JPS6119003B2 - - Google Patents

Info

Publication number
JPS6119003B2
JPS6119003B2 JP5117779A JP5117779A JPS6119003B2 JP S6119003 B2 JPS6119003 B2 JP S6119003B2 JP 5117779 A JP5117779 A JP 5117779A JP 5117779 A JP5117779 A JP 5117779A JP S6119003 B2 JPS6119003 B2 JP S6119003B2
Authority
JP
Japan
Prior art keywords
optical axis
optical
parallel
laser beam
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5117779A
Other languages
Japanese (ja)
Other versions
JPS55142307A (en
Inventor
Yoshikazu Goto
Sadao Mizuno
Masahiro Deguchi
Mitsuro Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5117779A priority Critical patent/JPS55142307A/en
Publication of JPS55142307A publication Critical patent/JPS55142307A/en
Publication of JPS6119003B2 publication Critical patent/JPS6119003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

【発明の詳細な説明】 本発明は光学機器等において、光軸設定位置の
ずれ量を検知し光軸補正を行なう光軸位置補正装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical axis position correction device for detecting the amount of deviation of an optical axis setting position and correcting the optical axis in an optical device or the like.

例えば、光学式ビデオデイスク装置のようにレ
ーザーや光変調器を用いた光学機器は温度変化に
より光軸が変動すると、フオーカス、トラツキン
グ精度が落ち画質が劣化し機器本来の機能を満足
できなくなる。このため今までは光学機器を温度
コントロールされた恒温室に設置していた。しか
しこのような方法では光学機器の使用できる場所
が限定されること、恒温室自体が高価であり設備
費がかかること等の欠点があつた。又光学機器自
体の温度及び環境温度が一定になるまで時間がか
かりその間装置が使用できないため非常に効率が
悪かつた。
For example, when the optical axis of an optical device using a laser or a light modulator, such as an optical video disk device, fluctuates due to temperature changes, the focus and tracking accuracy decrease, image quality deteriorates, and the device's original functions cannot be fulfilled. For this reason, until now, optical instruments have been installed in a temperature-controlled temperature-controlled room. However, this method has drawbacks such as limitations on where the optical equipment can be used, and the constant temperature room itself being expensive and requiring equipment costs. Furthermore, it takes time for the temperature of the optical equipment itself and the ambient temperature to become constant, and the equipment cannot be used during that time, resulting in very poor efficiency.

一方、光軸の変動が生じた場合、これを補正す
るに、その原因となつたものを元の状態に戻すよ
うにする方法が考えられる。しかし、例えばレー
ザーの温度変化により光軸の変動が生じた場合、
レーザーの支持を動かして元に戻すことは機構が
複雑となり極めて困難である。また光軸の変動を
生じさせる原因となるものが多数ある場合、それ
ぞれを元に戻すことはさらに困難である。
On the other hand, when a fluctuation of the optical axis occurs, one way to correct this is to restore the cause of the fluctuation to its original state. However, for example, if the optical axis changes due to a change in laser temperature,
Moving the laser support and returning it to its original position requires a complicated mechanism and is extremely difficult. Furthermore, if there are many causes of optical axis fluctuation, it is even more difficult to restore each one to its original state.

本発明は光軸上で光軸の位置を検出し、光軸変
動が生じた場合、光軸を平行に移動させる手段
と、さらには光軸の角度を変える手段とによつて
光軸が常に所定の点を通るように補正しようとす
るものである。つまりレーザー等の光源から発生
される光ビームは種々の原因によりその光軸が変
動しても、光軸位置補正装置を通過した光ビーム
の光軸は常に一定になるようにしようとするもの
である。
The present invention detects the position of the optical axis on the optical axis, and when an optical axis fluctuation occurs, the optical axis is always maintained by means of moving the optical axis in parallel and further by changing the angle of the optical axis. This is an attempt to correct it so that it passes through a predetermined point. In other words, even if the optical axis of the light beam generated from a light source such as a laser changes due to various causes, the optical axis of the light beam that has passed through the optical axis position correction device is always kept constant. be.

