウム、テレ
ビウム、ジスプロシウム、ルテチウムが特に好ましい。Antimony, bismuth, rare earths include yztrium,
Particularly preferred are lanthanum, cerium, samarium, gadolinium, terephium, dysprosium, and lutetium.
(ノンバルクとその製造法)
本発明合金は反射率の可変性を得るために材料の加熱急
冷によって過冷相を形成できるものが必要である。高速
で情報の製作及び記憶させるには材料の急熱急冷効果の
高い熱容量の小さいノンバルクが望ましい。即ち、所望
の微小面積に対して投入されたエネルギーによって実質
的に所望の面積部分だけが深さ全体にわたって基準とな
る結晶構造と異なる結晶構造に変り得る容積を持つノン
バルクであることが望ましい。従って、所望の微小面積
によって高密度の情報を製作するには、熱容量の小さい
ノンバルクである箔、膜、細線あるいは粉末等が望まし
い、記録密度として、20メガピッド/12以上となる
ような微小面積での情報の製作には0.01−0.2μ
mの膜厚とするのがよい、一般に金属間化合物は塑性加
工が難しい。(Non-bulk and manufacturing method thereof) In order to obtain reflectance variability, the alloy of the present invention must be able to form a supercooled phase by heating and rapidly cooling the material. In order to create and store information at high speed, it is desirable to use a non-bulk material with a high rapid heating and cooling effect and a small heat capacity. That is, it is desirable to be a non-bulk material having a volume that allows substantially only a desired area portion to be changed to a crystal structure different from a reference crystal structure throughout the depth by energy input to a desired minute area. Therefore, in order to produce high-density information in a desired micro area, it is desirable to use non-bulk materials such as foils, films, thin wires, or powders, which have a small heat capacity. 0.01-0.2μ for the production of information.
It is preferable to set the film thickness to m. Generally, intermetallic compounds are difficult to plastically work.
従って、箔、膜、細線あるいは粉末にする手法として材
料を気相あるいは液相から直接急冷固化させて所定の形
状にすることが有効である。これらの方法にはPVD法
(蒸着、スパッタリング法等)。Therefore, it is effective to directly rapidly cool and solidify the material from the gas phase or liquid phase to form it into a predetermined shape as a method for producing foil, film, thin wire, or powder. These methods include PVD methods (vapor deposition, sputtering methods, etc.).
CVD法、溶湯を高速回転する高熱伝導性をHする部材
からなる7特に金属ロール円周面上に注湯して急冷凝固
させる溶湯急冷法、電気メッキ、化学メッキ法等がある
。膜あるいは粉末状の材料を利用する場合、基板上に直
接形成するか、塗布して基板上に接着することが効果的
である7塗布する場合、粉末製加熱しても反応などを起
こさなL)バインダーがよい。また、加熱による材料の
酸化等を防止するため、材料表面、基板上に形成した膜
あるいは塗布層表面をコーティングすることも有効であ
る。There are CVD methods, molten metal quenching methods in which molten metal is rotated at high speed and made of a member with high thermal conductivity, and in particular, molten metal is poured onto the circumferential surface of a metal roll and rapidly solidified, electroplating, and chemical plating methods. When using a film or powder material, it is effective to form it directly on the substrate or to coat it and adhere it to the substrate.7 When coating, the powder does not cause any reaction even when heated. ) A binder is better. Furthermore, in order to prevent oxidation of the material due to heating, it is also effective to coat the surface of the material, the film formed on the substrate, or the surface of the coating layer.
箔又は細線は溶湯急冷法によって形成するのが好ましく
、厚さ又は直径0.1国以下が好ましい。The foil or thin wire is preferably formed by a molten metal quenching method, and preferably has a thickness or diameter of 0.1 mm or less.
特に0.1−μm以下の結晶粒径の箔又は細線を製造す
るには0.05++n以下の厚さ又は直径が好ましい。In particular, a thickness or diameter of 0.05++n or less is preferred for producing foils or fine wires with grain sizes of 0.1-μm or less.
粉末は、溶湯を気体又は液体の冷媒とともに噴霧させて
水中に投入させて急冷するガイア1−マイズ法によって
形成させることが好ましい。その粒径は0.1mm以下
が好ましく、特に粒径1μm以下の超微粉が好ましい。The powder is preferably formed by the Gaia 1-Mize method, in which molten metal is sprayed together with a gaseous or liquid refrigerant and then poured into water to be rapidly cooled. The particle size is preferably 0.1 mm or less, and ultrafine powder with a particle size of 1 μm or less is particularly preferable.
