JP2617054B2 - Optical connection module - Google Patents

Optical connection module

Info

Publication number
JP2617054B2
JP2617054B2 JP3271013A JP27101391A JP2617054B2 JP 2617054 B2 JP2617054 B2 JP 2617054B2 JP 3271013 A JP3271013 A JP 3271013A JP 27101391 A JP27101391 A JP 27101391A JP 2617054 B2 JP2617054 B2 JP 2617054B2
Authority
JP
Japan
Prior art keywords
light
fiber
substrate
optical
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3271013A
Other languages
Japanese (ja)
Other versions
JPH05107485A (en
Inventor
文和 大平
国夫 小薮
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP3271013A priority Critical patent/JP2617054B2/en
Publication of JPH05107485A publication Critical patent/JPH05107485A/en
Application granted granted Critical
Publication of JP2617054B2 publication Critical patent/JP2617054B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は光通信の分野において、 The present invention relates to the field of optical communications,
複数の光ファイバ間で光信号を切り換える光接続モジュールに関するものである。 To an optical connection module for switching optical signals between a plurality of optical fibers.

【0002】 [0002]

【従来の技術】従来、二次元ファイバアレイ間で光信号を切り換える空間接続では、図4に示すように、二次元ファイバアレイを配置した基板1の間に、幾つかのビームシフタ2を設置した構成になっている。 Conventionally, in a space connected to switch the optical signals between the two-dimensional fiber array, as shown in FIG. 4, between the substrate 1 placed a two-dimensional fiber array was placed several beam shifter 2 configuration It has become. この構成では、光ファイバ3から出てきた光が、マイクロレンズ4 In this configuration, the light emerging from the optical fiber 3, the microlens 4
によって平行な光ビーム5に変換され、すべてのビームシフタ2を通過してから、最後に他方のファイバアレイに到達する。 It is converted into a parallel light beam 5 by, after passing through all of the beam shifter 2, finally reaching the other of the fiber array. 光ビーム5はビームシフタ2を通過するとき電気信号の有無によって、その進路が変えられ、進路変更を受けた光ビーム5は、ビームシフタ2内の幾つかに分割されているセクションを一つだけ隣に移動する。 The presence or absence of an electric signal when the light beam 5 passing through the beam shifter 2, its course is changed, the light beam 5 which has received the course change, the next only one section is divided into several in beam shifter 2 Moving.
したがって、ビームの進路を大きく変えるためには、多くのビームシフタが必要になる。 Therefore, in order to greatly change the path of the beam, many beam shifter is needed. 例えば、図4において一方の二次元ファイバアレイ1の隅のファイバを、他方の二次元ファイバアレイ上で対角の位置にあるファイバに接続する場合、8個のビームシフタが必要になる。 For example, the corner of the fibers of one of the two-dimensional fiber array 1 in FIG. 4, when connecting to the fiber at the position of the diagonal on the other two-dimensional fiber array, are required eight beam shifter. このように空間接続する二つの光ファイバの間に多くの部品が存在すると、ファイバ間での光の損失が大きくなるだけでなく、二次元ファイバアレイ1およびビームシフタ2の相互の位置合わせに高精度が必要となるといった問題が起きる。 With this there are many parts between the two optical fibers to be spatially connected, not only the loss of light increases between fibers, high accuracy mutual alignment of the two-dimensional fiber arrays 1 and beam shifter 2 problem that it is necessary to happen.

【0003】 [0003]

【発明が解決しようとする課題】本発明は二つの回転反射ミラーを用いることにより、前記の問題を解消する光接続モジュールを提供することにある。 [SUMMARY OF THE INVENTION The present invention by using the two rotary reflecting mirror to provide an optical connection module to solve the problems.