以下本発明の実施例を図面に従い説明する。第
1図において、1はレーザー光源で、2はレーザ
ー光源1より発光したレーザー光である。3は反
射ミラーで、4は第1のガルバノ型回転素子で回
転軸に前記反射ミラー3が固定されており、外部
電圧に応じて反射ミラー3を回転させレーザー光
2の光軸角度を変えることができる。5は互に平
行な面を有するガラス板で第2のガルバノ型回転
素子6の回転軸に固定されており、ガラス板5を
回転させることによりレーザー光2の光軸を平行
に移動できる。7及び8はビームスプリツター
で、レーザー光2を分光し、設定光軸2a及び光
位置検出素子9,10に導く。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a laser light source, and 2 is a laser beam emitted from the laser light source 1. In FIG. Reference numeral 3 denotes a reflecting mirror, and 4 indicates a first galvano-type rotating element. The reflecting mirror 3 is fixed to a rotating shaft, and the reflecting mirror 3 is rotated according to an external voltage to change the optical axis angle of the laser beam 2. I can do it. A glass plate 5 having parallel surfaces is fixed to the rotation axis of the second galvano-type rotating element 6, and by rotating the glass plate 5, the optical axis of the laser beam 2 can be moved in parallel. 7 and 8 are beam splitters that separate the laser beam 2 and guide it to a set optical axis 2a and optical position detection elements 9 and 10.

設定光軸2a上には、図示されていないが、光
学式ビデオデイスクではレンズ系が置かれており
光軸が設定光軸2aよりはずれた場合、レンズの
収差が生じたり、フオーカス、トラツキング精度
が悪くなり画像が劣化する。
Although not shown, an optical video disc has a lens system placed on the set optical axis 2a, and if the optical axis deviates from the set optical axis 2a, lens aberrations may occur or focus and tracking accuracy may be impaired. It gets worse and the image deteriorates.

光位置検出素子9,10はそれぞれ分割された
太陽電池9a,9bおよび10a,10bで構成
されており、レーザー光2の位置を太陽電池9
a,9bおよび10a,10bの出力差で表わ
す。なお、光位置検出素子9,10は光路長の異
なる位置、すなわちビームスプリツタ8からの距
離が異なる位置に設けられ、かつレーザー光2が
設定光軸2aを通る時、差動出力が0になる位置
に設けられている。11は差動アンプで光位置検
出素子9の各太陽電池9a,9bの差動出力を発
生する。12は出力アンプで差動アンプ11の差
動出力に応じた出力を発生し、第2のガルバノ型
回転素子6を光位置検出素子9の差動出力が0に
なる様に回動させる。13は差動アンプで光位置
検出素子10の各太陽電池10a,10bの差動
出力を発生する。
The optical position detection elements 9 and 10 are each composed of divided solar cells 9a and 9b and 10a and 10b, and the position of the laser beam 2 is determined by the solar cell 9.
It is expressed by the output difference between a, 9b and 10a, 10b. The optical position detection elements 9 and 10 are provided at positions with different optical path lengths, that is, at different distances from the beam splitter 8, and when the laser beam 2 passes through the set optical axis 2a, the differential output becomes 0. It is located in a certain position. A differential amplifier 11 generates a differential output from each of the solar cells 9a and 9b of the optical position detection element 9. An output amplifier 12 generates an output corresponding to the differential output of the differential amplifier 11, and rotates the second galvano-type rotating element 6 so that the differential output of the optical position detection element 9 becomes zero. A differential amplifier 13 generates a differential output of each solar cell 10a, 10b of the optical position detection element 10.

14も差動アンプであり、差動アンプ11,1
3の出力の差を発生する。15は出力アンプで、
差動アンプ14の差動出力に応じた出力を発生
し、第1のガルバノ型回転素子4を光位置検出素
子9及び10の差動出力の差、すなわち差動アン
プ14の出力が0になる様回動させる。
14 is also a differential amplifier, and the differential amplifiers 11, 1
Generates a difference in output of 3. 15 is the output amplifier,
It generates an output according to the differential output of the differential amplifier 14, and converts the first galvano-type rotating element 4 to the difference between the differential outputs of the optical position detection elements 9 and 10, that is, the output of the differential amplifier 14 becomes 0. Rotate it.

