JPS61189623A - Vapor growth equipment - Google Patents
Vapor growth equipmentInfo
- Publication number
- JPS61189623A JPS61189623A JP2928085A JP2928085A JPS61189623A JP S61189623 A JPS61189623 A JP S61189623A JP 2928085 A JP2928085 A JP 2928085A JP 2928085 A JP2928085 A JP 2928085A JP S61189623 A JPS61189623 A JP S61189623A
- Authority
- JP
- Japan
- Prior art keywords
- temperature distribution
- growth
- reaction system
- region
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
気相成長装置における従来の反応系外部の加熱装置の他
に反応系内部にも加熱装置を補助的に設けて反応系内部
の温度分布の制御を可能とする。[Detailed Description of the Invention] [Summary] In addition to the conventional heating device outside the reaction system in a vapor phase growth apparatus, a heating device is additionally provided inside the reaction system to control the temperature distribution inside the reaction system. shall be.
本発明は気相成長装置に係り、特に気相成長装置内の成
長領域及び材料ガス発生領域の温度分布を均一に保持す
る気相成長装置に関する。The present invention relates to a vapor phase growth apparatus, and more particularly to a vapor phase growth apparatus that maintains a uniform temperature distribution in a growth region and a material gas generation region within the vapor phase growth apparatus.
第2図は従来使用されている横型気相エピタキシャル成
長装置の概略図である。FIG. 2 is a schematic diagram of a conventionally used horizontal vapor phase epitaxial growth apparatus.
以下、例えばマグネシアスピネル(以下スピネルと記す
)の気相エピタキシャル成長に関して説明する。The vapor phase epitaxial growth of, for example, magnesia spinel (hereinafter referred to as spinel) will be explained below.
反応管1内に配設されたソースチェンバ2の上段には、
塩化マグネシウム(MgC1z)を入れたソースポート
3が載置されている。これを、抵抗加熱炉6bを用いて
加熱し、11gcβ2ガスを発生させ、ガス導入管5a
から導入したギヤリアーガスによって成長基板9上に輸
送せしめられる。一方ソースチェンバ2の下段にはアル
ミニウムを入れたソースポート4が置かれており、これ
を抵抗加熱炉6cを用いて加熱する。それと同時にガス
導入口5bから導入された塩化水素(HCj2)ガスと
アルミニウムを反応させ塩化アルミニウム(AlCl!
3)ガスを発生させHC1ガスと同時に導入したキャリ
アーガスによって、成長基板9上に輸送せしめられる。In the upper stage of the source chamber 2 arranged inside the reaction tube 1,
A source port 3 containing magnesium chloride (MgC1z) is mounted. This is heated using the resistance heating furnace 6b to generate 11gcβ2 gas, and the gas introduction pipe 5a
It is transported onto the growth substrate 9 by a gear gas introduced from the substrate. On the other hand, a source port 4 containing aluminum is placed in the lower stage of the source chamber 2, and is heated using a resistance heating furnace 6c. At the same time, hydrogen chloride (HCj2) gas introduced from the gas inlet 5b is reacted with aluminum to cause aluminum chloride (AlCl!
3) A gas is generated and transported onto the growth substrate 9 by a carrier gas introduced simultaneously with the HC1 gas.
またガス導入口5cからはキャリアーガスとともに炭酸
ガス(Co□)が導入され、同じく成長基板9上に輸送
されている。Further, carbon dioxide gas (Co□) is introduced from the gas inlet 5c together with the carrier gas, and is also transported onto the growth substrate 9.
エピタキシャル成長領域ではライナー管7内に、ウェハ
ーホルダー8上に置かれた成長基板9が配設されており
抵抗加熱炉6aによって加熱されている。In the epitaxial growth region, a growth substrate 9 placed on a wafer holder 8 is disposed in a liner tube 7 and heated by a resistance heating furnace 6a.
成長基板9上では、上記MgCj!z 、 AICJ
:+等の材料ガスが下記反応式に基づく反応を起こし成
長基板9上に、スピネル単結晶(MgO−A I 、0
.1)を成長させる。On the growth substrate 9, the above MgCj! z, AICJ
: + etc. cause a reaction based on the following reaction formula, and spinel single crystal (MgO-A
.. 1) Grow.
MgCj’z + 2ANCf3 + 4H2+ 4C
Ot→MgO・Aji!zo:+ + 811C1+
4CO〔発明が解決しようとする問題点〕
第4A図は、この成長装置において、成長したスピネル
膜の膜厚の分布を示す。この分布は、成長領域の温度分
布により生じるもので、この温度分布の様子を第3図に
示す。第3図に示されるように、反応管壁の温度分布は
、破線で示すように温度分布が一定であるが、反応管の
中心付近では、実線で示すような、温度分布を示してい
る。なお第4B図には第3図の成長領域の部分の温度分
布を拡大して示したものである。MgCj'z + 2ANCf3 + 4H2+ 4C
Ot→MgO・Aji! zo:++811C1+
4CO [Problem to be Solved by the Invention] FIG. 4A shows the thickness distribution of the spinel film grown in this growth apparatus. This distribution is caused by the temperature distribution in the growth region, and the state of this temperature distribution is shown in FIG. As shown in FIG. 3, the temperature distribution on the wall of the reaction tube is constant as shown by the broken line, but the temperature distribution near the center of the reaction tube is as shown by the solid line. Note that FIG. 4B shows an enlarged view of the temperature distribution in the growth region of FIG. 3.