【0004】本発明の光接続モジュールは、光ファイバと縦方向及び横方向の2軸に独立に回転可能なミラーとを二次元配列し、更にそれらの間に受光素子を配列した基板を用い、一方の基板の光ファイバの端面と他方の基板の反射ミラーとが互いに向き合うように一定の間隔をおいて対向させ、受光素子によって光の位置を検出して、一方の基板の光ファイバから出た光を他方の基板の反射ミラーで反射させ、この光を対向する基板上の光ファイバまたは反射ミラーに光を当てることにより、任意の光ファイバ同士を光接続する。 [0004] optical connection module of the present invention, a mirror rotatable independently biaxial optical fiber and the longitudinal and transverse directions two-dimensional array, using a substrate further arranged light receiving elements therebetween, the end face of the optical fiber of one substrate and the other reflecting mirror substrate at regular intervals so as to face each other are opposed, by detecting the position of the light by the light receiving element, emitted from the optical fiber of one of the substrates the light is reflected by the reflection mirror of the other substrate, by applying light to the optical fiber or the reflecting mirror on the substrate facing the light, optically connecting to each other any optical fiber.

【0005】 [0005]

【実施例】以下、図面を参照して、本発明の実施例を詳細に説明する。 EXAMPLES Hereinafter, with reference to the drawings, an embodiment of the present invention in detail. 図1は光ファイバと回転反射ミラーを二次元に配列したアレイ基板の基本構成を示す斜視図であって、3は光ファイバ、4はマイクロレンズ基板上のマイクロレンズ、6はマイクロレンズ基板上で回転反射ミラーを配置するための開孔、7はマイクロレンズを配置した基板、8は二軸方向に回転できる回転反射ミラー、 Figure 1 is a perspective view showing a basic configuration of an array substrate having an array of rotating reflecting mirror and the optical fiber in two dimensions, 3 denotes an optical fiber, 4 microlens on the microlens substrate, 6 is a microlens on the substrate opening for placing the rotary reflecting mirror, the substrate placing the microlens 7, the rotary reflecting mirror 8 can rotate in two axial directions,
9は二次元に配列してファイバ3と回転反射ミラー8を保持するアレイ基板である。 9 is an array substrate for holding the fiber 3 are arranged in a two-dimensional rotation reflector 8. マイクロレンズ4は光ファイバ3の端面と対向しており、出射光を平行な光ビームに変換する。 Microlens 4 faces the end face of the optical fiber 3, to convert the emitted light into parallel light beams. 回転反射ミラー8は縦方向と横方向の二軸に独立で回転可能であるので、ミラー面を任意の方向に向けることができる。 Since the rotary reflecting mirror 8 is rotatable independent biaxially in the longitudinal direction and the lateral direction, it is possible to direct the mirror surface in any direction.

【0006】図2は光接続モジュールの基本構成を示す斜視図であって、アレイ基板(マイクロレンズ基板7は図示せず)AとBによる接続状態をわかり易くするため、ファイバアレイを傾けた状態で図示している。 [0006] Figure 2 is a perspective view showing a basic structure of an optical connection module, the array substrate (microlens substrate 7 is not shown) for clarity the connection state by A and B, while tilting the fiber array It is shown. 本来、アレイ基板Aは、そのファイバと回転反射ミラーが、アレイ基板Bの回転反射ミラーとファイバとに一定の距離をおいて平行に対向するように固定される。 Originally, the array substrate A, the rotational reflective mirror and its fibers is fixed so as to face in parallel at a distance to the rotary reflecting mirror and the fiber of the array substrate B.

【0007】この構成において、アレイ基板Aのi番目のファイバF a (i) とアレイ基板Bのj番目のファイバF b (j) を接続する場合、ファイバF a (i) と対向する位置にあるアレイ基板Bの上の回転ミラーM b (i) は、 [0007] In this arrangement, when connecting the i-th fiber F a of the array substrate A (i) and the j-th fiber F b of the array substrate B (j), at a position facing the fiber F a (i) rotating mirror M b on the certain array substrate B (i) is
ファイバF a (i) から出てきた光が、アレイ基板Aのj Fiber F a (i) Light coming out of the, j of the array substrate A
番目にある回転反射ミラーM a (j) に当たるように、その角度を設定し、同様に回転反射ミラーM a (j) は、回転反射ミラーM b (i)からの反射ビームを、ファイバF To strike the rotary reflecting mirror M a (j) in the second, to set the angle likewise the rotational reflective mirror M a (j) is the reflected beam from the rotational reflective mirror M b (i), the fiber F
b (j) に伝搬するように調整すればよい。 It may be adjusted so as to propagate the b (j).