かかる構成においてレーザー光軸がずれた場合
を考える。第2図、第3図において光位置検出素
子9,10は動作説明を明確にするため設定光軸
2a上に設けたとして示してある。第2図におい
て、レーザー光2が光軸2bの様にずれたとする
と光位置検出素子9ではa、光位置検出素子10
ではbずれる。従つて出力アンプ15の出力には
a−bに対応する出力が得られ、第3図のごとく
反射ミラー3が回動し、レーザー光2は光軸2c
を通り、設定光軸2aと平行な光軸となる。この
時光軸2cの光位置検出素子9上のずれ量はa′と
なる。従つて出力アンプ12の出力にはa′に対応
する出力が得られ、ガラス板5が回動し、光軸2
cは平行移動し設定光軸2aを通過する様にな
る。
Consider a case where the laser optical axis is shifted in such a configuration. In FIGS. 2 and 3, the optical position detecting elements 9 and 10 are shown as being provided on the setting optical axis 2a in order to clarify the explanation of the operation. In FIG. 2, if the laser beam 2 is shifted as shown in the optical axis 2b, the optical position detecting element 9 is a, and the optical position detecting element 10 is
Then b is shifted. Therefore, an output corresponding to a-b is obtained from the output amplifier 15, the reflecting mirror 3 rotates as shown in FIG. 3, and the laser beam 2 is directed along the optical axis 2c.
, and becomes an optical axis parallel to the set optical axis 2a. At this time, the amount of deviation of the optical axis 2c on the optical position detection element 9 is a'. Therefore, the output of the output amplifier 12 corresponds to a', the glass plate 5 rotates, and the optical axis 2
c moves in parallel and passes through the set optical axis 2a.

他の実施例として第1図の構成において、光位
置検出素子10の差動出力にて第1のガルバノ型
回転素子4を回動し、レーザー光2が常に光位置
検出素子10の中心に入いる様な制御方式が考え
られる。このように光路長の異なる位置で設定光
軸と等価なる所に2ケの光位置検出器を設け、光
軸のずれに対し常に2つの光位置検出器にレーザ
ー光が入いる様に光軸を制御すれば、光軸が変化
しても設定光軸に光軸を一致させることができ
る。この場合、光軸角度補正を行なう制御系、す
なわち反射ミラー3を回動させる制御系と光軸平
行補正を行なう制御系、すなわちガラス板5を回
動させる制御系との間に相関を生じる。つまり反
射ミラー3が回動した場合、光位置検出素子9上
のレーザー光の位置が変化する。従つて光軸平行
補正を行なう制御によつてガラス板5が回動す
る。ガラス板5が回転した場合、レーザー光が完
全な平行光でなく、またエネルギー密度が一定で
ないために差動アンプ14に信号が発生し、光軸
角度補正を行なう制御によつて反射ミラー3が回
動する。このように両制御には相関があるため、
相互にハンチングを生じ制御系が安定しないこと
がある。
As another example, in the configuration shown in FIG. 1, the first galvano-type rotary element 4 is rotated by the differential output of the optical position detecting element 10, so that the laser beam 2 always enters the center of the optical position detecting element 10. Several control methods can be considered. In this way, two optical position detectors are installed at positions with different optical path lengths that are equivalent to the set optical axis, and the optical axis is adjusted so that the laser beam always enters the two optical position detectors even if the optical axis shifts. By controlling the optical axis, the optical axis can be made to coincide with the set optical axis even if the optical axis changes. In this case, a correlation occurs between the control system that performs optical axis angle correction, that is, the control system that rotates the reflecting mirror 3, and the control system that performs optical axis parallel correction, that is, the control system that rotates the glass plate 5. That is, when the reflecting mirror 3 rotates, the position of the laser beam on the optical position detection element 9 changes. Therefore, the glass plate 5 is rotated under control for performing optical axis parallel correction. When the glass plate 5 rotates, the laser beam is not perfectly parallel and the energy density is not constant, so a signal is generated in the differential amplifier 14, and the reflection mirror 3 is controlled by the optical axis angle correction control. Rotate. In this way, since there is a correlation between the two controls,
Mutual hunting may occur and the control system may become unstable.