膜は前述の如く蒸着、スパッタリング、CVD電気メッ
キ、化学メッキ等によって形成できる。The film can be formed by vapor deposition, sputtering, CVD electroplating, chemical plating, etc., as described above.
特に、0.1μm以下の膜厚を形成するにはスパッタリ
ングが好まl、い。スパッタリングは目標の合金組成の
コントロールが容易にできる。In particular, sputtering is preferred for forming a film thickness of 0.1 μm or less. Sputtering allows easy control of the target alloy composition.
(組5り
本発明合金は、高温及び低温において異なる結晶構造を
有し、高温からの急冷によって高温における結晶構造を
低温で保持される過冷相の組成を有するものでなければ
ならない8高温では不規則格子の結晶構造を有するが、
急冷相はm個と!・て規則格子を有する金属間化合物が
好ましい。光学的性質を大きく変化させることのできる
ものとして本発明合金はこの金属間化合物を主に形成す
る合金が好ましく、特に合金全体が金属間化合物を形成
する組成が好まし2い。この金属間化合物は電子化合物
と呼ばれ、特に3/2電子化合物(平均外殻電子濃度e
/ aが3/2)の合金組成付近のものが良好である
。(Group 5) The alloy of the present invention must have a different crystal structure at high and low temperatures, and must have a composition of a subcooled phase in which the crystal structure at high temperature is maintained at low temperature by rapid cooling from high temperature. It has an irregular lattice crystal structure, but
There are m rapid cooling phases! - An intermetallic compound having a regular lattice is preferable. Since the alloy of the present invention can greatly change optical properties, it is preferable that the alloy mainly forms this intermetallic compound, and particularly preferably has a composition in which the entire alloy forms an intermetallic compound. These intermetallic compounds are called electronic compounds, especially 3/2 electron compounds (average outer shell electron concentration e
/a is 3/2) alloy composition is good.
また、本発明合金は固相変態、特に共析変態又は包析変
態を有する合金組成が好ましく、その合金は高温からの
急冷と非急冷によって分光反射率の差の大きいものが得
られる。Further, the alloy of the present invention preferably has an alloy composition having solid phase transformation, particularly eutectoid transformation or enveloping transformation, and the alloy can be obtained with a large difference in spectral reflectance by quenching from high temperature and non-quenching.
本発明合金は超微細結晶粒を有する合金が好ましく、特
に結晶粒径は0.1μm以下が好ましい。The alloy of the present invention preferably has ultrafine crystal grains, and particularly preferably has a crystal grain size of 0.1 μm or less.
即ち、結晶粒は可視光領域の波長の値より小さいのが好
ましいが、半導体レーザ光の波長の値より小さいもので
もよい。That is, the crystal grains are preferably smaller than the wavelength of visible light, but may be smaller than the wavelength of semiconductor laser light.
また、基板上に形成された膜の熱容量を低減させること
から、その膜を記録単位の最小程度の大きさにエツチン
グなどにより区切ることができる。In addition, since the heat capacity of the film formed on the substrate is reduced, the film can be divided into the minimum size of the recording unit by etching or the like.
(特性)
本発明の分光反射率可変合金及び記録材料は、可視光領
域における分光反射率を同一温度で少なくとも2種類形
成させることができる。即ち、高温からの急冷によって
形成された結晶構造(組織)を有するものの分光反射率
が非急冷によって形成された結晶構造(組m)を有する
ものの分光反射率と異なっていることが必要である。(Characteristics) The variable spectral reflectance alloy and recording material of the present invention can form at least two types of spectral reflectance in the visible light region at the same temperature. That is, it is necessary that the spectral reflectance of a material having a crystal structure (tissue) formed by rapid cooling from a high temperature is different from that of a material having a crystal structure (group m) formed by non-quenching.
また、急冷と非急冷によって得られるものの分光反射率
の差は5%以上が好ましく、特に10%以上有すること
が好ましい。分光反射率の差が大きければ、目視による
色の識別が容易であり、後で記載する各種用途において
顕著な効果があるゆ分光反射させる光源として、電磁波
であれば可視光以外でも使用可能であり、赤外線、紫外
線なども使用可能である。Further, the difference in spectral reflectance obtained by quenching and non-quenching is preferably 5% or more, particularly preferably 10% or more. If the difference in spectral reflectance is large, it will be easy to visually identify the color, and it will have a remarkable effect in various applications described later.As a light source for spectral reflection, electromagnetic waves other than visible light can be used. , infrared rays, ultraviolet rays, etc. can also be used.