【0008】もし回転反射ミラーM a (j) の反射ビームをファイバF b (j) ではなく、回転反射ミラーM b (k) [0008] If the reflected beam of the rotational reflective mirror M a (j) fiber F b (j) rather than the rotational reflective mirror M b (k)
に当て、さらにこのミラーの反射ビームをF a (k) に照射すると、アレイ基板Aから出た光を、同じ基板上の他の光ファイバと接続できる。 Against the further is irradiated with the reflected beam of the mirror F a (k), light emitted from the array substrate A, can be connected to another optical fiber on the same substrate. すなわち、2枚の反射ミラーを使うと、出射ビームと対向するアレイ基板上の任意の光ファイバと、また3枚の反射ミラーを使うと、出射ビームと同じアレイ基板上の任意の光ファイバと、それぞれ空間接続ができる。 That is, when using two reflecting mirrors, and any optical fiber on the array substrate for emitting beams facing, also With three reflection mirrors, and any optical fiber of the same array substrate as the outgoing beam, each can space connection. なお、反射ミラーを1枚だけ使う接続も可能で、この場合には、入出射する光ファイバが同じ基板上にあり、かつ光が斜め入射になるので、光伝搬は一方向という制限を受ける。 Note that connections using reflecting mirrors only one is also possible, in this case, there optical fiber for incident and exit are on the same substrate, and the light is obliquely incident, light propagation is subject to limitation that unidirectional.

【0009】ファイバF a (i) から出てきた光を、回転反射ミラーM b (i) で元のファイバF a (i) に反射ビームを戻す空間接続まで含めて考えると、本発明の光接続モジュールでは、自己を含めモジュールを構成するすべての光ファイバを、相互に空間接続できる。 [0009] The light emerging from the fiber F a (i), considering including a rotating reflecting mirror M b (i) until the reflected beam space connected back to the original fiber F a (i), the light of the present invention the connection module, all of the optical fibers constituting the module including self, be mutually space connection.

【0010】この空間接続における光の損失は、光接続の経路や長さにほとんど関係なく、2枚または3枚の反射ミラーによる反射率だけを考慮すればよく、これに対しては、従来から広く使われている高反射膜の採用により、光の損失は小さくなる。 [0010] loss of light in the space connection, almost regardless of the route or the length of the optical connection may be considered only two or three reflectance by the reflection mirror, whereas the conventional the adoption of high-reflection film which is widely used, loss of light is reduced. なお、マイクロレンズを透過するときのフレネル反射損に対しても低反射膜を使うことで、その影響を低減できる。 Note that by using a low-reflection film against the Fresnel reflection loss when passing through the micro-lens, can reduce the influence.

【0011】また、アレイ基板A,Bの相対的な位置およびアレイ基板上に配列する各ファイバの位置については、高精度を必要とせず、ファイバF a (i) から出た光ビームが、回転反射ミラーM b (i) に確実に当たるだけの精度があればよい。 Further, an array substrate A, for the location of each fiber arranged in the relative positions and array substrate of B, does not require a high accuracy, the light beam emitted from the fiber F a (i), rotation it is sufficient only for accuracy rests firmly on the reflection mirror M b (i). この理由は、回転反射ミラーM b This is because the rotary reflective mirror M b
(i) で受けた光ビームを、回転反射ミラーM a (j) で中断し、ファイバF b (j) に伝搬するとき、いずれも相手の位置に関係なく、回転反射ミラーを角度調整することにより接続できるからである。 The light beam received at (i), interrupted at the rotational reflective mirror M a (j), when propagating in the fiber F b (j), both regardless of the position of the other party, the rotary reflecting mirror to angle adjustment This is because can be connected by.

