JPS61194136A - Alloy having variable spectral reflectance and recording material - Google Patents

Alloy having variable spectral reflectance and recording material

Info

Publication number
JPS61194136A
JPS61194136A JP60032715A JP3271585A JPS61194136A JP S61194136 A JPS61194136 A JP S61194136A JP 60032715 A JP60032715 A JP 60032715A JP 3271585 A JP3271585 A JP 3271585A JP S61194136 A JPS61194136 A JP S61194136A
Authority
JP
Japan
Prior art keywords
alloy
temperature
spectral reflectance
crystal structure
variable spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032715A
Other languages
Japanese (ja)
Inventor
Isao Ikuta
生田 勲
Yoshimi Kato
加藤 義美
Tetsuo Minemura
哲郎 峯村
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60032715A priority Critical patent/JPS61194136A/en
Publication of JPS61194136A publication Critical patent/JPS61194136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain an information recording medium enabling recording and erasure by adding prescribed percentages of Zn, Ti and a rare earth element to Ag and allowing the resulting alloy to form phases having different crystal structures in two temp. ranges so as to change reversibly the spectral reflectance. CONSTITUTION:An alloy having variable spectral reflectance is composed of 30-46wt% Zn, <=10wt% Ti, <=15wt% in total of one or more kinds of elements selected among the elements belonging to the groups IA, IIA, IVA, VA, VIA, VIIA and VIII in the periodic table, the rare earth elements, etc., and the balance Ag. The alloy has different crystal structures at the 1st temp. above room temp. and a temp. below the 1st temp. in a solid state. When the alloy is rapidly cooled from the higher temp., the crystal structure changes to a structure different from a crystal structure formed by nonrapid cooling at the lower temp. Thus, two or more kinds of spectral reflectances are obtd. by heating and cooling in a solid state.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な分光反射率可変合金及び記録材料に係り
、特に光・熱エネルギーが与えられることにより合金の
結晶構造の変化にともなう分光反射率変化を利用した情
報記録、表示、センサ等の媒体に使用可能な合金に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel alloy with variable spectral reflectance and a recording material, and in particular to a novel alloy with variable spectral reflectance and a recording material, and in particular, the spectral reflectance of the alloy changes as the crystal structure of the alloy changes due to the application of light and thermal energy. This invention relates to alloys that can be used as media for information recording, display, sensors, etc. that utilize change.

〔発明の背景〕[Background of the invention]

近年、情報記録の高密度化、デジタル化が進むにつれて
種々の情報記録再生方式の開発が進められている。特に
レーザの光エネルギを情報の記録。
In recent years, as information recording becomes more dense and digital, various information recording and reproducing methods are being developed. Especially for recording information using laser light energy.

消去、再生に利用した光ディスクは工業レアメタルNn
80.1983(光ディスクと材料)に記載されている
ように磁気ディスクに比べ、高い記録密度が可能であり
、今後の情報記録の有力な方式である。このうち、レー
ザによる再生装置はコンパクト・ディスク(CD)とし
て実用化されている。
The optical disc used for erasing and playing is made of industrial rare metal Nn.
As described in 80.1983 (Optical Disks and Materials), higher recording densities are possible than magnetic disks, and this will be a promising method for information recording in the future. Among these, laser playback devices have been put into practical use as compact discs (CDs).

一方、記録可能な方式には追記型と書き換え可能型の大
きく2つに分けられる。前者は1回の書き込みのみが可
能であり、消去はできない。後者はくり返しの記録、消
去が可能な方式である。追記型の記録方法はレーザ光に
より記録部分の媒体を破壊あるいは成形して凹凸をっけ
、再生にはこの凹凸部分でのレーザ光の干渉による光反
射量の変化を利用する。この記録媒体にはTeやその合
金を利用して、その溶解、昇華による凹凸の成形が一般
的に知られている。この種の媒体では毒性など若干の問
題を含んでいる。書き換え可能型の記録媒体としては光
磁気材料が主流である。この方法は光エネルギを利用し
てキュリ一点あるいは補償点温度付近で媒体の局部的な
磁気異方性を反転させ記録し、その部分での偏光入射光
の磁気ファラデー効果及び磁気カー効果による偏光面の
回転量にて再生する。この方法は書き換え可能型の最も
有望なものとして数年後の実用化を目指し精力的な研究
開発が進められている。しかし、現在のところ偏光面の
回転量の大きな材料がなく多層膜化などの種々の工夫を
してもS/N、C/Nなどの出力レベルが小さいという
大きな問題がある。
On the other hand, recordable methods can be broadly divided into two types: write-once type and rewritable type. The former can only be written once and cannot be erased. The latter is a method that allows repeated recording and erasing. In the write-once recording method, a laser beam is used to destroy or shape the medium in the recording area to create unevenness, and for reproduction, a change in the amount of light reflected due to the interference of the laser beam at the uneven area is used for reproduction. For this recording medium, it is generally known that Te or its alloy is used to form irregularities by melting and sublimating Te. This type of medium has some problems such as toxicity. Magneto-optical materials are the mainstream for rewritable recording media. This method uses optical energy to invert and record the local magnetic anisotropy of the medium near the Curie point or the compensation point temperature, and the polarization plane of the polarized incident light at that part is caused by the magnetic Faraday effect and magnetic Kerr effect. Play with the amount of rotation. This method is considered to be the most promising rewritable method, and active research and development is underway with the aim of putting it into practical use in the next few years. However, there is currently no material with a large amount of rotation of the plane of polarization, and even with various measures such as multilayer film formation, there is a big problem that output levels such as S/N and C/N are low.

その他の書き換え可能型方式として記録媒体の非晶質と
結晶質の可逆的相変化による反射率変化を利用したもの
がある1例えばナショナル テクニカル レポート 第
29巻 第5号(1983)(National Te
chnical Report Vo129 IQ 5
(1983) )に記載TeOxに少量のGeおよびS
nを添加した合金がある。
Other rewritable methods utilize changes in reflectance caused by reversible phase changes between amorphous and crystalline recording media.1For example, National Technical Report Vol. 29, No. 5 (1983)
Chnical Report Vo129 IQ 5
(1983)) in which small amounts of Ge and S are added to TeOx.
There are alloys containing n.

しかし、この方式は非晶質相の結晶化部が低く、常温に
おける相の不安定さがディスクの信頼性に結びつく大き
な問題点である。
However, this method has a major problem in that the crystallization portion of the amorphous phase is low, and the instability of the phase at room temperature affects the reliability of the disk.