本発明合金のその他の特性として、電気抵抗率・光の屈
折率、光の偏光率、光の透過率なども分光反射率と同様
に可逆的に変えることができ・信号・文字2図形、記号
等の各種情報の記録、再生、消去2表示、センサー等の
再生、検出手段として利用することができる。Other properties of the alloy of the present invention include electrical resistivity, light refractive index, light polarization rate, light transmittance, etc., which can be reversibly changed in the same way as spectral reflectance. It can be used as a means for recording, reproducing, erasing and displaying various information such as, reproducing and detecting sensors, etc.
分光反射率は合金の表面あらさ状態に関係するので、前
述のように少なくとも可視光領域において10%以上有
するように少なくとも目的とする部分において鏡面にな
っているのが好ましい。Since the spectral reflectance is related to the surface roughness of the alloy, it is preferable that at least the intended portion has a mirror surface so as to have 10% or more in the visible light region as described above.
(用途)
本発明合金は、加熱急冷によって部分的又は全体に結晶
構造の変化による電磁波の分光反射率、電気抵抗率、屈
折率、偏光率、透過率等の物理的又は電気的特性を変化
させ、これらの特性の変化を利用して記録2表示、セン
サー等の素子に使用することができる。(Applications) The alloy of the present invention can be heated and rapidly cooled to partially or entirely change its physical or electrical properties such as spectral reflectance of electromagnetic waves, electrical resistivity, refractive index, polarization index, and transmittance due to a change in crystal structure. By utilizing changes in these characteristics, it can be used for elements such as recording, display, and sensors.
情報等の記録の手段として、電圧及び電流の形での電気
エネルギー、電磁波(可視光、輻射熱。Electric energy in the form of voltage and current, electromagnetic waves (visible light, radiant heat) are used as a means of recording information, etc.
赤外線、紫外線、写真用閃光ランプの光、束子ビーム、
陽子線、アルゴンレーザ、半導体1ノーザ等のレーザ光
線、熱等)を用いることができ、特にその照射による分
光反射率の変化を利用して光ディスクの記録媒体に利用
するのが好ましい。光ディスクには、ディジタルオーデ
ィオディスク(DAD又はコンバクl−ディスク)、ビ
デオディスク、メモリーディスクなどがあり、これらに
使用可能である。本発明合金を光ディスクの記@媒体に
使用することにより再生専用型、追加記録型。Infrared, ultraviolet, photographic flash lamp light, bundle beam,
A proton beam, an argon laser, a laser beam such as a semiconductor laser beam, heat, etc.) can be used, and it is particularly preferable to utilize the change in spectral reflectance caused by the irradiation in the recording medium of an optical disk. Optical discs include digital audio discs (DAD or Combat L-discs), video discs, memory discs, and the like, and can be used for these. By using the alloy of the present invention in the recording medium of an optical disc, it is possible to create a read-only type and an additional recording type.
書換型ディスク装置にそれぞれ使用でき、特に書換型デ
ィスク装置においてきわめて有効である。It can be used in any rewritable disk device, and is particularly effective in rewritable disk devices.
本発明合金を光ディスクの記録媒体に使用した場合の記
録及び再生の原理の例は次の通りである。An example of the principle of recording and reproduction when the alloy of the present invention is used in a recording medium of an optical disk is as follows.
先ず、記録媒体を局部的に加熱し該加熱後の急冷によっ
て高温度領域での結晶構造を低温度領域で保持させて所
定の情報を記録し、又は高温相をベースとして、局部的
に加熱して高温和中に局部的に低温相によって記録し、
記録部分に光を照射して加熱部分と非加熱部分の光学的
特性の差を検出して情報を再生することができる7更に
情報として記録された部分を記録時の加熱温度より低い
温度又は高い温度で加熱し記@された情報を消去するこ
とができる。光はレーザ光線が好ましく、特に短波長レ
ーザが好ましい。本発明の加熱部分と非加熱部分との反
射率が500nm又は8o。First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or the high temperature phase is used as a base to locally heat the recording medium. recorded by locally low-temperature phases during high-temperature heating,
Information can be reproduced by irradiating the recorded area with light and detecting the difference in optical characteristics between the heated area and the non-heated area. Information written on it can be erased by heating it. The light is preferably a laser beam, particularly a short wavelength laser. The reflectance of the heated portion and non-heated portion of the present invention is 500 nm or 8o.
nm付近の波長において最も大きいので1.二のような
波長を有するレーザ光を再生に用いるのが好ましい。記
録、再生には同じ[/−ザ源が用いられ。It is largest at wavelengths around nm, so 1. It is preferable to use a laser beam having a wavelength like 2 for reproduction. The same source is used for recording and playback.
消去に記録のものよりエネルギー密度を小さくした他の
レーザ光を照射するのが好ましい。For erasing, it is preferable to irradiate another laser beam with a lower energy density than that for recording.