【0012】しかしながら、この方法では、アレイ基板上のビームの位置を知るには、ファイバに光ビームを当てて、その位置を検出することになる。 [0012] However, in this method, to know the position of the beam on the array substrate, by applying a light beam to the fiber will detect the position. ところが目的のファイバ以外、他のすべてのファイバが接続されていて、これらのファイバに、もう一つの光ビームを当てることができない場合には、ビームの位置検出が困難になるという問題がある。 However other objects of the fiber, have been connected to all the other fibers, these fibers, if it is not possible to apply another light beam, there is a problem that the detection of the position of the beam difficult.

【0013】図3は二次元配列基板上でファイバ端面と回転反射ミラーの間に、受光素子10を配置し、光ビームの位置検出を可能にしたアレイ基板の正面図であって、モジュールの構成は前記と同様に行う。 [0013] Figure 3 between the rotary reflecting mirror and the fiber end face in a two-dimensional array on the substrate, placing the light-receiving element 10, a front view of the array substrate that enables detection of the position of the light beam, the configuration of the module It is carried out in the same manner as above. このアレイ基板では、以下のようにして、目的のミラーやファイバに、光ビームを当てることができる。 In this array substrate, as described below, you can hit the mirror or fiber end, the light beam.

【0014】まず、向かい側にあるアレイ基板上の任意の受光素子10に光ビーム5を当て、当たっている光ビーム位置P 1を検知する。 [0014] First, against the light beam 5 on any of the light receiving element 10 on the array substrate, opposite to detect the light beam position P 1 are striking. 次に、ここから目的とするファイバF 0或いはミラーM 0 (図示せず)の位置を計算して、光ビームを走査する。 Next, the fiber F 0 or a mirror M 0 of interest here to calculate the position of the (not shown), scans the light beam. この方法において、この光ビーム走査の際、ビームを直接目的とする例えばファイバF 0に移動するのではなく、先ずその周囲に配置されている四つの受光素子10′の一つで光ビームの位置を検出し、次に光ビームをファイバF 0に走査すると、ファイバF 0と受光素子10′との相対位置が近いことから、目的のファイバF 0に正確に光ビームを当てることができる。 In this method, the time of the light beam scanning, instead of moving the beam to example fiber F 0 and a direct object, first one at the position of the light beam of the four light-receiving element 10 'which is disposed around detects, then the light beam scanning the fiber F 0, since the relative position of the fiber F 0 and the light receiving element 10 'are close, it is possible to apply accurately light beam to the fiber F 0 purposes.

【0015】 [0015]

【発明の効果】以上説明したように、本発明の光接続モジュールは、アレイ基板上の光ファイバを相互接続する場合、光の進路変更と位置決めには、それぞれのファイバに対向する2枚の回転反射ミラーしか使わないので、 As described above, according to the present invention, an optical connection module of the present invention, when interconnecting optical fiber on the array substrate, the positioning and course change of light, the rotation of the two opposite the respective fiber because it uses only the reflection mirror,
操作は簡単であり、光損失も小さい。 Operation is simple, is small optical loss. また、すでに接続されているファイバ間の組合せを変更する場合も、同様にすればよい。 Also, even when changing the combination between the fibers that are already connected, it may be similarly. しかもファイバの配列やアレイ基板の相対位置に対して高精度を必要としないので、これらの部品の加工や組立が容易になるという効果が期待できる。 Moreover it does not require high precision for the array or arrays relative position of the substrate fiber, and it is expected machining and assembly of these components is facilitated.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】光ファイバと回転反射ミラーを二次元に配列したアレイ基板の基本構成を示す斜視図である。 1 is a perspective view showing a basic configuration of an array substrate having an array of the optical fiber rotation reflector in two dimensions.

【図2】2枚のアレイ基板を用いた光の空間接続状態を示す図である。 2 is a diagram showing the spatial connection state of the light using two array substrate.