これを防ぐために、両制御系の応答速度を異な
らせれば、光軸角度ずれ成分と光軸平行ずれ成分
の独立調整が容易にでき、両制御系の相関による
影響は少なくなり、制御が安定に行なえる。光軸
角度可変手段、光軸平行移動手段としては第1図
のようなガルバノ型回転素子に平面鏡及びガラス
板を取付ける方式の他に、実施例として第4図及
び第5図の方法が考えられ、図面に従い説明す
る。第4図において16はレーザー光、17は反
射鏡でガルバノ型回転素子18の回転軸に固定さ
れており、レーザー光16の角度を可変する。1
9は移動台でガルバノ型回転素子18を塔載し、
ガイドレール20により規制された矢印方向に平
行移動する。なお移動台19はオネジ21とはめ
合いになつており、オネジ21に連結しているモ
ータ22により駆動される。かかる構成によりレ
ーザー光16の光軸がずれた場合角度補正はガル
バノ型回転素子18を一定角度回転することによ
り、平行補正は移動台19をモータ22によつて
一定距離移動させることによりできる。
To prevent this, by making the response speeds of both control systems different, the optical axis angle deviation component and the optical axis parallel deviation component can be easily adjusted independently, and the influence of the correlation between the two control systems is reduced, resulting in stable control. I can do it. As the optical axis angle variable means and the optical axis parallel movement means, in addition to the method of attaching a plane mirror and a glass plate to a galvano-type rotating element as shown in FIG. 1, the methods shown in FIGS. 4 and 5 can be considered as examples. , will be explained according to the drawings. In FIG. 4, reference numeral 16 denotes a laser beam, and 17 denotes a reflecting mirror, which is fixed to the rotating shaft of a galvano-type rotating element 18, and changes the angle of the laser beam 16. 1
9 is a moving table on which a galvano-type rotating element 18 is mounted;
It moves in parallel in the direction of the arrow regulated by the guide rail 20. The moving table 19 is fitted with a male screw 21 and is driven by a motor 22 connected to the male screw 21. With this configuration, when the optical axis of the laser beam 16 deviates, angle correction can be made by rotating the galvano-type rotating element 18 by a certain angle, and parallel correction can be made by moving the movable table 19 a certain distance by the motor 22.

また、第5図、第6図において、23はレーザ
ー光、24,25は反射鏡である。26はガルバ
ノ型回転素子で回転軸に反射鏡25が固定されて
おり、矢印A方向に回動できる。27は反射鏡回
転台で反射鏡24及びガルバノ型回転素子26が
固定されており、回転軸28を支点とし矢印B方
向に回動できる。なお回動の駆動源としてはモー
タ、ガルバノ型回転素子が考えられるが図では省
略してある。かかる構成においてレーザー光23
の光軸が23aの様にずれた場合を考える。前述
した光位置検出手段により光軸角度ずれ、光軸平
行ずれを検出する。検出した光軸角度ずれ出力に
よりガルバノ型回転素子26を駆動し反射鏡25
を25aの位置に回動しレーザー光23aを23
bに修正し、設定光軸と平行に補正する。次に検
出した光軸平行ずれ出力により反射鏡回転台27
を回転させる。光学理論により二面鏡は鏡の交角
が一定であれば入射光が一定なら反射光は平行光
となつて出て行く、第6図の様に反射鏡回転台2
7の回転により反射鏡24は24aに、反射鏡2
5aは25bの位置に動きレーザー光23aの反
射光は23bから23cに平行移動し設定光軸と
一致する。
Further, in FIGS. 5 and 6, 23 is a laser beam, and 24 and 25 are reflecting mirrors. Reference numeral 26 denotes a galvano-type rotating element, on which a reflecting mirror 25 is fixed to a rotating shaft, and can be rotated in the direction of arrow A. Reference numeral 27 denotes a reflecting mirror rotary table to which the reflecting mirror 24 and the galvano-type rotating element 26 are fixed, and can be rotated in the direction of arrow B about the rotating shaft 28 as a fulcrum. Note that a motor or a galvano-type rotating element may be considered as a driving source for rotation, but these are omitted in the figure. In such a configuration, the laser beam 23
Let us consider a case where the optical axis of is shifted as shown in 23a. The above-mentioned optical position detection means detects the optical axis angular deviation and optical axis parallel deviation. The detected optical axis angle deviation output drives the galvano type rotating element 26 and the reflecting mirror 25
to the position 25a and the laser beam 23a to the 23
Correct it to be parallel to the set optical axis. Next, based on the detected optical axis parallel deviation output, the reflector rotating table 27
Rotate. According to optical theory, if the angle of intersection of the mirrors is constant, the reflected light will become parallel light and exit as parallel light.
7, the reflecting mirror 24 becomes 24a, and the reflecting mirror 2
5a moves to the position 25b, and the reflected light of the laser beam 23a moves in parallel from 23b to 23c to coincide with the set optical axis.

以上の説明は光軸が角度及び平行の両成分のず
れ量を持つている場合の光軸位置補正装置につい
て述べたが、光軸が平行ずれだけの場合は、光軸
平行移動手段だけを用いればよい。この場合光位
置検出手段としては光位置検出素子9,10のど
ちらか一方があれば十分である。
The above explanation has been about the optical axis position correction device when the optical axis has both angular and parallel deviations, but if the optical axis has only parallel deviation, only the optical axis parallel movement means can be used. Bye. In this case, it is sufficient to have either one of the optical position detecting elements 9 and 10 as the optical position detecting means.

以上のように本発明によれば、第1の検出手段
と第2の検出手段とを光路長の異なる位置で設定
光軸と等価なる所に設け、第1の検出手段の信号
と第2の検出手段の信号との差を取ることにより
光軸角度ずれ成分を検出し、その信号にて光軸角
度可変手段を回動して光軸角度補正を行ない、ま
たどちらか一方の検出手段の信号にて光軸平行ず
れ成分を検出し、その信号にて光軸平行手段を可
動して光軸平行補正を行なうため、温度変化等に
より生じる光軸ずれを、自動的に容易に補正で
き、光学機器の安定な動作が望めるものである。
As described above, according to the present invention, the first detection means and the second detection means are provided at positions with different optical path lengths and are equivalent to the set optical axis, and the signal of the first detection means and the second detection means are provided at positions equivalent to the set optical axis. The optical axis angle deviation component is detected by taking the difference between the signal from the detection means, and the optical axis angle variable means is rotated based on the signal to correct the optical axis angle, and the signal from one of the detection means is detects the optical axis parallel misalignment component, and uses the signal to move the optical axis parallel means to correct the optical axis parallelism. Therefore, optical axis misalignment caused by temperature changes, etc. can be automatically and easily corrected. Stable operation of the equipment can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図および第3図はそれぞれ第1図の要部拡大
図、第4図は本発明の他の実施例の要部側面図、
第5図および第6図は本発明の更に他の実施例の
それぞれ異なる動作状態における側面図である。 1……レーザー光、3……反射ミラー、4,6
……ガルバノ型回転素子、5……ガラス板、7,
8……ビームスプリツター、9,10……光位置
検出素子、11,13,14……差動増幅器。
FIG. 1 is a block diagram showing one embodiment of the present invention;
2 and 3 are enlarged views of the main parts of FIG. 1, respectively, and FIG. 4 is a side view of the main parts of another embodiment of the present invention.
5 and 6 are side views of yet another embodiment of the present invention in different operating states. 1...Laser light, 3...Reflection mirror, 4,6
... Galvano type rotating element, 5 ... Glass plate, 7,
8... Beam splitter, 9, 10... Optical position detection element, 11, 13, 14... Differential amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 入射される光の光軸角度を制御信号に応じて
可変する光軸角度可変手段と、入射される光の光
軸を制御信号に応じて平行移動せしめる平行移動
手段と、光の光軸の所定位置よりのずれ量を検出
し、そのずれ量に応じた電気信号を発生する第1
の検出手段と、第2の検出手段とを設け、第1の
検出手段と第2の検出手段とを前記光軸角度可変
手段と前記平行移動手段を通過した光の光軸上の
相異なる位置に配設するとともに、前記第1また
は第2の検出手段よりの電気信号を前記平行移動
手段の制御信号として印加する第1の制御ループ
と、前記第1および第2の検出手段よりの電気信
号の差信号を前記光軸角度可変手段の制御信号と
して印加する第2の制御ループを有することを特
徴とする光軸位置補正装置。
1. Optical axis angle variable means for varying the optical axis angle of incident light in accordance with a control signal, parallel movement means for translating the optical axis of incident light in accordance with a control signal, and The first detects the amount of deviation from a predetermined position and generates an electrical signal according to the amount of deviation.
and a second detection means, the first detection means and the second detection means are arranged at different positions on the optical axis of the light that has passed through the optical axis angle variable means and the parallel movement means. a first control loop for applying an electrical signal from the first or second detecting means as a control signal to the parallel moving means; and an electrical signal from the first and second detecting means. An optical axis position correcting device comprising a second control loop that applies a difference signal between the two as a control signal to the optical axis angle variable means.
JP5117779A 1979-04-24 1979-04-24 Optical axis position correcting device Granted JPS55142307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117779A JPS55142307A (en) 1979-04-24 1979-04-24 Optical axis position correcting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5117779A JPS55142307A (en) 1979-04-24 1979-04-24 Optical axis position correcting device