また、本発明合金を!8@媒体に用いたディスクは情報
が記録されているか否かが目視で判別できる大きなメリ
ットがある。Also, the alloy of the present invention! 8@ The disk used as the medium has the great advantage of being able to visually determine whether or not information is recorded.
表示どして、特に可視光での分光反射率を部分的に変え
ることができるので塗料を使用せずに文字9図形、記号
等を記録することができ、それらの表示は目視によって
識別することができる。また、これらの情報は消去する
ことができ、記録と消去のくり返し使用のほか、永久保
存も可能である。その応用例として時計の文字盤、アク
セサリ−などがある。Since the display can partially change the spectral reflectance of visible light, it is possible to record characters, figures, symbols, etc. without using paint, and these displays can be visually identified. I can do it. Furthermore, this information can be erased, and in addition to being used repeatedly by recording and erasing, it is also possible to store it permanently. Examples of its applications include clock faces and accessories.
センサーとして、特に可視光での分光反射率の変化を利
用する温度センサーがある。予め高温相に変る温度が分
っている本発明の合金を使用したセンサーを測定しよう
とする温度領域に保持し。As a sensor, there is a temperature sensor that utilizes changes in spectral reflectance, especially in visible light. A sensor using the alloy of the present invention, whose temperature at which it changes to a high-temperature phase is known in advance, is held in the temperature range to be measured.
その適冷によって適冷相を保持させることによっておお
よその温度検出ができる。Approximate temperature detection can be performed by maintaining an appropriate cooling phase through appropriate cooling.
(製造法)
本発明は、固体状態で室温より高い第1の温度と該第1
の温度より低い第2の温度とで異なった結晶構造を有す
る前述した化学組成の合金表面の一部に、前記第1の温
度より急冷して前記第2の温度における結晶構造と異な
る結晶構造を有する領域を形成し、前記急冷されて形成
された結晶構造を有する領域と前記第2の温度での結晶
構造を有する領域とで異なった分光反射率を形成させる
ことを特徴とする分光反射率可変合金の製造法にある。(Production method) The present invention provides a first temperature higher than room temperature in a solid state and a first temperature higher than room temperature in a solid state.
A part of the surface of the alloy having the chemical composition described above, which has a crystal structure different from that at the second temperature lower than the temperature, is rapidly cooled from the first temperature to form a crystal structure different from the crystal structure at the second temperature. and forming a region having a crystal structure formed by the rapid cooling and forming a different spectral reflectance between the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. It is in the manufacturing method of the alloy.
更に1本発明は固体状態で室温より高い第1の温度と該
第1の温度より低い第2の温度で異なった結晶構造を有
する前述した化学組成の合金表面の全部に、前記第1の
温度から急冷して前記第2の温度における結晶構造と異
なる結晶構造を形成させ、次いで前記合金表面の一部を
前記第2の温度に加熱して前記第2の温度における結晶
構造を有する領域を形成し、前記急冷されて形成された
結晶構造を有する領域と前記第2の温度における結晶構
造を有する領域とで異なった分光反射率を形成させるこ
とを特徴とする分光反射率可変合金の製造法にある。Furthermore, one aspect of the present invention provides that the entire surface of the alloy having the aforementioned chemical composition having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in a solid state is heated at the first temperature. to form a crystal structure different from the crystal structure at the second temperature, and then heat a portion of the alloy surface to the second temperature to form a region having the crystal structure at the second temperature. and forming different spectral reflectances in the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. be.
第1−の温度からの冷却速度は10”℃/秒以上、より
好ましくは103℃/秒以上が好ましい。The cooling rate from the first temperature is preferably 10''C/sec or more, more preferably 103C/sec or more.
〔実施例]−〕
A g −35w t%Zn−Cd合金を溶湯急冷法に
より箔状に成形してその色調変化1分光反射率などを調
べた。AgにZ n 35 w t%、 1.7 。[Example] - A g -35 wt% Zn-Cd alloy was formed into a foil shape by a molten metal quenching method, and its color change, 1-spectral reflectance, etc. were investigated. Zn 35 wt%, 1.7 in Ag.
2.8,3.5及び7.0wt% を含む合金をアルゴ
ン雰囲気中で溶解し、約4閣φの棒状に凝固させた。こ
れを5〜Log程度の重さに切断し、溶湯急冷用母合金
とした。Alloys containing 2.8, 3.5, and 7.0 wt% were melted in an argon atmosphere and solidified into a rod shape of about 4 mm diameter. This was cut into pieces with a weight of about 5 to Log to prepare a mother alloy for rapidly cooling the molten metal.