【図3】二次元配列基板でファイバ端面と回転反射ミラーの間に受光素子を配置し、光ビームの位置検出を可能にしたアレイ基板の正面図である。 [3] between the rotary reflecting mirror and the fiber end face in a two dimensional array substrate arranged light receiving elements, a front view of the array substrate that enables detection of the position of the light beam.

【図4】ビームシフタを用いた二次元の光接続モジュールの構成を示す斜視図である。 4 is a perspective view showing a configuration of a two-dimensional optical connection module using the beam shifter.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 二次元ファイバアレイ基板 2 ビームシフタ 3 光ファイバ 4 マイクロレンズ 5 光ビーム 6 開孔 7 マイクロレンズ基板 8 回転反射ミラー 9 アレイ基板 10,10′ 受光素子 A,B アレイ基板 F 0 ,F a (i) ,F a (k) ,F b (i) ファイバ P 1光ビーム位置 M b (i) ,M a (j) ,M b (k) 回転反射ミラー 1 two-dimensional fiber array substrate 2 beam shifter 3 optical fiber 4 microlens 5 light beams 6 opening 7 microlens substrate 8 rotating mirror 9 array substrate 10, 10 'receiving element A, B array substrate F 0, F a (i) , F a (k), F b (i) fiber P 1 light beam position M b (i), M a (j), M b (k) rotating the reflecting mirror

Claims (1)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 光ファイバと縦方向及び横方向の2軸に独立に回転可能なミラーとを二次元配列し、更にそれらの間に受光素子を配列した基板を用い、一方の基板の光ファイバの端面と他方の基板の反射ミラーとが互いに向き合うように一定の間隔をおいて対向させ、前記受光素子によって光の位置を検出して、一方の基板の光ファイバから出た光を他方の基板の反射ミラーで反射させ、この光を対向する基板上の光ファイバまたは反射ミラーに光を当てることにより、任意の光ファイバ同士を光接続することを特徴とする光接続モジュール。 1. A fiber optic and the longitudinal and transverse directions of the rotatable mirror independently biaxial two-dimensional array, further using a substrate having an array of light receiving elements therebetween, the optical fibers of one substrate substrate end face and a reflection mirror of the other substrate are opposed to each other at a predetermined interval to face each other, wherein by detecting the position of the light by the light receiving element, the light emitted from the optical fiber of one substrate other It is reflected by the reflecting mirror, the optical connection modules by applying light to the optical fiber or the reflecting mirror on the substrate facing the light, characterized in that optical connection with each other any optical fiber.
JP3271013A 1991-10-18 1991-10-18 Optical connection module Expired - Fee Related JP2617054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3271013A JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3271013A JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Publications (2)

Publication Number Publication Date
JPH05107485A JPH05107485A (en) 1993-04-30
JP2617054B2 true JP2617054B2 (en) 1997-06-04

Family

ID=17494196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271013A Expired - Fee Related JP2617054B2 (en) 1991-10-18 1991-10-18 Optical connection module

Country Status (1)