一方1色調変化を利用した合金として、特開昭57−1
40845号公報に記載の台金がある。この合金は(1
2〜15)wt%A Q−(1〜5 ) w t%Ni
−残Cuよりなる合金でマルテンサイト変態温度を境に
して、赤から黄金色に可逆的に変化することを利用した
ものである。マルテンサイト変態は温度の低下にともな
って必然的に生ずる変態のため、マルテンサイト変態温
度以上に保持した状態で得られる色調はマルテンサイト
変調温度以下にもってくることはできない、また逆にマ
ルテンサイト変態温度以下で得られる色調のものをマル
テンサイト変態温度以上にすると、変態をおこしで別の
色調に変化してしまう、したがって、マルテンサイト変
態の上下でおこる2つの色調は同一温度で同時に得るこ
とはできない、したがってこの原理では記録材料として
適用することはできない。
On the other hand, as an alloy utilizing one color tone change, JP-A-57-1
There is a base metal described in Publication No. 40845. This alloy is (1
2-15) wt%A Q-(1-5) wt%Ni
- This is an alloy made of residual Cu, which takes advantage of the fact that it reversibly changes from red to gold at the martensitic transformation temperature. Martensitic transformation is a transformation that inevitably occurs as the temperature decreases, so the color tone obtained when maintained above the martensitic transformation temperature cannot be brought below the martensitic modulation temperature, and conversely, martensitic transformation If a color tone that can be obtained at a temperature below this temperature is raised above the martensitic transformation temperature, the transformation will occur and change to a different color tone.Therefore, it is impossible to obtain two color tones that occur above and below the martensitic transformation at the same time at the same temperature. Therefore, this principle cannot be applied as a recording material.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、同一温度で部分的に異なった分光反射
率を保持することのできる分光反射率可変合金及び記録
材料を提供するにある。
An object of the present invention is to provide a variable spectral reflectance alloy and a recording material that can maintain partially different spectral reflectances at the same temperature.

〔発明の概要〕[Summary of the invention]

(発明の要旨) 本発明は銀を主成分とし重量で亜鉛30〜46%及びチ
タン10%以下と1A、2A、4A。
(Summary of the Invention) The present invention contains silver as a main component, 30 to 46% zinc and 10% or less titanium, and 1A, 2A, and 4A.

5A、6A、7A、8.IB、2B、3B、4B。5A, 6A, 7A, 8. IB, 2B, 3B, 4B.

5B族、希土類の1種または2種以上を合計で15重量
%以下含む合金からなることを特徴とする分光反射率可
変合金にある。
The variable spectral reflectance alloy is characterized by comprising an alloy containing one or more of group 5B and rare earth elements in a total amount of 15% by weight or less.

即ち、本発明は、固体状態で室温より高い第1の温度(
高温)及び第1の温度より低い温度(低温)状態で異な
った結晶構造を有する合金において、該合金は前記高温
からの急冷によって前記低温における非急冷による結晶
構造と異なる結晶構造を有することを特徴とする分光反
射率可変合金にある。
That is, the present invention provides a first temperature higher than room temperature (
An alloy having different crystal structures at a temperature lower than the first temperature (high temperature) and at a temperature lower than the first temperature (low temperature), characterized in that the alloy has a crystal structure different from that obtained by non-quenching at the low temperature due to quenching from the high temperature. It is an alloy with variable spectral reflectance.

本発明合金は固相状態での加熱冷却処理により、同一温
度で少なくとも2種の分光反射率を有し。
The alloy of the present invention has at least two types of spectral reflectance at the same temperature due to heating and cooling treatment in a solid state.

可逆的に分光反射率を変えることのできるものである。The spectral reflectance can be changed reversibly.

すなわち、本発明に係る合金は面相状態で少なくとも2
つの温度領域で結晶構造の異なった相を有し、それらの
内、高温相を急冷した状態と非急冷の標準状態の低温相
状態とで分光反射率が異なり、高温相温度領域での加熱
急冷と低温相温度領域での加熱冷却により分光反射率が
可逆的に変化するものである。
That is, the alloy according to the present invention has a phase state of at least 2
It has phases with different crystal structures in two temperature regions, and among them, the spectral reflectance is different between the quenched state of the high temperature phase and the low temperature phase state of the non-quenched standard state. The spectral reflectance changes reversibly by heating and cooling in the low phase temperature region.

本発明合金の可逆的反射率の変化についてその原理を第
1図を用いて説明する6図中の(、f)組成の合金を例
にとる。この合金は平衡状態でζ相である。この相の色
は銀白色であり1分光反射率においてもそれに対応した
曲線が得られる。この合金を高温相であるβ相安定温度
領域(T4)まで加熱後急冷するとβ相が適冷し、しか
も規則化した結晶構造を持つβ′相となる。この適冷状
態の合金の色調はピンク色となり1分光反率射もζ相状
態とは大きく異なる。この合金をζ相安定温度領域(T
 e以下)で加熱する(T2)はβ′はζ相に変態し、
それに伴い合金の色調もピンク色から銀白色へ可逆的に
変化し分光反射率も元に戻る。
The principle of the reversible change in reflectance of the alloy of the present invention will be explained with reference to FIG. 1, taking as an example the alloy having the composition (, f) in FIG. 6. This alloy is in the ζ phase at equilibrium. The color of this phase is silvery white, and a curve corresponding to the 1-spectral reflectance is obtained. When this alloy is heated to the stable temperature region (T4) of the β phase, which is a high temperature phase, and then rapidly cooled, the β phase is appropriately cooled and becomes a β' phase having an ordered crystal structure. The color tone of the alloy in this properly cooled state is pink, and the 1-spectral reflectance is also significantly different from that in the ζ phase state. This alloy is in the ζ-phase stable temperature region (T
When heated (T2) at (below e), β' transforms into ζ phase,
Along with this, the color tone of the alloy changes reversibly from pink to silvery white, and the spectral reflectance returns to its original value.

以後、この過程を繰返すことができる0以上の分光反射
率変化を情報の記録、再生、消去に適用できる0本発明
は異種結晶相間の相転移による反射率や色調の変化を利
用した記録材料として有効である。
Thereafter, this process can be repeated.The spectral reflectance change of 0 or more can be applied to recording, reproducing, and erasing information. It is valid.

再生はT8温度であり一般に室温である。T。Regeneration is at T8 temperature, generally at room temperature. T.

でζ相の銀白色の材料に選択的にエネルギーを加えT4
まで加熱後急冷する。するとその部分はβ′相となりピ
ンク色に変色する。これが記録に相当する。この部分を
他の部分と比較することによって記録部を再生すること
ができる。このピンク色に変色した部分に先と異なった
密度のエネルギーを加え、T2 まで加熱急冷すること
によりβ′からζに相変態し銀白色にもどる。これが記
録の消去に相当する。上記の記録、再生、消去過程は全
く逆の色調変化によっても可能である。すなわち、β′
相のピンク色にβ′ ζ変態を利用して銀白色で記録す
る。これをピンク色と区別して再生する。さらにζ相を
β′相にすることにより消去することができる。
Energy is selectively applied to the silvery white material in the ζ phase at T4.
Heat until cool and then cool quickly. Then, that part becomes β' phase and changes color to pink. This corresponds to a record. The recorded portion can be reproduced by comparing this portion with other portions. By applying a different density of energy to this pink colored part and heating and rapidly cooling it to T2, the phase transforms from β' to ζ and returns to silvery white. This corresponds to erasing records. The above-mentioned recording, reproducing and erasing processes can also be performed by completely opposite color tone changes. That is, β′
The pink color of the phase is recorded as a silvery white color by utilizing the β′ ζ transformation. This is distinguished from the pink color and reproduced. Furthermore, it can be eliminated by changing the ζ phase to the β' phase.