上記温度分布となる原因は、主に、成長素材ガス流によ
る冷却効果及び反応管の排気側からの対流による冷却効
果によるものである。The above temperature distribution is mainly due to the cooling effect of the growth material gas flow and the cooling effect of convection from the exhaust side of the reaction tube.
この現象を避けるには、成長領域の長さを長くし、温度
分布が小さな部分を使用する方法があるが、反応管長を
長くすることは装置を大型化しコストを上昇させるとい
う問題が生じ、また、成長基板に材料ガスが到達する前
に、反応を生ぜしめ、成長基板上で成長が起らないとい
う不都合が生じる。また、成長基板を反応管壁に近づけ
る方法も考えられるが、気相成長装置、特に横型の装置
では反応管及び成長基板の形状の問題及び、成長条件に
よる制約から、この方法は不可能と考えられる。To avoid this phenomenon, there is a method of increasing the length of the growth region and using a portion with a small temperature distribution, but increasing the length of the reaction tube causes the problem of increasing the size of the equipment and increasing cost. , a reaction occurs before the material gas reaches the growth substrate, resulting in the disadvantage that no growth occurs on the growth substrate. Another possibility is to move the growth substrate closer to the wall of the reaction tube, but this method is considered impossible in vapor phase growth equipment, especially horizontal equipment, due to problems with the shape of the reaction tube and growth substrate, and constraints imposed by the growth conditions. It will be done.
上記問題点は本発明によれば気相成長装置の反応系外部
と、内部にそれぞれ加熱装置を具備することを特徴とす
る気相成長装置によって解決される。According to the present invention, the above-mentioned problems are solved by a vapor phase growth apparatus characterized in that a heating device is provided both outside and inside the reaction system of the vapor phase growth apparatus.
すなわら本発明では気相成長装置の反応系外部の他に反
応系内部にも加熱装置を設けるために反応系領域の温度
分布をより均一に制御可能となる。That is, in the present invention, since a heating device is provided not only outside the reaction system of the vapor phase growth apparatus but also inside the reaction system, the temperature distribution in the reaction system region can be controlled more uniformly.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明に係る装置の一実施例であり、従来例を
示す第2図の成長領域の拡大図である。FIG. 1 shows an embodiment of the apparatus according to the present invention, and is an enlarged view of the growth region of FIG. 2 showing a conventional example.
従来は、ウェハーホルダーとして、石英板を加工したも
のを用いていたが、本発明は、このウェハーホルダーを
改良し、ホルダーの内部に補助加熱用のヒータ12を組
み込んだものである。このヒータ12は成長装置本来の
温度分布や成長条件、特に、素材ガス流量に応じて、形
状、発熱分布を変化させることにより、温度分布を補償
し、均一にする。また、こQヒータは電極取り出し口1
3より、温度制御装置(図示せず)に接続されている。Conventionally, a processed quartz plate has been used as a wafer holder, but the present invention improves this wafer holder and incorporates a heater 12 for auxiliary heating inside the holder. This heater 12 compensates for and makes the temperature distribution uniform by changing its shape and heat generation distribution depending on the temperature distribution and growth conditions inherent in the growth apparatus, especially the flow rate of the material gas. In addition, this Q heater has electrode outlet 1.
3 is connected to a temperature control device (not shown).
上記実施例では、ウェハーホルダーの内部に補助加熱ヒ
ータを組み込んで構成しているが、第2図のウェハーホ
ルダー8の下部に、同様な補助加熱ヒータを設置しても
よく、また、補助加熱ヒータをライナー管7に組み込む
ことも可能である。In the above embodiment, an auxiliary heater is installed inside the wafer holder, but a similar auxiliary heater may be installed at the bottom of the wafer holder 8 in FIG. It is also possible to incorporate it into the liner tube 7.
前項では成長領域での温度分布を均一にする方法につい
て述べたが、第3図から明らかなように、MgCj2z
発生領域やAlCl3発生領域でも温度分布が不均一で
ある。このため、成長条件によっては、発生するガスの
濃度が制御できない場合が生じる。この様な場合にも、
ソースポート3あるいは4に前項と同様な補助加熱ヒー
タを設置することにより、上記の不都合を回避すること
が出来る。In the previous section, we described a method to make the temperature distribution uniform in the growth region, but as is clear from Figure 3, MgCj2z
The temperature distribution is also non-uniform in the generation region and the AlCl3 generation region. Therefore, depending on the growth conditions, the concentration of the generated gas may not be controllable. Even in cases like this,
By installing an auxiliary heater similar to that in the previous section in the source port 3 or 4, the above-mentioned inconvenience can be avoided.
実施例ではマグネシアスピネルの気相成長装置について
述べたが、同様な装置を用いる他の気相成長方法におい
ても応用できる。In the embodiment, a vapor phase growth apparatus for magnesia spinel was described, but the present invention can also be applied to other vapor phase growth methods using a similar apparatus.
以上説明したように本発明によれば気相成長装置を大型
化することなく、また高価な複雑な温度制御装置を用い
ることなく、比較的安価な小容量の温度制御装置及び加
熱ヒータを、従来の装置に付加することにより成長装置
内の温度分布を均一化することができる。As explained above, according to the present invention, a comparatively inexpensive small-capacity temperature control device and heater can be used without increasing the size of the vapor phase growth apparatus or using an expensive and complicated temperature control device. By adding this to the growth apparatus, the temperature distribution within the growth apparatus can be made uniform.
第1図は本発明に係る装置の一実施例を示し第2図で示
した成長領域の拡大部分であり、第2図は従来使用され
ている横型気相エピタキシャル成長装置の概略図であり
、第3図は上記従来装置における反応時の温度分布であ
り、第4A図は従来装置で成長させたマグネシアスピネ
ル膜の膜厚分布であり、第4B図はその4A図に対応し
た位置の温度分布である。
1・・・反応管、 2・・・ソースチェンバ、3.
4・・・ソースポート、
5a 、 5b 、 5cmガス導入口、6a、6b、
6c:・・・抵抗加熱炉、 7・・・ライナー管、
8.8′・・・ウェハーホルダー、9・・・成長基板、
10・・・キャンプ、 +1・・・排気口、1
2・・・ヒータ、 13・・・電極取り出し口。FIG. 1 shows an embodiment of the apparatus according to the present invention, and is an enlarged portion of the growth region shown in FIG. 2, and FIG. 2 is a schematic diagram of a conventional horizontal vapor phase epitaxial growth apparatus. Figure 3 shows the temperature distribution during the reaction in the conventional apparatus, Figure 4A shows the film thickness distribution of the magnesia spinel film grown with the conventional apparatus, and Figure 4B shows the temperature distribution at the position corresponding to Figure 4A. be. 1... Reaction tube, 2... Source chamber, 3.
4... Source port, 5a, 5b, 5cm gas inlet, 6a, 6b,
6c:...resistance heating furnace, 7...liner tube,
8.8'... Wafer holder, 9... Growth substrate,
10...Camping, +1...Exhaust port, 1
2... Heater, 13... Electrode outlet.
Claims (1)
置を具備することを特徴とする気相成長装置。1. A vapor phase growth apparatus characterized in that a heating device is provided both outside and inside the reaction system of the vapor phase growth apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2928085A JPS61189623A (en) | 1985-02-19 | 1985-02-19 | Vapor growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2928085A JPS61189623A (en) | 1985-02-19 | 1985-02-19 | Vapor growth equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61189623A true JPS61189623A (en) | 1986-08-23 |
Family
ID=12271853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2928085A Pending JPS61189623A (en) | 1985-02-19 | 1985-02-19 | Vapor growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61189623A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669137A (en) * | 1992-08-14 | 1994-03-11 | Ngk Insulators Ltd | Ceramic heater |
-
1985
- 1985-02-19 JP JP2928085A patent/JPS61189623A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669137A (en) * | 1992-08-14 | 1994-03-11 | Ngk Insulators Ltd | Ceramic heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6039812A (en) | Device for epitaxially growing objects and method for such a growth | |
US4123989A (en) | Manufacture of silicon on the inside of a tube | |
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
JPS61189623A (en) | Vapor growth equipment | |
US3862020A (en) | Production method for polycrystalline semiconductor bodies | |
JPS59111997A (en) | Device for epitaxial growth | |
JPS5936927A (en) | Vapor phase growth apparatus for semiconductor | |
JPS6168393A (en) | Hot wall type epitaxial growth device | |
JP2881828B2 (en) | Vapor phase growth apparatus and vapor phase growth method | |
JP2619888B2 (en) | Manufacturing method of aluminum nitride | |
JPH01230779A (en) | Production of aluminum nitride | |
JP3084881B2 (en) | Metal organic chemical vapor deposition equipment | |
JPS612344A (en) | Vapor growth equipment | |
JPS6057507B2 (en) | Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride | |
JPS60189924A (en) | Vapor phase reactor | |
JPS6473078A (en) | C.v.d. device | |
JP2504489B2 (en) | Chemical vapor deposition | |
JPS61177713A (en) | Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor | |
JPS632442Y2 (en) | ||
SU1089181A1 (en) | Apparatus for depositioning layers from gaseous phase | |
JPH0826460B2 (en) | Film forming apparatus and method | |
JPH0750686B2 (en) | Vapor phase growth equipment | |
JPS62119919A (en) | Device for crystal growth of compound semiconductor | |
JPH01161827A (en) | Heat treating apparatus | |
JPS63278222A (en) | Vapor growth equipment |