溶湯急冷法には一般に知られる畦ロール型装置を用いた
0石英製のノズルに母合金を装入し再溶解し、高速で回
転するロール(300mφ)外周上に注湯し厚さ50μ
m幅5mのAgZn−Cd合金箔を作製した。この箔を
電気炉により各温度2分加熱後水冷して箔の色変化及び
分光反射率を測定した。第2図は加熱急冷した箔の色変
化を示す、・印はピンク色であり0印は銀白色である。For the molten metal quenching method, the master alloy is charged into a quartz nozzle using a generally known ridge roll type device, remelted, and poured onto the outer periphery of a roll (300 mφ) rotating at high speed to a thickness of 50 μm.
An AgZn-Cd alloy foil with a width of 5 m was produced. This foil was heated in an electric furnace for 2 minutes at each temperature, then cooled with water, and the color change and spectral reflectance of the foil were measured. Figure 2 shows the color change of the foil after heating and quenching; the * mark is pink and the 0 mark is silvery white.
Cdが含有しないAg−35%Zn合金で色変化の境界
は275℃であり、この温度はCdが添加されてもほと
んど変らない。The boundary of color change in the Ag-35%Zn alloy that does not contain Cd is 275°C, and this temperature hardly changes even if Cd is added.
第3図はピンク色になった箔を200℃以下の各温度で
2分熱処理後空冷した時の箔の色を示す。Figure 3 shows the color of the pink foil when it was heat treated at temperatures below 200°C for 2 minutes and then air cooled.
Cdを含有しないAg−35%Zn合金のピンク色から
銀白色へ変化する温度はおよそ135℃であるが、Cd
が添加されてもこの温度は変化しない。以上の色調変化
は高温からの急冷によるピンク色がβ′相によるもの、
ピンク色から銀白色の変化はβ′→ζ変態によるもので
あると考えられる。The temperature at which the Cd-free Ag-35%Zn alloy changes from pink to silvery white is approximately 135°C;
This temperature does not change even if is added. The above color change is caused by the β′ phase, which causes the pink color due to rapid cooling from high temperature.
The change from pink to silvery white is thought to be due to β'→ζ transformation.
第4図はAg−35%Zn−3,5%Cd 合金箔の1
00h経過後の分光反射率を示す。450及び600n
m波長領域を除いて顕著な反射率差が認められる。以上
のようなピンク色と銀白色との色変化は350℃及び2
00℃の加熱急冷を繰返すことにより可逆的に変化し、
それに伴い分光反射率もほぼ可逆的に変化した。Figure 4 shows 1 of Ag-35%Zn-3,5%Cd alloy foil.
The spectral reflectance after 00h has passed is shown. 450 and 600n
A remarkable difference in reflectance is observed except in the m wavelength region. The color change between pink and silvery white as described above occurs at 350℃ and 2
Changes reversibly by repeating heating and cooling at 00℃,
Along with this, the spectral reflectance also changed almost reversibly.
また、銀白色にした箔をライターなどで局部的に加熱急
冷してやると、その部分のみがピンク色となり、その色
の境界は非常に明瞭であった。さらに逆にピンク色の箔
を局部加熱してやると一部は銀白色になった。Furthermore, when the silver-white foil was locally heated and rapidly cooled with a lighter, only those areas became pink, and the boundaries between the colors were very clear. Conversely, when the pink foil was locally heated, some parts became silvery white.
第5図は830nm波長領域におけるAg−35Zn二
元合金と本発明のAg35Zn−3,5Cd 合金の
経時変化にともなうピンク色に変化させた箔と銀白色に
変化させた箔の分光反射率の差を示したものである。C
dが含有しないAg−35Zn二元合金の場合は時間の
経過とともに分光反射率の差が小さくなる。Figure 5 shows the difference in the spectral reflectance of the Ag-35Zn binary alloy and the Ag35Zn-3,5Cd alloy of the present invention in the 830 nm wavelength region between the pink foil and the silver-white foil over time. This is what is shown. C
In the case of the Ag-35Zn binary alloy that does not contain d, the difference in spectral reflectance becomes smaller over time.
これは加熱急冷によりβ′相(ピンク色)になったもの
が時間とともにピンク色から銀白色に変化するため、銀
白色に変化させた箔との分光反射率の差が小さくなるた
めである。This is because the β' phase (pink color) due to heating and rapid cooling changes from pink to silvery white over time, and the difference in spectral reflectance with the silvery white foil becomes smaller.
一方、Cdを添加したAg−35Zn−3,5Cd合金
は経時変化がなくCdによる効果がでてくる。On the other hand, the Ag-35Zn-3,5Cd alloy to which Cd is added does not change over time and exhibits the effect of Cd.
〔実施例2〕
A、 g −35%Zn−3,5%Cd 合金をアルゴ
ン雰囲気中で溶解し、約1.20 wrφの円筒状に凝
固させた。これから厚さ5wi、直径100mmφの円
板を切り出し、スパッタ蒸着用のターゲットとした。[Example 2] A, g -35%Zn-3,5%Cd alloy was melted in an argon atmosphere and solidified into a cylindrical shape of about 1.20 wrφ. A disk with a thickness of 5 wi and a diameter of 100 mm was cut out from this and used as a target for sputter deposition.
スパッタ蒸着法としてはDC−マグネトロン型を使用し
基板には約26++mφ、厚さ1.2mの硬質ガラスを
用い、基板温度200℃、スパッタパワー150mWの
条件で上記合金を約80nm厚さスパッタ蒸着したうガ
スには20 m TorrのArを使用した。膜面には
さらにRF−スパッタによりAl220.またはSin
、 を約20nm厚さに保護膜として蒸着させた。As the sputter deposition method, a DC-magnetron type was used, and the above alloy was sputter-deposited to a thickness of about 80 nm using a hard glass of about 26++ mφ and 1.2 m thick as the substrate, and the substrate temperature was 200° C. and the sputter power was 150 mW. Ar gas at 20 m Torr was used as the gas. The film surface is further coated with Al220. by RF sputtering. or Sin
, was deposited as a protective film to a thickness of about 20 nm.
スパッタ蒸着状態では膜は銀白色であった・これを基板
ごと350℃で2分熱処理後水冷するとピンク色になっ
た。これをさらに2oo℃で同条件で熱処理すると銀白
色に戻った。このようにスパッタ膜においても箔同様の
色変化を示した。In the sputter-deposited state, the film was silvery white. When the film was heat-treated together with the substrate at 350° C. for 2 minutes and then cooled with water, it turned pink. When this was further heat-treated under the same conditions at 20° C., the color returned to silvery white. In this way, the sputtered film also showed the same color change as the foil.
〔実施例3〕
実施例2と同様な方法で作製したAg−35%Zn−3
,5%Cd スパッタ膜にレーザ光による記録、再生
、消去を実施した。レーザ光としては半導体レーザ(波
長830nm)もしくはArレーザ(波長488nm)
を用いた。レーザ光のパワーを膜面で10〜50mW、
ビーム径を約1μmからi−0μm程度まで変え、銀白
色の膜面上を走査させた結果、ピンク色に変化した線を
描くことができた。この線幅はレーザ出力により、約1
μmから20μmまで変化できた。このような線を何本
か書き、半導体レーザを線を横切るように走査させると
反射率変化により、約20%の直流電圧レベルの変化と
して色変化を電気信号に変えることができた。[Example 3] Ag-35%Zn-3 produced by the same method as Example 2
, 5%Cd sputtered film was subjected to recording, reproduction, and erasing using a laser beam. As a laser beam, a semiconductor laser (wavelength 830 nm) or an Ar laser (wavelength 488 nm) is used.
was used. The power of the laser beam is 10 to 50 mW at the film surface.
By changing the beam diameter from about 1 .mu.m to about i-0 .mu.m and scanning the silvery-white film surface, a line that turned pink could be drawn. This line width depends on the laser output, approximately 1
It was possible to vary from μm to 20 μm. When several such lines were drawn and a semiconductor laser was scanned across the lines, the change in reflectance enabled the color change to be converted into an electrical signal as a change in the DC voltage level of approximately 20%.
このように描いた線は膜全体を200℃近くまで加熱す
るか、パワー密度の低いレーザ光で走査することにより
元の銀白色に容易に戻すことができた。The lines drawn in this way could be easily restored to their original silvery white color by heating the entire film to nearly 200°C or by scanning it with a laser beam of low power density.
本発明によれば、結晶−結晶相聞転移による色もしくは
分光反射率を可逆的に変化させることができるので、情
報の記録媒体として記録及び消去ができる顕著な効果が
得られる。According to the present invention, the color or spectral reflectance due to crystal-crystal phase transition can be reversibly changed, so that a remarkable effect can be obtained in which recording and erasing can be performed as an information recording medium.
第1図(a)はA g −Z n二元系平衡状態図、第
1図(b)は本発明合金の加熱急冷過程による記録及び
消去の原理図、第2図及び第3図は本発明の溶湯急冷A
g −Z−n −Cd合金箔の熱処理による色変化を
示す図、第4図はピンク色(350℃2分水冷)及び銀
白色(350℃2分水冷→200℃2分空冷)化したA
、 g −35%Zn−3,5%Cd合金箔の分光反射
率を示す線図、第5図はA g −35Z n二元合金
とAg −35Z n−3゜5 Cd合金の経時変化
にともなう分光反射率差の変化を示す図である。Figure 1(a) is an equilibrium phase diagram of the A g -Z n binary system, Figure 1(b) is a diagram of the principle of recording and erasing by the heating and quenching process of the alloy of the present invention, and Figures 2 and 3 are the diagram of the book. Invention of molten metal quenching A
Figure 4 shows the color change of g-Z-n-Cd alloy foil due to heat treatment.
, A diagram showing the spectral reflectance of g-35%Zn-3,5%Cd alloy foil, Figure 5 shows the change over time of Ag-35Zn binary alloy and Ag-35Zn-3゜5Cd alloy. FIG. 3 is a diagram showing the accompanying change in spectral reflectance difference.
Claims (1)
ミウム10%以下と1A、2A、4A、5A、6A、7
A、8、1B、3B、4B、5B族、希土類の1種また
は2種以上を合計で15重量%以下を含む合金からなる
ことを特徴とする分光反射率可変合金。 2、固体状態で室温より高い第1の温度と該第1の温度
より低い第2の温度で異なつた結晶構造を有する合金表
面の一部が、前記第1の温度からの急冷によつて前記第
2の温度における結晶構造と異なつた結晶構造を有し、
他は前記第2の温度における結晶構造を有し前記急冷さ
れた結晶構造とは異なつた分光反射率を有することを特
徴とする特許請求の範囲第1項に記載の分光反射率可変
合金。 3、前記合金は、金属間化合物を有することを特徴とす
る特許請求の範囲第1項又は第2項に記載の分光反射率
可変合金。 4、前記第1の温度は固相変態点より高い温度であるこ
とを特徴とする特許請求の範囲第1項〜第3項のいずれ
かに記載の分光反射率変合金。 5、前記急冷によつて形成された結晶構造を有するもの
の分光反射率と非急冷によつて形成された前記低温にお
ける結晶構造を有するものの分光反射率との差が5%以
上であることを特徴とする特許請求の範囲第1項〜第4
項のいずれかに記載の分光反射率可変合金。6、前記合
金の分光反射率は波長400〜1000nmで10%以
上であることを特徴とする特許請求の範囲第1項〜第5
項のいずれかに記載の分光反射率可変合金。 7、前記合金はノンバルク材であることを特徴とする特
許請求の範囲第1項〜第6項のいずれかに記載の分光反
射率可変合金。 8、前記合金は結晶粒径が0.1μm以下であることを
特徴とする特許請求の範囲第1項〜第7項のいずれかに
記載の分光反射率可変合金。 9、前記合金は薄膜、箔、ストリップ、粉末及び細線の
いずれかであることを特徴とする特許請求の範囲第1項
〜第8項のいずれかに記載の分光反射可変合金。 10、銀を主成分とし、重量で亜鉛30〜46%及びカ
ドミウム10%以下と1A、2A、4A、5A、6A、
7A、8、1B、2B、3B、4B、5B族、希土類の
1種または2種以上を合計で15重量%以下を含む合金
からなることを特徴とする記録材料。 11、固体状態で室温より高い第1の温度と該第1の温
度より低い第2の温度とで異なつた結晶構造を有する合
金であつて、該合金表面の少なくとも一部が前記第1の
温度からの急冷によつて前記第2の温度における結晶構
造と異なつた結晶構造を形成する合金組成を有すること
を特徴とする特許請求の範囲第10項に記載の記録材料
。 12、前記合金の溶湯を回転する高熱伝導性部材からな
るロール円周面上に注湯してなる箔又は細線であるこを
特徴とするとする特許請求の範囲第10項又は第11項
に記載の記録材料。 13、前記合金を蒸着又はスパッタリングによつて堆積
してなる薄膜であることを特徴とする特許請求の範囲第
10項又は第11項に記載の記録材料。 14、前記合金の溶湯を液体又は気体の冷却媒体を用い
て噴霧してなる粉末であることを特徴とする特許請求の
範囲第10項又は第11項に記載の記録材料。[Claims] 1. Silver as the main component, 30 to 46% zinc and 10% or less cadmium by weight; 1A, 2A, 4A, 5A, 6A, 7
A variable spectral reflectance alloy comprising an alloy containing a total of 15% by weight or less of one or more of Group A, 8, 1B, 3B, 4B, 5B, and rare earth elements. 2. A part of the alloy surface having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in the solid state is formed by rapid cooling from the first temperature. having a crystal structure different from the crystal structure at the second temperature,
2. The variable spectral reflectance alloy according to claim 1, wherein the other alloy has a crystal structure at the second temperature and has a spectral reflectance different from that of the rapidly cooled crystal structure. 3. The variable spectral reflectance alloy according to claim 1 or 2, wherein the alloy contains an intermetallic compound. 4. The spectral reflectance modified alloy according to any one of claims 1 to 3, wherein the first temperature is higher than a solid phase transformation point. 5. The difference between the spectral reflectance of the material having a crystal structure formed by the rapid cooling and the spectral reflectance of the material having the crystal structure at the low temperature formed by non-quenching is 5% or more. Claims 1 to 4, which are
The variable spectral reflectance alloy according to any one of paragraphs. 6. Claims 1 to 5, characterized in that the spectral reflectance of the alloy is 10% or more at a wavelength of 400 to 1000 nm.