上記のエネルギーとしては一般的に電磁波などが適して
いる。具体的には、各種レーザ光、電子ビームなども良
好である。再生には分光反射率において差が見られる波
長のどの値の光でもよい。
Generally, electromagnetic waves are suitable as the above-mentioned energy. Specifically, various laser beams, electron beams, etc. are also suitable. For reproduction, light of any wavelength that shows a difference in spectral reflectance may be used.

すなわち、紫外から赤外領誠までのレーザ、ランプなど
が好適である。また、色の変化として認識できるので表
示素子としても使用できる。
That is, lasers, lamps, etc. ranging from ultraviolet to infrared are suitable. Furthermore, since it can be recognized as a change in color, it can also be used as a display element.

(合金組成) 本発明合金は、高温及び低温状態で異なった結晶構造を
有するもので、高温からの急冷によってその急冷された
結晶構造が形成されるものでなければならない、更に、
この急冷されて形成された相は所定の温度での加熱によ
って低温状態での結晶構造に変化するものでなければな
らない。
(Alloy Composition) The alloy of the present invention must have different crystal structures at high and low temperatures, and the rapidly cooled crystal structure must be formed by rapid cooling from a high temperature.
The phase formed by this rapid cooling must be able to change into a crystalline structure at a low temperature by heating at a predetermined temperature.

これらの観点から銀を主成分とし1重量で亜鉛30〜4
6%及びチタン10%以下を含む合金組成が好ましい、
チタンはA g −Z n二元系において、Zn量が3
6%以下ではβ′相(ピンク色)が経時変化によりβ′
→ζ相になり、ピンク色が銀白色してしまう、これがチ
タンを添加することにより経時変化を防止できる効果が
ある。チタンの量としては0.2〜7.5重量%が特の
好ましい。
From these points of view, silver is the main component and zinc is 30 to 4 by weight.
Alloy compositions comprising 6% titanium and 10% titanium or less are preferred.
Titanium has a Zn content of 3 in the A g -Z n binary system.
At 6% or less, the β' phase (pink) changes over time and becomes β'.
→ It becomes a ζ phase, and the pink color becomes silvery white. Adding titanium has the effect of preventing this change over time. A particularly preferred amount of titanium is 0.2 to 7.5% by weight.

さらに、高温の金属間化合物が安定で分光反射率の変化
温度、すなわち同相変態点を用途によって任意にコント
ロールする点からは1A、2A。
Furthermore, the high-temperature intermetallic compounds are stable, and the temperature at which the spectral reflectance changes, that is, the in-phase transformation point, can be controlled arbitrarily depending on the application, such as 1A or 2A.

4A、5A、6A、7A、8.IB、2B、3B。4A, 5A, 6A, 7A, 8. IB, 2B, 3B.

4B、5B族元素及び希土類の1種または2種以上の元
素を合計で15重量%以下を含む合金が良好である。具
体的には、LA族の元素としてリチウム、2A族はマグ
ネシウム、カルシウム、4A族はジルコニウム、ハフニ
ウム、5A族はバナジウム、ニオブ、タンタル、6A族
はクロム、モリブデン、タングステン、7A族はマンガ
ン、8族はコバルト、ロジウム、イリジウム、鉄、ルテ
ニウム、オスミウム、ニッケル、パラジウム、白金、I
B族は鋼、金、2B族はカドミウム、3B族はホウ素、
アルミニウム、ガリウム、インジウム、4B族は炭素、
ケイ素、ゲルマニウム、スズ、鉛、5B族はリン、アン
チモン、ビスマス、希土類としてはイツトリウム、ラン
タン、セリウム、サマリウム、ガドリニウム、テレビウ
ム、ジスプロシウム、ルテチウムが特に好ましい。
An alloy containing a total of 15% by weight or less of one or more elements of groups 4B and 5B and rare earth elements is good. Specifically, the LA group elements include lithium, the 2A groups include magnesium and calcium, the 4A groups include zirconium and hafnium, the 5A groups include vanadium, niobium, and tantalum, the 6A groups include chromium, molybdenum, and tungsten, and the 7A groups include manganese and 8 The groups are cobalt, rhodium, iridium, iron, ruthenium, osmium, nickel, palladium, platinum, I
Group B is steel, gold, Group 2B is cadmium, Group 3B is boron,
Aluminum, gallium, indium, group 4B is carbon,
Particularly preferred are silicon, germanium, tin, and lead, phosphorus, antimony, and bismuth for Group 5B, and yttrium, lanthanum, cerium, samarium, gadolinium, terephium, dysprosium, and lutetium as rare earth elements.

(ノンバルクとその製造法) 本発明合金は反射率の可変性を得るために材料の加熱急
冷によって適冷相を形成できるものが必要である。高速
で情報の製作及び記憶させるには材料の急熱急冷効果の
高い熱容量の小さいノンバルクが望ましい、即ち、所望
の微小面積に対して投入されたエネルギーによって実質
的に所望の面積部分だけが深さ全体にわたって基準とな
る結晶構造と異なる結晶構造に変り得る容積を持つノン
バルクであることが望ましい、従って、所望の微小面積
によって高密度の情報を製作するには、熱′容量の小さ
いノンバルクである箔、膜、細線あるいは粉末等が望ま
しい。記録密度として、20メガビット/a#以上とな
るような微小面積での情報の製作には0.01〜0.2
μmの膜厚とするのがよい、一般に金属間化合物は塑性
加工が難しい。
(Non-bulk and manufacturing method thereof) In order to obtain reflectance variability, the alloy of the present invention must be capable of forming an appropriately cooled phase by heating and rapidly cooling the material. In order to create and store information at high speed, it is desirable to use a non-bulk material with a high rapid heating and cooling effect and a small heat capacity.In other words, the energy applied to a desired minute area allows the depth of only the desired area to be reduced. It is desirable that the foil be a non-bulk material that has a volume that can change to a crystal structure different from the reference crystal structure throughout. Therefore, in order to produce high-density information in a desired small area, a non-bulk material with a small heat capacity is required. , film, thin wire, powder, etc. are preferable. The recording density is 0.01 to 0.2 for producing information in a minute area such as 20 megabits/a# or more.
It is preferable to have a film thickness of μm. In general, intermetallic compounds are difficult to plastically work.

従って、箔、膜1.細線あるいは粉末にする手法として
材料を気相あるいは液相から直接急冷固化させて所定の
形状にすることが有効である。これらの方法にはPVD
法(蒸着、スパッタリング法等)、CVD法、溶湯を高
速回転する高熱伝導性を有する部材からなる。特に金属
ロール円周面上に注湯して急冷凝固させる溶湯急冷法、
電気メッキ。
Therefore, foil, membrane 1. An effective way to make thin wires or powder is to directly rapidly cool and solidify the material from the gas or liquid phase to form it into a predetermined shape. These methods include PVD
method (vapor deposition, sputtering method, etc.), CVD method, and a member with high thermal conductivity that rotates molten metal at high speed. In particular, molten metal quenching method in which molten metal is poured onto the circumferential surface of a metal roll and rapidly solidified.
electroplating.