Publications (2)

Publication Number Publication Date
JPS55142307A JPS55142307A (en) 1980-11-06
JPS6119003B2 true JPS6119003B2 (en) 1986-05-15

Family

ID=12879551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117779A Granted JPS55142307A (en) 1979-04-24 1979-04-24 Optical axis position correcting device

Country Status (1)

Country Link
JP (1) JPS55142307A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166916A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Photoscanner
JPS62220838A (en) * 1986-03-20 1987-09-29 Hitachi Electronics Eng Co Ltd Surface inspecting instrument
JPS62251717A (en) * 1986-04-25 1987-11-02 Hitachi Ltd Device for correcting direction of laser beam
JPS63100420A (en) * 1986-10-17 1988-05-02 Nippon Laser:Kk Light dividing optical device
JP2713625B2 (en) * 1989-02-02 1998-02-16 株式会社リコー Image forming device
JP2767137B2 (en) * 1989-08-29 1998-06-18 旭光学工業株式会社 Optical axis adjustment mechanism of optical system for optical information recording / reproducing device
US5251057A (en) * 1989-10-13 1993-10-05 Xerox Corporation Multiple beam optical modulation system
US5251058A (en) * 1989-10-13 1993-10-05 Xerox Corporation Multiple beam exposure control
JPH087621B2 (en) * 1989-11-22 1996-01-29 工業技術院長 Dual servo controller for optical space transmission system
JPH04282414A (en) * 1991-03-12 1992-10-07 Hitachi Zosen Corp Laser beam position and angle control device
JP2617054B2 (en) * 1991-10-18 1997-06-04 日本電信電話株式会社 Optical connection module
JP4708050B2 (en) * 2005-03-02 2011-06-22 株式会社ニデック Cornea surgery device
JP5250395B2 (en) * 2008-11-19 2013-07-31 株式会社日立ハイテクノロジーズ Inspection device
JP6521870B2 (en) 2014-02-10 2019-05-29 ギガフォトン株式会社 Laser device
JP6697108B2 (en) * 2019-04-22 2020-05-20 ギガフォトン株式会社 Laser device and extreme ultraviolet light generation system

Also Published As

Publication number Publication date
JPS55142307A (en) 1980-11-06

Similar Documents

Publication Publication Date Title
JPS6119003B2 (en)
US3944727A (en) Video disc player with movable mirror for directing light beam onto reflective disc
US4433894A (en) Method and apparatus for generating optical scans
US5293371A (en) Optical head for a magneto-optical information reproducing apparatus including a light beam splitter having a first glass, a uniaxial crystal and a second glass arranged in sequence
US4828371A (en) Anamorphic laser beam correction optics
US4965785A (en) Optical head including a collimator having lenses of different focal lengths
JPH11179579A (en) Method and device for correcting optical axis, and exposure-machining device using it
US5008705A (en) Autofocus system for microlithography
CA2058802C (en) System and technique for making holographic projection screens
US4140398A (en) Laser autoalignment system using distortion compensated reflection grating
JPH01273228A (en) Optical pickup device
JPH03179420A (en) Optical apparatus
JP2709949B2 (en) Drawing surface adjustment mechanism of scanning type drawing device
JP3187538B2 (en) Optical axis controller
JP2942721B2 (en) Multi-beam scanner
JPH04344337A (en) Optical device
JPS59190606A (en) Displacement measuring device
JPH02113439A (en) Method and device for adjusting optical axis
JP2965044B2 (en) Offset correction device for tracking error signal
JP2808713B2 (en) Optical micro displacement measuring device
JPS63298208A (en) Movable mirror mechanism
JPH0695174B2 (en) Optical information recording device
JP2874806B2 (en) Optical device
JPS62251717A (en) Device for correcting direction of laser beam
JPH04205722A (en) Optical axis adjusting device