The variable spectral reflectance alloy according to any one of paragraphs. 7. The variable spectral reflectance alloy according to any one of claims 1 to 6, wherein the alloy is a non-bulk material. 8. The variable spectral reflectance alloy according to any one of claims 1 to 7, wherein the alloy has a crystal grain size of 0.1 μm or less. 9. The variable spectral reflection alloy according to any one of claims 1 to 8, wherein the alloy is any one of a thin film, foil, strip, powder, and thin wire. 10, mainly composed of silver, 30 to 46% zinc and 10% or less cadmium by weight, 1A, 2A, 4A, 5A, 6A,
A recording material comprising an alloy containing a total of 15% by weight or less of one or more of groups 7A, 8, 1B, 2B, 3B, 4B, 5B, and rare earth elements. 11. An alloy having different crystal structures in a solid state at a first temperature higher than room temperature and a second temperature lower than the first temperature, wherein at least a part of the alloy surface is at the first temperature. 11. The recording material according to claim 10, wherein the recording material has an alloy composition that forms a crystal structure different from the crystal structure at the second temperature when quenched from the temperature. 12. The foil or thin wire formed by pouring the molten metal of the alloy onto the circumferential surface of a rotating roll made of a highly thermally conductive member, according to claim 10 or 11. Recording materials. 13. The recording material according to claim 10 or 11, which is a thin film formed by depositing the alloy by vapor deposition or sputtering. 14. The recording material according to claim 10 or 11, which is a powder obtained by spraying the molten metal of the alloy using a liquid or gas cooling medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169851A JPS6230831A (en) | 1985-08-02 | 1985-08-02 | Spectral reflectance-variable alloy and recording material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169851A JPS6230831A (en) | 1985-08-02 | 1985-08-02 | Spectral reflectance-variable alloy and recording material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6230831A true JPS6230831A (en) | 1987-02-09 |
Family
ID=15894110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60169851A Pending JPS6230831A (en) | 1985-08-02 | 1985-08-02 | Spectral reflectance-variable alloy and recording material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6230831A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082269A (en) * | 2007-09-28 | 2009-04-23 | Techno Link Co Ltd | Conductor for biological stimulation and biological stimulation device |
-
1985
- 1985-08-02 JP JP60169851A patent/JPS6230831A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082269A (en) * | 2007-09-28 | 2009-04-23 | Techno Link Co Ltd | Conductor for biological stimulation and biological stimulation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4743526A (en) | Alloy having variable spectral reflectance and information recording material making use of the same | |
JPS6169935A (en) | Spectral reflectance variable alloy and recording material | |
JPS6230831A (en) | Spectral reflectance-variable alloy and recording material | |
JPS61195943A (en) | Alloy having variable spectral reflectance and recording material | |
JPS6119752A (en) | Spectral reflectance variable alloy and recording material | |
JPS61190028A (en) | Alloy having variable spectral reflectance and recording material | |
JPS62112742A (en) | Spectral reflectivity variable alloy | |
JPS61190030A (en) | Alloy having variable spectral reflectance and recording material | |
JPS6137936A (en) | Alloy and recording material capable of varying spectroreflectance | |
JPS61133356A (en) | Alloy capable of varying spectral reflectance and recording material | |
JPS61194138A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61190034A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61190032A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61190031A (en) | Alloy having variable spectral reflectance and recording material | |
JPS6169934A (en) | Variable alloy having spectral reflectance and recording material | |
JPS61190033A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61194136A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61194137A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61133350A (en) | Alloy capable of varying spectral reflectance and recording material | |
JPS6176638A (en) | Variable spectral reflectivity alloy and recording material | |
JPS62109935A (en) | Alloy having variable spectral reflectance | |
JPS61110738A (en) | Spectral reflection factor variable alloy and recording material | |
JPS61195949A (en) | Alloy having variable spectral reflectance and recording material | |
JPS61133352A (en) | Alloy capable of varying spectral reflectance and recording material | |
JPS61194141A (en) | Alloy having variable spectral reflectance and recording material |