化学メッキ法等がある。膜あるいは粉末状の材料を利用
する場合、基板上に直接形成するか、塗布して基板上に
接着することが効果的である。塗布する場合、粉末を加
熱しても反応などを起こさないバインダーがよい、また
、加熱による材料の酸化等を防止するため、材料表面、
基板上に形成した膜あるいは塗布層表面をコーティング
することも有効である。
There are chemical plating methods, etc. When using a film or powder material, it is effective to form it directly on the substrate or to apply it and adhere it to the substrate. When coating, it is best to use a binder that does not cause a reaction even when the powder is heated.Also, to prevent oxidation of the material due to heating,
It is also effective to coat the surface of a film or coating layer formed on the substrate.

箔又は細線は溶湯急冷法によって形成するのが好ましく
、厚さ又は直径0.1m以下が好ましい。
The foil or thin wire is preferably formed by a molten metal quenching method, and preferably has a thickness or diameter of 0.1 m or less.

特に0.1μm以下の結晶粒径の箔又は細線を製造する
には0.05m以下の厚さ又は直径が好まし%N。
In particular, in order to produce foil or thin wire with a crystal grain size of 0.1 μm or less, a thickness or diameter of 0.05 m or less is preferable.

粉末は、溶湯を気体又は液体の冷媒とともに噴霧させて
水中に投入させて急冷するガイアトマイズ法によって形
成させることが好ましい、その粒径は0.1m以下が好
ましく、特に粒径1μm以下の超微粉が好ましい。
The powder is preferably formed by the Gaia atomization method in which molten metal is sprayed with a gaseous or liquid refrigerant and then poured into water for rapid cooling.The particle size is preferably 0.1 m or less, particularly ultrafine powder with a particle size of 1 μm or less. is preferred.

膜は前述の如く蒸着、スパッタリング、CVD電気メッ
キ、化学メッキ等によって形成できる。
The film can be formed by vapor deposition, sputtering, CVD electroplating, chemical plating, etc., as described above.

特に、0.1μm以下の膜厚を形成するにはスパッタリ
ングが好ましい。スパッタリングは目標の合金組成のコ
ントロールが容易にできる。
In particular, sputtering is preferable to form a film with a thickness of 0.1 μm or less. Sputtering allows easy control of the target alloy composition.

(組織) 本発明合金は、高温及び低温において異なる結晶構造を
有し、高温からの急冷によって高温における結晶構造を
低温で保持される急冷相の組成を有するものでなければ
ならない、高温では不規則格子の結晶構造を有するが、
急冷相は一例として型規則格子を有する金属間化合物が
好ましい、光学的性質を大きく変化させることのできる
ものとして本発明合金はこの金属間化合物を主に形成す
る合金が好ましく、特に合金全体が金属間化合物を形成
する組成が好ましい、この金属間化合物は電子化合物と
呼ばれ、特に3/2電子化合物(平均外殻電子濃度a 
/ aが372)の合金組成付近のものが良好である。
(Structure) The alloy of the present invention has different crystal structures at high and low temperatures, and must have a composition of a quenched phase in which the crystal structure at high temperature is maintained at low temperature by quenching from high temperature, and is irregular at high temperature. It has a lattice crystal structure, but
For example, the quenched phase is preferably an intermetallic compound having a regular lattice.As the optical properties can be greatly changed, the alloy of the present invention is preferably an alloy that mainly forms this intermetallic compound.In particular, the entire alloy is made of metal. Preferably, the composition forms an intermetallic compound. This intermetallic compound is called an electronic compound, and especially a 3/2 electron compound (average outer shell electron concentration a
/a is around 372) alloy composition is good.

また、本発明合金は同相変態、特に共析変態又は包析変
態を有する合金組成が好ましく、その合金は高温からの
急冷と非急冷によって分光反射率の差の大きいものが得
られる。
Further, the alloy of the present invention preferably has an alloy composition having in-phase transformation, particularly eutectoid transformation or enveloping transformation, and the alloy can be obtained with a large difference in spectral reflectance by quenching from high temperature and non-quenching.

本発明合金は超微細結晶粒を有する合金が好ましく、特
に結晶粒径は0.1μ−以下が好ましい。
The alloy of the present invention preferably has ultrafine crystal grains, and particularly preferably has a crystal grain size of 0.1 μm or less.

即ち、結晶粒は可視光領域の波長の値より小さいのが好
ましいが、半導体レーザ光の波長の値より小さいもので
もよい。
That is, the crystal grains are preferably smaller than the wavelength of visible light, but may be smaller than the wavelength of semiconductor laser light.

また、基板上に形成された膜の熱容量を低減させること
から、その膜を記録単位の最小程度の大きさにエツチン
グなどにより区切ることができる。
In addition, since the heat capacity of the film formed on the substrate is reduced, the film can be divided into the minimum size of the recording unit by etching or the like.

(特性) 本発明の分光反射率可変合金及び記録材料は。(Characteristic) The variable spectral reflectance alloy and recording material of the present invention are as follows.

可視光領域における分光反射率を同一温度で少なくとも
2種類形成させることができる。即ち、高温から、の急
冷によって形成された結晶構造(組織)を有するものの
分光反射率が非急冷によって形成された結晶構造(組織
)を有するものの分光反射率と異なっていることが必要
である。
At least two types of spectral reflectance in the visible light region can be formed at the same temperature. That is, it is necessary that the spectral reflectance of a material having a crystal structure (structure) formed by rapid cooling from a high temperature is different from the spectral reflectance of a material having a crystal structure (structure) formed by non-quenching.

また、急冷と非急冷によって得られるものの分光反射率
の差は5%以上が好ましく、特に10%以上有すること
が好ましい0分光反射率の差が大きければ、目視による
色の識別が容易であり、後で記載する各種用途において
顕著な効果がある。
In addition, the difference in spectral reflectance obtained by quenching and non-quenching is preferably 5% or more, particularly preferably 10% or more.0 If the difference in spectral reflectance is large, it is easy to visually identify the color, It has remarkable effects in various applications described later.

分光反射させる光源として、電磁波であれば可視光以外
でも使用可能であり、赤外線、紫外線なども使用可能で
ある。
As a light source for spectrally reflecting, electromagnetic waves other than visible light can be used, and infrared rays, ultraviolet rays, etc. can also be used.

本発明合金のその他の特性として、電気抵抗率、光の屈
折率、光の偏光率、光の透過率なども分光反射率と同様
に可逆的に変えることができ、信号。
Other properties of the alloy of the present invention include electrical resistivity, optical refractive index, optical polarization index, and optical transmittance, which can be changed reversibly in the same way as spectral reflectance, and can be used to change signals.

文字9図形、記号等の各種情報の記録、再生、消去9表
示、センサー等の再生、検出手段として利用することが
できる。
It can be used as a means for recording, reproducing, erasing, displaying various information such as characters, figures, symbols, etc., and reproducing and detecting sensors, etc.

分光反射率は合金の表面あらさ状態に関係するので、前
述のように少なくとも可視光領域において10%以上有
するように少なくとも目的とする部分において鏡面にな
っているのが好ましい。
Since the spectral reflectance is related to the surface roughness of the alloy, it is preferable that at least the intended portion has a mirror surface so as to have 10% or more in the visible light region as described above.

(用途) 本発明合金は、加熱急冷によって部分的又は全体に結晶
構造の変化による電磁波の分光反射率、電気抵抗率、屈
折率、偏光率、透過率等の物理的又は電気的特性を変化
させ、これらの特性の変化を利用して記録1表示、セン
サー等の素子に使用することができる。
(Applications) The alloy of the present invention can be heated and rapidly cooled to partially or entirely change its physical or electrical properties such as spectral reflectance of electromagnetic waves, electrical resistivity, refractive index, polarization index, and transmittance due to a change in crystal structure. By utilizing changes in these characteristics, it can be used for elements such as recording, display, and sensors.

情報等の記録の手段として、電圧及び電流の形での電気
エネルギー、電磁波(可視光、輻射熱。
Electric energy in the form of voltage and current, electromagnetic waves (visible light, radiant heat) are used as a means of recording information, etc.

赤外線、紫外線、写真用閃光ランプの光、電子ビーム、
陽子線、アルゴンレーザ、半導体レーザ等のレーザ光線
、熱等)を用いることができ、特にその照射による分光
反射率の変化を利用して光ディスクの記録媒体に利用す
るのが好ましい。光ディスクには、ディジタルオーディ
オディスク(DAC又はコンパクトディスク)、ビデオ
ディスク、メモリーディスクなどがあり、これらに使用
可能である0本発明合金を光ディスクの記録媒体に使用
することにより再生専用型、追加記録型。
Infrared rays, ultraviolet rays, photographic flash lamp light, electron beams,
A proton beam, a laser beam such as an argon laser, a semiconductor laser, heat, etc.) can be used, and it is particularly preferable to utilize the change in spectral reflectance caused by the irradiation in the recording medium of an optical disk. Optical discs include digital audio discs (DAC or compact discs), video discs, memory discs, etc. By using the alloy of the present invention in the recording medium of optical discs, playback-only type and additional recording type can be created. .

書換型ディスク装置にそれぞれ使用でき、特に書換型デ
ィスク装置においてきわめて有効である。
It can be used in any rewritable disk device, and is particularly effective in rewritable disk devices.

本発明合金を光ディスクの記録媒体に使用した場合の記
録及び再生の原理の例は次の通りである。
An example of the principle of recording and reproduction when the alloy of the present invention is used in a recording medium of an optical disk is as follows.

先ず、記録媒体を局部的に加熱し該加熱後の急冷によっ
て高温度領域での結晶構造を低温度領域で保持させて所
定の情報を記録し、又は高温相をベースとして、局部的
に加熱して高温相中に局部的に低温相によって記録し、
記録部分に光を照射して加熱部分と非加熱部分の光学的
特性の差を検出して情報を再生することができる。更に
情報として記録された部分を記録時の加熱温度より低い
温度又は高い温度で加熱し記録された情報を消去するこ
とができる。光はレーザ光線が好ましく、特に短波長レ
ーザが好ましい6本発明の加熱部分と非加熱部分との反
射率が500nm又は800nm付近の波長において最
も大きいので、このような波長を有するレーザ光を再生
に用いるのが好ましい、記録、再生には同じレーザ源が
用いられ、消去に記録のものよりエネルギー密度を小さ
くした他のレーザ光を照射するのが好ましい。
First, the recording medium is locally heated and then rapidly cooled to maintain the crystal structure in the high temperature region in the low temperature region to record predetermined information, or the high temperature phase is used as a base to locally heat the recording medium. recorded locally by a low temperature phase during the high temperature phase,
Information can be reproduced by irradiating the recorded portion with light and detecting the difference in optical characteristics between the heated portion and the non-heated portion. Furthermore, the recorded information can be erased by heating the portion recorded as information at a temperature lower or higher than the heating temperature at the time of recording. The light is preferably a laser beam, and a short wavelength laser is particularly preferable.6 Since the reflectance between the heated part and the non-heated part of the present invention is greatest at a wavelength around 500 nm or 800 nm, a laser beam having such a wavelength can be used for reproduction. Preferably, the same laser source is used for recording and reproducing, and another laser beam having a lower energy density than that for recording is irradiated for erasing.

また、本発明合金を記畷媒体に用いたディスクは情報が
記録されているか否かが目視で判別できる大きなメリッ
トがある。
Further, a disk using the alloy of the present invention as a recording medium has a great advantage in that it can be visually determined whether information is recorded or not.

表示として、特に可視光での分光反射率を部分的に変え
ることができるので塗料を使用せずに文字、図形、記号
等を記録することができ、それらの表示は目視によって
識別することができる。また、これらの情報は消去する
ことができ、記録と消去のくり返し使用のほか、永久保
存も可能である。その応用例として時計の文字盤、アク
セサリ−などがある。
As a display, it is possible to partially change the spectral reflectance of visible light, so it is possible to record characters, figures, symbols, etc. without using paint, and these displays can be visually identified. . Furthermore, this information can be erased, and in addition to being used repeatedly by recording and erasing, it is also possible to store it permanently. Examples of its applications include clock faces and accessories.

センサーとして、特に可視光での分光反射率の変化を利
用する温度センサーがある。予め高温相に変る温度が分
っている本発明の合金を使用したセンサーを測定しよう
とする温度領域に保持し。
As a sensor, there is a temperature sensor that utilizes changes in spectral reflectance, especially in visible light. A sensor using the alloy of the present invention, whose temperature at which it changes to a high-temperature phase is known in advance, is held in the temperature range to be measured.

その適冷によって適冷相を保持させることによっておお
よその温度検出ができる。
Approximate temperature detection can be performed by maintaining an appropriate cooling phase through appropriate cooling.

(製造法) 本発明は、固体状態で室温より高い第1の温度と該第1
の温度より低い第2の温度とで異なった結晶構造を有す
る前述した化学組成の合金表面の一部に、前記第1の温
度より急冷して前記第2の温度における結晶構造と異な
る結晶構造を有する領域を形成し、前記急冷されて形成
された結晶構造を有する領域と前記第2の温度での結晶
構造を有する領域とで異なった分光反射率を形成させる
ことを特徴とする分光反射率可変合金の製造法にある。
(Production method) The present invention provides a first temperature higher than room temperature in a solid state and a first temperature higher than room temperature in a solid state.
A part of the surface of the alloy having the chemical composition described above, which has a crystal structure different from that at the second temperature lower than the temperature, is rapidly cooled from the first temperature to form a crystal structure different from the crystal structure at the second temperature. and forming a region having a crystal structure formed by the rapid cooling and forming a different spectral reflectance between the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. It is in the manufacturing method of the alloy.

更に1本発明は固体状態で室温より高い第1の温度と該
第1の温度より低い第2の温度で異なった結晶構造を有
する前述した化学組成の合金表面の全部に、前記第1の
温度から急冷して前記第2の温度における結晶構造と異
なる結晶構造を形成させ1次いで前記合金表面の一部を
前記第2の温度に加熱して前記第2の温度における結晶
構造を有する領域を形成し、前記急冷されて形成された
結晶構造を有する領域と前記第2の温度における結晶構
造を有する領域とで異なった分光反射率を形成させるこ
とを特徴とする分光反射率可変合金の製造法にある。
Furthermore, one aspect of the present invention provides that the entire surface of the alloy having the aforementioned chemical composition having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in a solid state is heated at the first temperature. to form a crystal structure different from the crystal structure at the second temperature, and then heat a part of the alloy surface to the second temperature to form a region having the crystal structure at the second temperature. and forming different spectral reflectances in the region having the crystal structure formed by the rapid cooling and the region having the crystal structure at the second temperature. be.

第1の温度からの冷却速度は102℃/秒以上。The cooling rate from the first temperature is 102°C/second or more.

より好ましくは103℃/秒以上が好ましい。More preferably, it is 103° C./second or higher.

【発明の実施例〕[Embodiments of the invention]

〔実施例1〕 A g −35w t%Zn−Ti合金を溶湯急冷法に
より箔状に成形してその色調変化、分光反射率などを調
べた。AgにZn35wt%、Ti1.7w2.8,3
.5及び7.0wt%を含む合金をアルゴン雰囲気中で
溶解し、約4■φの棒状に凝固された。これを5〜Lo
g程度の重に切断し、溶湯急冷用母合金とした。
[Example 1] A g -35wt%Zn-Ti alloy was formed into a foil shape by a molten metal quenching method, and its color change, spectral reflectance, etc. were investigated. Ag, Zn35wt%, Ti1.7w2.8,3
.. The alloy containing 5 and 7.0 wt% was melted in an argon atmosphere and solidified into a rod shape of about 4 φ. Add this to 5~Lo
It was cut into pieces weighing approximately 1.5 g to prepare a mother alloy for rapidly cooling the molten metal.

溶湯急冷法には一般に知られる単ロール型装置を用いた
8石英製のノズルに母合金を装入し再溶解し、高速で回
転するロール(300■φ)外周上に注湯し厚さ50μ
m幅5mのAg−Zn−Ti合金箔を作製した。この箔
を電気炉により各温度2分加熱後水冷して箔の色変化及
び分光反射率を測定した。第2図は加熱急冷した箔の色
変化を示す、・印はピンク色であり0印は銀白色である
。Tiが含有しないAg−35%Zn合金で色変化の境
界は275℃であり、この温度はTiが添加されてもほ
とんど変らない。
For the molten metal quenching method, the master alloy is charged into an 8-quartz nozzle using a commonly known single roll type device, remelted, and then poured onto the outer periphery of a roll (300 φ) rotating at high speed to a thickness of 50 μm.
An Ag-Zn-Ti alloy foil with a width of 5 m was produced. This foil was heated in an electric furnace for 2 minutes at each temperature, then cooled with water, and the color change and spectral reflectance of the foil were measured. Figure 2 shows the color change of the foil after heating and quenching; the * mark is pink and the 0 mark is silvery white. The boundary of color change in the Ag-35% Zn alloy containing no Ti is 275° C., and this temperature hardly changes even if Ti is added.

第3図はピンク色になった箔を200℃以下の各温度で
2分熱処理後空冷した時の箔の色を示す。
Figure 3 shows the color of the pink foil when it was heat treated at temperatures below 200°C for 2 minutes and then air cooled.

Tiを含有しないA g −35%Zn合金のピンク色
から銀白色へ変化する温度はおよそ135℃であるが、
Tiが添加されてもこの温度は変化しない。以上の色調
変化は高温からの急冷によるピンク色がβ′相によりも
の、ピンク色から銀白色の変化はβ′→ζ変態によるも
のであると考えられる。
The temperature at which the A g -35% Zn alloy that does not contain Ti changes from pink to silvery white is approximately 135°C;
This temperature does not change even if Ti is added. The above color change is thought to be caused by the β' phase, which caused the pink color due to rapid cooling from high temperature, and the change from pink to silvery white to be caused by the β'→ζ transformation.

第4図はAg−35%Zn−3,5%Ti合金箔の10
0h経過後の分光反射率を示す、450及び600nm
波長領域を除いて顕著な反射率差が認められる。以上の
ようなピンク色と銀白色との色変化は350℃及び20
0℃の加熱急冷を繰返すことにより可逆的に変化し、そ
れに伴い分光反射率もほぼ可逆的に変化した。
Figure 4 shows 10% of Ag-35%Zn-3,5%Ti alloy foil.
450 and 600 nm showing spectral reflectance after 0 hours
A remarkable difference in reflectance is observed except in the wavelength region. The color change between pink and silvery white as described above occurs at 350℃ and 20℃.
By repeating heating and quenching at 0°C, the change occurred reversibly, and the spectral reflectance also changed almost reversibly.

また、銀白色にした箔をライターなどで局部的に加熱急
冷してやると、その部分のみがピンク色となり、その色
の境界は非常に明瞭であった。さらに逆にピンク色の箔
を局部加熱してやると一部は銀白色になった。
Furthermore, when the silver-white foil was locally heated and rapidly cooled with a lighter, only those areas became pink, and the boundaries between the colors were very clear. Conversely, when the pink foil was locally heated, some parts became silvery white.

第5図は830nm波長領域におけるAg−35Zn二
元合金と本発明のAg−35Zn−。
FIG. 5 shows the Ag-35Zn binary alloy and the Ag-35Zn of the present invention in the 830 nm wavelength region.

3.5  Ti合金の経時変化にともなうピンク色に変
化させた箔と銀白色に変化させた箔の分光反射の差を示
したものである。Tiが含有しないAg−35Zn二元
合金の場合は時間の経過とともに分光反射率の差が小さ
くなる。
3.5 This figure shows the difference in spectral reflection between a foil that has changed to a pink color and a foil that has changed to a silvery white color as the Ti alloy changes over time. In the case of the Ag-35Zn binary alloy that does not contain Ti, the difference in spectral reflectance decreases over time.

これは加熱急冷によりβ′相(ピンク色)になったもの
が時間とともにピンク色から銀6色に変化するため、銀
白色に変化させた箔との分光反射率の差が小さくなるた
めである。
This is because the β' phase (pink color) due to heating and rapid cooling changes from pink to six colors of silver over time, and the difference in spectral reflectance with the foil that changes to silvery white becomes smaller. .

一方、Tiを添加したA g −35Z n −3、5
Ti合金は経時変化がなくTiによる効果がでてくる。
On the other hand, Ti-added A g -35Z n -3,5
Ti alloys do not change over time, and the effects of Ti are produced.

〔実施例2〕 Ag−35%Zn−3,5%Ti合金をアルゴン雰囲気
中で溶解し、約120閤φの円筒状に凝固させた。これ
から厚さ5■、直径100■φの円板を切り出し、スパ
ッタ蒸着用のターゲットとした。
[Example 2] An Ag-35% Zn-3,5% Ti alloy was melted in an argon atmosphere and solidified into a cylindrical shape with a diameter of about 120 mm. A disk with a thickness of 5 mm and a diameter of 100 mm was cut out from this and used as a target for sputter deposition.

スパッタ蒸着法としてはDC−マグネトロン型を使用し
基板には約26■φ、厚さ1゜2■の硬質ガラスを用い
、基板温度200℃、スパッタパワー150mWの条件
で上記合金を約80nm厚さスパッタ蒸着した。ガスに
は20 mTorrのArを使用した。膜面にはさらに
RF−スパッタによりAl1,0.またはS i Ol
 を約20nm厚さに保護膜とした蒸着させた。
A DC-magnetron type sputter deposition method was used, and the substrate was made of hard glass with a diameter of approximately 26 mm and a thickness of 1°2 mm. The above alloy was deposited to a thickness of approximately 80 nm at a substrate temperature of 200°C and a sputter power of 150 mW. Sputter deposited. Ar gas was used at 20 mTorr. The film surface was further coated with Al1,0. Or S i Ol
was deposited to a thickness of about 20 nm as a protective film.

スパッタ蒸着状態では膜は銀白色であった。これを基板
ごと350℃で2分熱処理後水冷するとピンク色になっ
た。これをさらに200℃で同条件で熱処誠すると銀白
色に戻った。このようにスパッタ膜においても箔同様の
色変化を示した。
In the sputter-deposited state, the film was silvery white. When this substrate was heat treated at 350° C. for 2 minutes and then cooled with water, it turned pink. When this was further heat-treated at 200° C. under the same conditions, the color returned to silvery white. In this way, the sputtered film also showed the same color change as the foil.

〔実施例3〕 実施例2と同様な方法で作製したAg−35%Z n 
−3,5%Tiスパッタ膜にレーザ光による記録、再生
、消去を実施した。レーザ光としては半導体レーザ(波
長830nm)もしくはArレーザ(波長488nm)
を用いた。レーザ光のパ 。
[Example 3] Ag-35%Zn produced by the same method as Example 2
Recording, reproduction, and erasing were performed on the -3.5% Ti sputtered film using laser light. As a laser beam, a semiconductor laser (wavelength 830 nm) or an Ar laser (wavelength 488 nm) is used.
was used. Laser light beam.

ワーを膜面で10〜50mW、ビーム原を約1μmから
10μm程度まで変え、銀白色の膜面上を走査させた結
果、ピンク色に変色した線を描くことができた。この線
幅はレーザ出力により、約1μmから20μmまで変化
できた。このような線を何本か書き、半導体レーザを線
を横切るように走査させると反射率変化により、約20
%の直流電圧レベルの変化として色変化を電気信号に変
えることができた。
As a result of scanning the silvery-white film surface with a power of 10 to 50 mW on the film surface and a beam source varying from about 1 μm to about 10 μm, a line that turned pink could be drawn. This line width could be varied from about 1 μm to 20 μm depending on the laser output. When several such lines are drawn and a semiconductor laser is scanned across the lines, the reflectance changes, resulting in approximately 20
It was possible to convert the color change into an electrical signal as a change in DC voltage level of %.

このように描いた線は膜全体を200℃近くまで加熱す
るか、パワー密度の低いレーザ光で走査することによる
元の銀白色に容易に戻すことができた。
The lines drawn in this way could be easily restored to their original silvery white color by heating the entire film to nearly 200°C or by scanning it with a laser beam of low power density.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、結晶−結晶相間転移による色もしくは
分光反射率を可逆的に変化させることができるので、情
報の記録媒体として記録及び消去ができる顕著な効果が
得られる。
According to the present invention, since the color or spectral reflectance due to crystal-crystal phase transition can be reversibly changed, a remarkable effect can be obtained in which recording and erasing can be performed as an information recording medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はAg−Zn二元系平衡状態図及び第1図
(b)は本発明合金の加熱急冷過程による記録及び消去
の原理を示す説明図、第2図及び第3図は本発明の溶湯
急冷Ag−Zn−Ti合金箔の熱処理による色変化を示
す特性図、第4図はピンク色(350℃2分空冷)及び
銀白色(350℃で2全水冷→200℃2分空冷)化し
たA、−35%Z n −3,5%Ti合金箔の分光反
射率を示す線図である。第5図はA g −35Z n
二元合金とAg−35Zn−3,5Ti合金の経時変化
にともなう分光反射率差の変化を示す特性図である。
Figure 1(a) is an equilibrium phase diagram of the Ag-Zn binary system, Figure 1(b) is an explanatory diagram showing the principle of recording and erasing by the heating and quenching process of the alloy of the present invention, and Figures 2 and 3 are Characteristic diagrams showing color changes due to heat treatment of the molten rapidly cooled Ag-Zn-Ti alloy foil of the present invention. Figure 4 shows pink color (air cooled at 350°C for 2 minutes) and silvery white (2 complete water cooling at 350°C → 200°C for 2 minutes). It is a diagram showing the spectral reflectance of A, -35% Z n -3,5% Ti alloy foil which has been air-cooled. Figure 5 shows A g -35Z n
FIG. 2 is a characteristic diagram showing changes in spectral reflectance difference over time between a binary alloy and an Ag-35Zn-3,5Ti alloy.

Claims (1)

【特許請求の範囲】 1、銀を主成分とし、重量で亜鉛30〜46%及びチタ
ン10%以下と1A、2A、4A、5A、6A、7A、
8、1B、2B、3B、4B、5B族、希土類の1種ま
たは2種以上を合計で15%以下を含む合金からなるこ
とを特徴とする分光反射率可変合金。 2、固体状態で室温より高い第1の温度と該第1の温度
より低い第2の温度で異なつた結晶構造を有する合金表
面の一部が、前記第1の温度からの急冷によつて前記第
2の温度における結晶構造と異なつた結晶構造を有し、
他は前記第2の温度における結晶構造を有し前記急冷さ
れた結晶構造とは異なつた分光反射率を有することを特
徴とする特許請求の範囲第1項に記載の分光反射率可変
合金。 3、前記合金は金属間化合物を有することを特徴とする
特許請求の範囲第1項又は第2項に記載の分光反射率可
変合金。 4、前記第1の温度は固相変態点より高い温度であるこ
とを特徴とする特許請求の範囲第1項〜第3項のいずれ
か1項に記載の分光反射率可変合金。 5、前記急冷によつて形成された結晶構造を有するもの
の分光反射率と非急冷によつて形成された前記低温にお
ける結晶構造を有するものの分光反射率との差が5%以
上であることを特徴とする特許請求の範囲第1項〜第4
項のいずれか1項に記載の分光反射率可変合金。 6、前記合金の分光反射率は波長400〜1000nで
10%以上であることを特徴とする特許請求の範囲第1
項〜第5項のいずれか1項に記載の分光反射率可変合金
。 7、前記合金はノンバルク材であることを特徴とする特
許請求の範囲第1項〜第6項のいずれか1項に記載の分
光反射率可変合金。 8、前記合金は結晶粒径が0.1μm以下であることを
特徴とする特許請求の範囲第1項〜第7項のいずれか1
項に記載の分光反射率可変合金。 9、前記合金は薄膜、箔、ストリップ、粉末及び細線の
いずれかであることを特徴とする特許請求の範囲第1項
〜第8項のいずれか1項に記載の分光反射率可変合金。 10、銀を主成分とし、重量で亜鉛30〜46%及びチ
タン10%以下と1A、2A、4A、5A、6A、7A
、8、1B、2B、3B、4B、5B族、希土類の1種
または2種以上を合計で15%以下を含む合金からなる
ことを特徴とする記録材料。 11、固体状態で室温より高い第1の温度と該第1の温
度より低い第2の温度とで異なつた結晶構造を有する合
金であつて、該合金表面の少なくとも一部が前記第1の
温度からの急冷によつて前記第2の温度における結晶構
造と異なつた結晶構造を形成する合金組成を有すること
を特徴とする特許請求の範囲第10項に記載の記録材料
。 12、前記合金の溶湯を回転する高熱伝導性部材からな
るロール円周面上に注湯してなる箔又は細線であること
を特徴とする特許請求の範囲第10項又は第11項に記
載の記録材料。 13、前記合金を蒸着又はスパッタリングによつて堆積
してなる薄膜であることを特徴とする特許請求の範囲第
10項又は第11項に記載の記録材料。 14、前記合金の溶湯を液体又は気体の冷却媒体を用い
て噴霧してなる粉末であることを特徴とする特許請求の
範囲第10項又は第11項に記載の記録材料。
[Claims] 1. The main component is silver, 30 to 46% zinc and 10% or less titanium, and 1A, 2A, 4A, 5A, 6A, 7A,
A variable spectral reflectance alloy comprising an alloy containing a total of 15% or less of one or more of Group 8, 1B, 2B, 3B, 4B, 5B, and rare earth elements. 2. A part of the alloy surface having a different crystal structure at a first temperature higher than room temperature and a second temperature lower than the first temperature in the solid state is formed by rapid cooling from the first temperature. having a crystal structure different from the crystal structure at the second temperature,
2. The variable spectral reflectance alloy according to claim 1, wherein the other alloy has a crystal structure at the second temperature and has a spectral reflectance different from that of the rapidly cooled crystal structure. 3. The variable spectral reflectance alloy according to claim 1 or 2, wherein the alloy contains an intermetallic compound. 4. The variable spectral reflectance alloy according to any one of claims 1 to 3, wherein the first temperature is higher than a solid phase transformation point. 5. The difference between the spectral reflectance of the material having a crystal structure formed by the rapid cooling and the spectral reflectance of the material having the crystal structure at the low temperature formed by non-quenching is 5% or more. Claims 1 to 4, which are
The variable spectral reflectance alloy according to any one of the items. 6. Claim 1, characterized in that the spectral reflectance of the alloy is 10% or more at a wavelength of 400 to 1000 nm.
The variable spectral reflectance alloy according to any one of Items 1 to 5. 7. The variable spectral reflectance alloy according to any one of claims 1 to 6, wherein the alloy is a non-bulk material. 8. Any one of claims 1 to 7, wherein the alloy has a crystal grain size of 0.1 μm or less.
The variable spectral reflectance alloy described in . 9. The variable spectral reflectance alloy according to any one of claims 1 to 8, wherein the alloy is any one of a thin film, foil, strip, powder, and thin wire. 10. Silver as the main component, 30 to 46% zinc and 10% or less titanium by weight, 1A, 2A, 4A, 5A, 6A, 7A
, 8, 1B, 2B, 3B, 4B, 5B groups, and rare earth elements in a total of 15% or less. 11. An alloy having different crystal structures in a solid state at a first temperature higher than room temperature and a second temperature lower than the first temperature, wherein at least a part of the alloy surface is at the first temperature. 11. The recording material according to claim 10, wherein the recording material has an alloy composition that forms a crystal structure different from the crystal structure at the second temperature when quenched from the temperature. 12. It is a foil or thin wire formed by pouring the molten metal of the alloy onto the circumferential surface of a roll made of a rotating highly thermally conductive member, according to claim 10 or 11. Recording materials. 13. The recording material according to claim 10 or 11, which is a thin film formed by depositing the alloy by vapor deposition or sputtering. 14. The recording material according to claim 10 or 11, which is a powder obtained by spraying the molten metal of the alloy using a liquid or gas cooling medium.
JP60032715A 1985-02-22 1985-02-22 Alloy having variable spectral reflectance and recording material Pending JPS61194136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032715A JPS61194136A (en) 1985-02-22 1985-02-22 Alloy having variable spectral reflectance and recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032715A JPS61194136A (en) 1985-02-22 1985-02-22 Alloy having variable spectral reflectance and recording material

Publications (1)

Publication Number Publication Date
JPS61194136A true JPS61194136A (en) 1986-08-28

Family

ID=12366529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032715A Pending JPS61194136A (en) 1985-02-22 1985-02-22 Alloy having variable spectral reflectance and recording material

Country Status (1)

Country Link
JP (1) JPS61194136A (en)

Similar Documents

Publication Publication Date Title
JPS61133349A (en) Alloy capable of varying spectral reflectance and recording material
JPS6169935A (en) Spectral reflectance variable alloy and recording material
JPS6119749A (en) Spectral reflectance variable alloy and recording material
JPS61195943A (en) Alloy having variable spectral reflectance and recording material
JPS61194136A (en) Alloy having variable spectral reflectance and recording material
JPS61190028A (en) Alloy having variable spectral reflectance and recording material
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPS61190030A (en) Alloy having variable spectral reflectance and recording material
JPS61133352A (en) Alloy capable of varying spectral reflectance and recording material
JPS61133356A (en) Alloy capable of varying spectral reflectance and recording material
JPS62112742A (en) Spectral reflectivity variable alloy
JPS6230831A (en) Spectral reflectance-variable alloy and recording material
JPS61190034A (en) Alloy having variable spectral reflectance and recording material
JPS6137936A (en) Alloy and recording material capable of varying spectroreflectance
JPS61190031A (en) Alloy having variable spectral reflectance and recording material
JPS61133350A (en) Alloy capable of varying spectral reflectance and recording material
JPS61194138A (en) Alloy having variable spectral reflectance and recording material
JPS61194137A (en) Alloy having variable spectral reflectance and recording material
JPS61110738A (en) Spectral reflection factor variable alloy and recording material
JPS6119746A (en) Spectral reflectance variable alloy and recording material
JPS6169934A (en) Variable alloy having spectral reflectance and recording material
JPS61190033A (en) Alloy having variable spectral reflectance and recording material
JPS61195949A (en) Alloy having variable spectral reflectance and recording material
JPS61194141A (en) Alloy having variable spectral reflectance and recording material
JPS6176638A (en) Variable spectral reflectivity alloy and recording material