Country Link
JP (1) JP2617054B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711320B2 (en) 1997-02-13 2004-03-23 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6794793B2 (en) 2001-09-27 2004-09-21 Memx, Inc. Microelectromechnical system for tilting a platform
US6813057B2 (en) 2001-09-27 2004-11-02 Memx, Inc. Configurations for an optical crossconnect switch
US6819823B2 (en) 1997-02-13 2004-11-16 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6944365B2 (en) 2002-01-03 2005-09-13 Memx, Inc. Off axis optical signal redirection architectures
US7702194B2 (en) 2006-11-07 2010-04-20 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches
US7720329B2 (en) 2006-11-07 2010-05-18 Olympus Corporation Segmented prism element and associated methods for manifold fiberoptic switches
US7769255B2 (en) 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US7873246B2 (en) 2006-11-07 2011-01-18 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8000568B2 (en) 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
US8131123B2 (en) 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8190025B2 (en) 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067666A1 (en) * 1998-06-05 1999-12-29 Astarte Fiber Networks, Inc. Mirror based fiber optic switch and control system
US6320993B1 (en) 1998-06-05 2001-11-20 Astarte Fiber Networks, Inc. Optical switch pathway configuration using control signals
EP1092166A4 (en) 1998-06-05 2004-09-29 Afn Llc Planar array optical switch and method
US6430332B1 (en) * 1998-06-05 2002-08-06 Fiber, Llc Optical switching apparatus
US6690885B1 (en) 1999-10-07 2004-02-10 Lucent Technologies Inc. Optical crossconnect using tilting mirror MEMS array
DE60018883T2 (en) * 1999-11-17 2006-04-13 Lucent Technologies Inc. Optical cross connection system with micro-electromechanical tilting mirror arrangement
CA2325611C (en) * 1999-12-01 2004-04-20 Lucent Technologies Inc. An optical cross connect employing a curved optical component
EP1151343A1 (en) * 1999-12-01 2001-11-07 XROS, Inc., Nortel Networks Arrangement of multiple 1xn optical switches
US6753638B2 (en) 2000-02-03 2004-06-22 Calient Networks, Inc. Electrostatic actuator for micromechanical systems
CA2300780C (en) * 2000-03-15 2007-08-07 Nortel Networks Corporation Integrated photonic switch
US6456751B1 (en) 2000-04-13 2002-09-24 Calient Networks, Inc. Feedback stabilization of a loss optimized switch
US6449098B1 (en) 2000-05-16 2002-09-10 Calient Networks, Inc. High uniformity lens arrays having lens correction and methods for fabricating the same
US6628041B2 (en) 2000-05-16 2003-09-30 Calient Networks, Inc. Micro-electro-mechanical-system (MEMS) mirror device having large angle out of plane motion using shaped combed finger actuators and method for fabricating the same
US6925218B2 (en) 2000-05-26 2005-08-02 Vitesse Semiconductor Corporation Control techniques and devices for an optical switch array
US6580846B1 (en) 2000-05-26 2003-06-17 Versatile Optical Networks, Inc. Actively-controllable optical switches based on optical position sensing and applications in optical switching arrays
US6516109B2 (en) * 2000-05-30 2003-02-04 Siwave, Inc. Low insertion loss non-blocking optical switch
US6560384B1 (en) * 2000-06-01 2003-05-06 Calient Networks, Inc. Optical switch having mirrors arranged to accommodate freedom of movement
US6668108B1 (en) 2000-06-02 2003-12-23 Calient Networks, Inc. Optical cross-connect switch with integrated optical signal tap
WO2001095007A2 (en) * 2000-06-02 2001-12-13 Calient Networks, Inc. An optical switch using collimated arrays with non-collinear beams
US6483961B1 (en) 2000-06-02 2002-11-19 Calient Networks, Inc. Dual refraction index collimator for an optical switch
US6610974B1 (en) * 2000-06-05 2003-08-26 Calient Networks, Inc. Positioning a movable reflector in an optical switch
WO2001095009A2 (en) * 2000-06-05 2001-12-13 Calient Networks, Inc. Method and apparatus for mirror control in an optical cross-connect switch
US6728016B1 (en) 2000-06-05 2004-04-27 Calient Networks, Inc. Safe procedure for moving mirrors in an optical cross-connect switch
US6587611B1 (en) 2000-06-06 2003-07-01 Calient Networks, Inc. Maintaining path integrity in an optical switch
WO2001096924A1 (en) * 2000-06-14 2001-12-20 Versatile Optical Networks, Inc. Actively-controllable optical switches based on optical position sensing and applications in optical switching arrays
US6643425B1 (en) 2000-08-17 2003-11-04 Calient Networks, Inc. Optical switch having switch mirror arrays controlled by scanning beams
US6418247B1 (en) * 2000-09-08 2002-07-09 Harris Corporation Fiber optic switch and associated methods
US6825967B1 (en) 2000-09-29 2004-11-30 Calient Networks, Inc. Shaped electrodes for micro-electro-mechanical-system (MEMS) devices to improve actuator performance and methods for fabricating the same
US6792177B2 (en) 2001-03-12 2004-09-14 Calient Networks, Inc. Optical switch with internal monitoring
US6882766B1 (en) 2001-06-06 2005-04-19 Calient Networks, Inc. Optical switch fabric with redundancy
US6898341B2 (en) * 2001-10-24 2005-05-24 Intel Corporation Optical system for calibration and control of an optical fiber switch
US6597825B1 (en) 2001-10-30 2003-07-22 Calient Networks, Inc. Optical tap for an optical switch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119003B2 (en) * 1979-04-24 1986-05-15 Matsushita Electric Ind Co Ltd
JPH0830787B2 (en) * 1987-10-16 1996-03-27 日本電信電話株式会社 Optical fiber connector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711320B2 (en) 1997-02-13 2004-03-23 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6922239B2 (en) 1997-02-13 2005-07-26 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6819823B2 (en) 1997-02-13 2004-11-16 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6834136B2 (en) 1997-02-13 2004-12-21 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6813057B2 (en) 2001-09-27 2004-11-02 Memx, Inc. Configurations for an optical crossconnect switch
US6831391B2 (en) 2001-09-27 2004-12-14 Memx, Inc. Microelectromechanical system for tilting a platform
US6847152B2 (en) 2001-09-27 2005-01-25 Memx, Inc. Microelectromechnical system for tilting a platform
US6794793B2 (en) 2001-09-27 2004-09-21 Memx, Inc. Microelectromechnical system for tilting a platform
US6944365B2 (en) 2002-01-03 2005-09-13 Memx, Inc. Off axis optical signal redirection architectures
US7702194B2 (en) 2006-11-07 2010-04-20 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches
US7720329B2 (en) 2006-11-07 2010-05-18 Olympus Corporation Segmented prism element and associated methods for manifold fiberoptic switches
US7769255B2 (en) 2006-11-07 2010-08-03 Olympus Corporation High port count instantiated wavelength selective switch
US7873246B2 (en) 2006-11-07 2011-01-18 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8000568B2 (en) 2006-11-07 2011-08-16 Olympus Corporation Beam steering element and associated methods for mixed manifold fiberoptic switches
US8131123B2 (en) 2006-11-07 2012-03-06 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
US8190025B2 (en) 2008-02-28 2012-05-29 Olympus Corporation Wavelength selective switch having distinct planes of operation

Also Published As

Publication number Publication date
JPH05107485A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US4084883A (en) Reflective polarization retarder and laser apparatus utilizing same
USRE45565E1 (en) Laser-based coordinate measuring device and laser-based method for measuring coordinates
JP2683399B2 (en) Reflection film
EP0377498B1 (en) Deflector for an optical beam including refractive means
US5241459A (en) Integrating cylinder with end input illumination for use as an illuminator in a film scanner
AU760646B2 (en) Planar array optical switch and method
US5245369A (en) Scene projector
JP2624213B2 (en) A planar optical mesh-connected tree interconnect network
US6389202B1 (en) Method of and a device for coupling optical fibers and opto-electronic components
CA1284909C (en) Optical beam splitter prism
US5355244A (en) Optical scanner for reducing shading
US4207467A (en) Film measuring apparatus and method
US4213677A (en) Light coupling and branching device using light focusing transmission body
DE60110901T2 (en) Fiber coupler, system and related methods for reducing reverse reflections
JP3441580B2 (en) Reading device
JP2975719B2 (en) Confocal optical system
CA2324182C (en) Method and device for optically crossconnecting optical signals using tilting mirror mems with drift monitoring feature
DE69724757T2 (en) Optical polarization device
US6567574B1 (en) Modular three-dimensional optical switch
JP3267650B2 (en) 2-dimensional phased array beam-directing device
US4606601A (en) Single facet wobble free scanner
US7394550B2 (en) Displacement detector
US6993059B2 (en) Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
US5367399A (en) Rotationally symmetric dual reflection optical beam scanner and system using same
US5048030A (en) Light amplifying device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees