JPH0826460B2 - Film forming apparatus and method - Google Patents

Film forming apparatus and method

Info

Publication number
JPH0826460B2
JPH0826460B2 JP62254268A JP25426887A JPH0826460B2 JP H0826460 B2 JPH0826460 B2 JP H0826460B2 JP 62254268 A JP62254268 A JP 62254268A JP 25426887 A JP25426887 A JP 25426887A JP H0826460 B2 JPH0826460 B2 JP H0826460B2
Authority
JP
Japan
Prior art keywords
temperature
distribution plate
substrate
film forming
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254268A
Other languages
Japanese (ja)
Other versions
JPH01119674A (en
Inventor
敦 関口
信二 高城
司 小林
Original Assignee
日電アネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日電アネルバ株式会社 filed Critical 日電アネルバ株式会社
Priority to JP62254268A priority Critical patent/JPH0826460B2/en
Priority to US07/253,820 priority patent/US4963423A/en
Publication of JPH01119674A publication Critical patent/JPH01119674A/en
Priority to US07/424,799 priority patent/US4981103A/en
Priority to US08/009,446 priority patent/US5594280A/en
Priority to US08/561,747 priority patent/US5744377A/en
Publication of JPH0826460B2 publication Critical patent/JPH0826460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • C23C16/20Deposition of aluminium only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機金属化合物の気体を熱分解することに
より所望の金属の薄膜を作成し、半導体デバイス,セン
サー,電子部品等を製造する成膜装置および方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a method for producing a thin film of a desired metal by thermally decomposing a gas of an organometallic compound to manufacture a semiconductor device, a sensor, an electronic component or the like. The invention relates to improvements in membrane devices and methods.

(従来の技術) 第2図は従来の成膜装置の概略の正面断面図である。
1は処理室であり、気密に保つことが出来る構造となっ
ている。3は、処理室1内に設置され基体2を保持する
とともに基体2の温度調整をする基体ホルダーである。
(Prior Art) FIG. 2 is a schematic front sectional view of a conventional film forming apparatus.
A processing chamber 1 has a structure that can be kept airtight. Reference numeral 3 denotes a substrate holder that is installed in the processing chamber 1 to hold the substrate 2 and adjust the temperature of the substrate 2.

基体ホルダー3の温度を調整する基体温度調整機構20
の構成について説明すると、4はヒーターであって抵抗
加熱により基体ホルダー3を加熱し(これは放射加熱等
の他の加熱方法であってもよい)、5は熱電対であって
基体ホルダー3の温度をモニターしている。温度モニタ
ーとして熱電対5のかわりに測温抵抗を用いても良い。
熱電対5で測定された信号は、図示しないPID制御,PI制
御,ON−OFF制御等の制御回路に入力され、サイリスター
もしくはリレーを用いてヒーター4の入力電力を加減
し、基体ホルダー3の温度を調整している。必要のとき
は、基体ホルダー3を冷却可能にして加熱・冷却の両方
法により温度を調節する。
Base temperature adjusting mechanism 20 for adjusting the temperature of the base holder 3
4 is a heater for heating the substrate holder 3 by resistance heating (this may be another heating method such as radiant heating), and 5 is a thermocouple for the substrate holder 3. Monitoring the temperature. A temperature measuring resistor may be used instead of the thermocouple 5 as the temperature monitor.
The signal measured by the thermocouple 5 is input to a control circuit such as PID control, PI control, ON-OFF control (not shown), and the input power of the heater 4 is adjusted by using a thyristor or a relay, and the temperature of the substrate holder 3 is adjusted. Is being adjusted. When necessary, the substrate holder 3 can be cooled and the temperature is adjusted by both heating and cooling methods.

図示しない気体供給装置からバルブ7を通して所定の
気体8が処理室1内に導入されるが、この気体8を基体
表面に均一性良く供給する為に、多重にしたメッシュ等
の、多数のガス通過・吹き出し細孔をそなえた分配板6
が設けられている。
A predetermined gas 8 is introduced into the processing chamber 1 through a valve 7 from a gas supply device (not shown). In order to supply the gas 8 to the surface of the substrate with good uniformity, a large number of gas passages such as meshes are used. .Distribution plate 6 with blowout holes
Is provided.

処理室1内に導入された上記の気体8は、基体2上で
熱分解してその表面に所定の薄膜を作成するようになっ
ている。
The gas 8 introduced into the processing chamber 1 is thermally decomposed on the substrate 2 to form a predetermined thin film on the surface thereof.

処理室1内の処理圧力が1気圧以上の場合は、反応残
ガス11は、しばしば、バルブ9を通して自然排気され
る。処理圧力が1気圧以下に減圧されている場合は、反
応残ガス11は「油回転ポンプ」または「ルーツポンプと
油回転ポンプ」で排気される。
When the processing pressure in the processing chamber 1 is 1 atm or more, the reaction residual gas 11 is often exhausted naturally through the valve 9. When the processing pressure is reduced to 1 atm or less, the reaction residual gas 11 is exhausted by the “oil rotary pump” or the “roots pump and oil rotary pump”.

(発明が解決しようとする問題点) 第2図に示した従来の装置を用い、導入気体として水
素希釈のトリエチルアルミニウムまたは水素希釈のトリ
イソブチルアルミニウムを用いて、基体2の表面にアル
ミニウム薄膜を作製する場合、次のような問題がある。
(Problems to be Solved by the Invention) Using the conventional apparatus shown in FIG. 2, an aluminum thin film is formed on the surface of the substrate 2 by using hydrogen-diluted triethylaluminum or hydrogen-diluted triisobutylaluminum as an introduction gas. If you do, there are the following problems.

基体2の温度が低く約400℃以下の場合には、アルミ
ニウムの成膜速度が十分に得られず、また針状結晶(ウ
イスカー),フィラメント状結晶を生じて平坦なアルミ
ニウム薄膜を得難い。
When the temperature of the substrate 2 is low and about 400 ° C. or lower, a sufficient aluminum film formation rate cannot be obtained, and needle-shaped crystals (whiskers) and filament-shaped crystals are generated, making it difficult to obtain a flat aluminum thin film.

またこのような針状あるいはフィラメント状結晶を含
むアルミニウム薄膜は、鏡面膜でないため露光の目合わ
せが不可能であり、また膜の比抵抗も大きい。
Further, since the aluminum thin film containing such needle-like or filament-like crystals is not a mirror-finished film, alignment of exposure is impossible and the specific resistance of the film is large.

一方、基体2の温度が約400℃以上の高い場合には、
アルミニウムの成膜速度は1000Å/min以上の十分な値が
得られるが、エチル基、またはイソブチル基から遊離し
た炭素あるいは炭化水素がアルミニウム中に混入し、生
成膜の表面が茶白色または褐白色になってしまう。
On the other hand, when the temperature of the substrate 2 is high, about 400 ° C. or higher,
A sufficient film formation rate of 1000 Å / min or more can be obtained for aluminum, but carbon or hydrocarbon liberated from ethyl groups or isobutyl groups is mixed into aluminum, and the surface of the produced film becomes brownish white or brownish white. turn into.

このような膜は純アルミニウム膜と比較して抵抗が高
く配線用の薄膜として使うには問題が大きい。
Such a film has a higher resistance than a pure aluminum film, and poses a serious problem when used as a thin film for wiring.

またシリコンとアルミニウムの接する面がある場合に
は、高温によってシリコンがアルミニウム内に拡散し
て、デバイスの特性に変化を与え、特性のバラツキを大
きくしてしまう欠点がある。
Further, when there is a surface where silicon and aluminum are in contact with each other, there is a drawback that silicon is diffused into aluminum due to a high temperature to change the characteristics of the device, resulting in large variations in characteristics.

(発明の目的) 本発明はこの問題を解決し、分配板を加熱することに
より、導入気体を予備的に熱変化させたのち基体表面に
供給し、低温で良質な金属薄膜を作成することの出来る
新規な成膜装置および方法を提供することを目的とす
る。
(Object of the Invention) The present invention solves this problem, and by heating the distribution plate, the introduced gas is preliminarily changed in heat and then supplied to the surface of the substrate to form a good-quality metal thin film at a low temperature. It is an object of the present invention to provide a novel film forming apparatus and method that can be used.

(問題を解決するための手段) 本発明は、真空に保つことの出来る処理室と;処理室
内に設置され基体の保持および温度調整をする基体ホル
ダーと;該基体ホルダーを通して該基体の温度調整を行
う基体温度調整機構と;成膜すべき金属を含む有機金属
化合物の所定の気体を該処理室内に導入する気体導入機
構と;該処理室内を排気する排気機構と;該処理室内に
設置あるいは該処理室を構成する一部分として設けら
れ、該所定の気体を均一に該基体の表面に供給する分配
板と;を含んで構成され、該所定の気体に含まれる金属
の薄膜を該基体の表面に堆積させる成膜装置において、 該分配板の温度を調整して該所定の気体に第一の熱変
化を与えることが可能な分配板温度調整機構を備え、第
一の熱変化が与えられた該所定の気体は、前記基体温度
調整機構による熱により第二の熱変化が与えられるもの
であり、該分配板温度調整機構は、分配板を150℃から3
50℃の範囲内の所定の温度に調整するものである成膜装
置によって、及び、 成膜すべき金属を含む有機金属化合物の所定の気体を
150℃から350℃の範囲内の所定の温度に加熱して先ず第
1段の熱変化を生じさせた後に基体表面に供給し、基体
表面における加熱の第2段の熱変化により、該所定の気
体に含まれる金属の薄膜を該基体の表面に作成する成膜
を行う成膜方法によって、前記目的を達成したものであ
る。
(Means for Solving the Problem) The present invention relates to a processing chamber capable of maintaining a vacuum; a substrate holder installed in the processing chamber for holding a substrate and controlling the temperature; and controlling the temperature of the substrate through the substrate holder. A substrate temperature adjusting mechanism for performing; a gas introducing mechanism for introducing a predetermined gas of an organometallic compound containing a metal to be deposited into the processing chamber; an exhaust mechanism for exhausting the processing chamber; A distribution plate that is provided as a part of a processing chamber and that uniformly supplies the predetermined gas to the surface of the substrate; and a thin metal film contained in the predetermined gas on the surface of the substrate. The film forming apparatus for depositing is provided with a distribution plate temperature adjusting mechanism capable of adjusting the temperature of the distribution plate to give a first heat change to the predetermined gas, and The prescribed gas is Are those in which the second heat change by heat due to temperature adjusting mechanism is provided, said distribution plate temperature adjustment mechanism, 3 the distributor plate from 0.99 ° C.
Using a film-forming device that adjusts the temperature to a predetermined temperature within the range of 50 ° C, and a predetermined gas of an organometallic compound containing the metal to be film-formed.
After heating to a predetermined temperature within the range of 150 ° C to 350 ° C to cause a first-stage heat change, the heat is supplied to the substrate surface, and the second-stage heat change of heating on the substrate surface causes the predetermined temperature change. The above object is achieved by a film forming method for forming a thin film of a metal contained in a gas on the surface of the substrate.

(作用) 分配板の温度を上げると導入された気体が分配板通過
中に加熱されて第1段の熱変化を生じ、その状態で基体
表面に供給されるため、基体表面で加熱され第2段の熱
変化を生じ、アルミニウム薄膜を作製する時に、可成り
の低温状態でもフィラメント状結晶を生じ難くなり、純
度の高い良質な薄膜を作製することが出来る。
(Operation) When the temperature of the distribution plate is raised, the introduced gas is heated while passing through the distribution plate to cause the first-stage thermal change and is supplied to the substrate surface in that state, so that the gas is heated on the substrate surface and When the aluminum thin film is produced due to a stepwise change in temperature, filament crystals are less likely to be produced even in a considerably low temperature state, and a high-quality thin film having high purity can be produced.

また高真空状態でこの膜を成長させると、結晶粒間の
界面特性が良くなり結晶粒間の結合が良好となる。
Further, when this film is grown in a high vacuum state, the interfacial characteristics between crystal grains are improved and the coupling between crystal grains is improved.

(実施例) 第1図は本発明の実施例の成膜装置の正面断面図であ
って、第2図と同一の部材には同一の符号を付して説明
を省略する。
(Embodiment) FIG. 1 is a front sectional view of a film forming apparatus according to an embodiment of the present invention. The same members as those in FIG. 2 are designated by the same reference numerals and their description is omitted.

本発明は分配板温度調整機構40を組み込んだ分配板31
に特徴があるので、先ずこの分配板温度調整機構40につ
いて説明すると、分配板温度調整機構40は、分配板31に
設けられた加熱手段41,温度モニター42およびフィード
バック制御手段(図示しない)を主にして構成され、加
熱手段41は、分配板31を大気圧側からヒーター32で抵抗
加熱で加熱するようになっている。抵抗加熱の代わりに
ハロゲンランプ等により放射加熱しても効果は同様であ
る。
The present invention is a distribution plate 31 incorporating a distribution plate temperature adjusting mechanism 40.
First, the distribution plate temperature adjusting mechanism 40 will be described. The distribution plate temperature adjusting mechanism 40 mainly includes a heating means 41, a temperature monitor 42 and a feedback control means (not shown) provided on the distribution plate 31. The heating means 41 is configured to heat the distribution plate 31 by resistance heating from the atmospheric pressure side with the heater 32. The effect is the same when radiant heating is performed with a halogen lamp or the like instead of resistance heating.

フィードバック制御手段は図示されていないが、熱電
対33で測定して得た信号をPID制御,PI制御,ON−OFF制御
等の制御回路にフィードバックし、サイリスターやリレ
ーを用いヒーター32の入力電力を加減して、分配板31の
温度を制御する構成を採る。
Although the feedback control means is not shown, the signal obtained by measuring with the thermocouple 33 is fed back to the control circuit such as PID control, PI control, ON-OFF control, etc., and the input power of the heater 32 is supplied using a thyristor or a relay. The temperature is controlled by adjusting the temperature of the distribution plate 31.

このように分配板31を加熱可能な構造にすることによ
り、トリエチルアルミニウム,トリイソブチルアルミニ
ウム,塩化アルミニウム,水素化ジエチルアルミニウ
ム,水素化ジイソブチルアルミニウム等のアルミニウム
を含有する導入気体から、特に針状結晶(ウイスカー)
やフィラメント状結晶の成長を抑えて、電気的安定性に
優れた良質のアルミニウム膜を低温で高速に基体表面に
成膜出来るようになった。このアルミニウム薄膜または
アルミニウム含有薄膜は半導体デバイス,各種センサー
の配線に用い得る。
By making the distribution plate 31 have a heatable structure in this way, especially needle crystals (from needle-like crystals ( Whiskers)
It has become possible to form a high-quality aluminum film having excellent electrical stability on the surface of a substrate at a low temperature and at a high speed by suppressing the growth of filament crystals. This aluminum thin film or aluminum-containing thin film can be used for wiring of semiconductor devices and various sensors.

400℃以下の温度で分解してアルミニウム薄膜を作成
出来る気体としては、大気圧下の室温では液体である
が、例えばトリイソブチルアルミニウムがある。
A gas that can be decomposed at a temperature of 400 ° C. or lower to form an aluminum thin film is a liquid at room temperature under atmospheric pressure, and for example, triisobutylaluminum.

導入気体としてトリイソブチルアルミニウム(キャリ
アガスとして水素またはアルゴン等を用いることもあ
る)を用いアルミニウム薄膜またはアルミニウム合金薄
膜を作製する場合には、分配板31の温度を150〜350℃と
してこのトリイソブチルアルミニウムに対し「第1段の
熱変化」を与え、しかる後、150〜420℃に加熱されてい
る基体2の表面に供給する。基体表面では「第2段の熱
変化」を生じ薄膜化が行なわれる。
When producing an aluminum thin film or an aluminum alloy thin film using triisobutylaluminum as the introduction gas (hydrogen or argon may be used as a carrier gas), the temperature of the distribution plate 31 is set to 150 to 350 ° C. To the surface of the substrate 2 heated to 150 to 420 ° C. On the surface of the substrate, a "second-stage thermal change" occurs and thinning is performed.

この方法によって生じた薄膜には、針状あるいはフィ
ラメント状結晶が殆んど見あたらず、良質な膜を得るこ
とが出来る。
In the thin film produced by this method, needle-like or filament-like crystals are hardly found, and a good quality film can be obtained.

トリイソブチルアルミニウムを「第1段の熱変化」さ
せた後の気体は、他の分子構造に変化した状態となって
いるか若しくは単にトリイソブチルアルミニウムの温度
が上昇しているだけなのか、その状態は明らかにされて
いない。しかしこの分配板31による加熱の効果は顕著で
あって、生成するアルミニウム膜のグレーンサイズも分
配板31の温度によって敏感に変化する。グレーンサイズ
を再現性よく得るためには、温度を±2℃以内の精度に
調整する必要のあることが明かとなっている。
After the "first stage thermal change" of triisobutylaluminum, the gas is in a state where it has changed to another molecular structure, or whether the temperature of triisobutylaluminum is merely rising. Not revealed. However, the effect of heating by the distribution plate 31 is remarkable, and the grain size of the aluminum film to be formed also changes sensitively according to the temperature of the distribution plate 31. In order to obtain the grain size with good reproducibility, it is clear that it is necessary to adjust the temperature to within ± 2 ° C.

分配板31の加熱は、実施例のように大気圧側から行な
うのが望ましい。ヒーター32は絶縁粉末34を用いて分配
板31から絶縁されている。絶縁粉末34はアルミナ等でも
よいが、ヒーターからの熱の伝導性を考慮するとマグネ
シア粉末を用いる方がよい。
It is desirable to heat the distribution plate 31 from the atmospheric pressure side as in the embodiment. The heater 32 is insulated from the distribution plate 31 by using an insulating powder 34. The insulating powder 34 may be alumina or the like, but it is preferable to use magnesia powder in consideration of the conductivity of heat from the heater.

真空側にヒーターを設置すると、ヒーターが導入気体
あるいは導入気体の分解生成物と直接接するため、ヒー
ター表面にAl等の金属が堆積し、ヒーター特性に変化を
来すという問題がある。
When the heater is installed on the vacuum side, the heater comes into direct contact with the introduced gas or a decomposition product of the introduced gas, so that a metal such as Al deposits on the surface of the heater, resulting in a change in the heater characteristics.

ヒーター表面は分配板31よりも表面温度が可成り上昇
しているため、該導入気体またはその分解生成物が分解
して、膜中に不純物を混入する問題もある。
Since the surface temperature of the heater surface is considerably higher than that of the distribution plate 31, there is a problem that the introduced gas or its decomposition product is decomposed and impurities are mixed into the film.

大気圧側から分配板31の加熱を行なうならばそれらも
問題は総て解決され、真空側から加熱する場合に比べて
熱伝導性,均一性,熱効率、総ての点で優れる。
If the distribution plate 31 is heated from the atmospheric pressure side, all of these problems are solved, and it is superior in heat conductivity, uniformity, thermal efficiency, and all in comparison with the case of heating from the vacuum side.

35は絶縁粉末34を固定するための蓋である。 Reference numeral 35 is a lid for fixing the insulating powder 34.

第1図の実施例の装置のような構成の場合は、分配板
31の加熱は均一性が非常に良好で、処理室1内に異常に
高温な部分が存在しないため、反応系の純度が保たれ
る。分配板31の材質として今回は熱伝導性の良い銅を用
いた。使用した銅は、JIS C1020材を用いている。しか
し不純物等を考慮するとJIS C1011を用いる方が良好で
あった。
In the case of the configuration of the apparatus of the embodiment shown in FIG. 1, the distribution plate
The heating of 31 has very good uniformity, and since there is no abnormally high temperature portion in the processing chamber 1, the purity of the reaction system is maintained. As the material of the distribution plate 31, copper having good thermal conductivity was used this time. The copper used is JIS C 1020 material. However, considering impurities, it was better to use JIS C1011.

JIS C1100材、JIS C1220材も本装置の特徴だけからは
有効であるが、不純物が混入しやすい欠点があった。し
かし使用するアルミニウム膜が若干の不純物混入で問題
の出ない程度のものであれば、この材料の方が安価で良
い。
JIS C1100 material and JIS C1220 material are also effective only from the features of this device, but they have a drawback that impurities are easily mixed. However, if the aluminum film to be used is of a level such that a slight amount of impurities does not cause a problem, this material is cheaper and better.

また分配板31としてJIS C1011材等に無光沢のニッケ
ルメッキやアルミニウムの蒸着膜を付けたものを用いて
もよい。
Further, as the distribution plate 31, a JIS C1011 material or the like having a matte nickel plating or an aluminum vapor deposition film may be used.

この分配板31は熱伝導性が良いものであれば本装置の
特徴を出すことができて、材質として銅のみならずアル
ミニウム系の材質やダイヤモンドを表面にコーティング
して熱伝導性を改良したものなども有効である。
This distribution plate 31 can exhibit the characteristics of this device as long as it has good thermal conductivity, and not only copper but also aluminum-based material or diamond is coated on the surface to improve the thermal conductivity. Is also effective.

分配板31の温度モニター42もまた大気圧側から行なわ
れている。この構造にするのは、大気圧側の方が熱伝導
性にすぐれ、分配板31の温度が正確に測定出来るためで
ある。熱電対を処理室1内に設置するとアルミニウム等
の金属を堆積させる場合に、熱電対表面にも金属膜が堆
積し正確な温度測定が出来ないという問題を生じる。
The temperature monitor 42 of the distribution plate 31 is also operated from the atmospheric pressure side. This structure is used because the atmospheric pressure side has better thermal conductivity and the temperature of the distribution plate 31 can be measured accurately. When a thermocouple is installed in the processing chamber 1, when a metal such as aluminum is deposited, a metal film is deposited on the surface of the thermocouple, which causes a problem that accurate temperature measurement cannot be performed.

更に、処理室1の中を10-4Torr以下に排気出来るよう
な排気能力をもつ油拡散ポンプ,ターボ分子ポンプ等を
用いるのが望ましい。アルミニウムの成膜時に、反応系
に残留気体が存在すると、アルミニウムの結晶粒が角状
となり結晶間の接合が不良なるためである。10-4Torr以
下のバックグラウンドの下では結晶表面は良好に成長
し、結晶間の接合が良好となる。このため電気抵抗の小
さい良質な膜の作製が可能となる。
Furthermore, it is desirable to use an oil diffusion pump, a turbo molecular pump, or the like having an exhaust capacity capable of exhausting the inside of the processing chamber 1 to 10 -4 Torr or less. This is because if a residual gas is present in the reaction system during the film formation of aluminum, the aluminum crystal grains become angular and the bonding between the crystals becomes poor. Under the background of 10 -4 Torr or less, the crystal surface grows well and the bond between crystals becomes good. Therefore, it is possible to manufacture a high-quality film having a low electric resistance.

真空ポンプは、有機物系を排気するターボ分子ポンプ
を用いた方が好成績を示す。油拡散ポンプを用いると有
機物がポンプ油に混入しポンプ油の蒸気圧が次第に増加
してポンプの排気能力の低下を招く傾向がある。
For the vacuum pump, it is better to use a turbo molecular pump that exhausts organic substances. When an oil diffusion pump is used, organic substances are mixed in the pump oil, and the vapor pressure of the pump oil gradually increases, which tends to reduce the exhaust capacity of the pump.

ターボ分子ポンプを用いると、安定して高真空状態が
得られ、再現性の良い成膜が可能となることが判明し
た。
It has been found that the use of a turbo molecular pump makes it possible to stably obtain a high vacuum state and to form a film with good reproducibility.

以上は、第1図の装置をアルミニウムの成膜の場合を
例にとって記述したものであるが、他の金属膜や半導体
膜,絶縁膜の成膜においても本発明の装置は有能であ
る。
The above is described by taking the case of the film formation of aluminum in the apparatus of FIG. 1 as an example, but the apparatus of the present invention is also effective for the formation of other metal films, semiconductor films and insulating films.

猶従来も蒸気圧の低い気体を用いる成膜の場合では、し
ばしば導入気体のバブリング時およびバブリング場所か
ら処理室までの配管内輸送時に、蒸気圧を維持するため
に気体の加熱を行なう場合があったが、それが本発明と
目的を異にするのものであることは明かである。例え
ば、トリイソブチルアルミニウムを導入気体とする場合
の前記加熱温度は、蒸気圧を維持するための25〜100℃
である。トリイソブチルアルミニウムは約40℃で分解が
始まり、より蒸気圧の低い水素化ジイソブチルアルミニ
ウムを生じてしまう。このためあまり高温には出来な
い。これに反し本実施例における分配板31の有効性は15
0〜350℃の範囲でのみ見いだされる。両者の差は明白で
ある。
Conventionally, in the case of film formation using a gas with a low vapor pressure, the gas is often heated to maintain the vapor pressure during bubbling of the introduced gas and during transportation from the bubbling location to the processing chamber in a pipe. However, it is clear that it has a different purpose from the present invention. For example, the heating temperature when using triisobutylaluminum as the introduced gas is 25 to 100 ° C. for maintaining the vapor pressure.
Is. Triisobutylaluminum begins to decompose at about 40 ° C, producing diisobutylaluminum hydride with a lower vapor pressure. For this reason, it cannot be made too hot. On the contrary, the effectiveness of the distribution plate 31 in this embodiment is 15
Only found in the range 0-350 ° C. The difference between the two is clear.

(発明の効果) 以上のように、本発明の装置および方法を用いると、
低温で高速に良質な金属薄膜を再現性よく作製できる。
(Effects of the Invention) As described above, by using the apparatus and method of the present invention,
High-quality metal thin films can be produced with good reproducibility at low temperature and at high speed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の成膜装置の実施例の正面断面図。 第2図は従来の同様の図である。 1…処理室、2…基体,3…基体ホルダー、31…分配板、
32…ヒーター、33…熱電対、40…分配板温度調整機構、
20…基体温度調整機構。
FIG. 1 is a front sectional view of an embodiment of the film forming apparatus of the present invention. FIG. 2 is a similar view to the conventional one. 1 ... Processing chamber, 2 ... Substrate, 3 ... Substrate holder, 31 ... Distribution plate,
32 ... Heater, 33 ... Thermocouple, 40 ... Distribution plate temperature adjustment mechanism,
20 ... Base temperature control mechanism.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 司 東京都府中市四谷5―8―1 日電アネル バ株式会社内 (56)参考文献 特開 昭59−85857(JP,A) 特公 昭44−5283(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsukasa Kobayashi 5-8-1, Yotsuya, Fuchu-shi, Tokyo Within Nidec Anelva Co., Ltd. -5283 (JP, B1)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】真空に保つことの出来る処理室と;処理室
内に設置され基体の保持および温度調整をする基体ホル
ダーと;該基体ホルダーを通して該基体の温度調整を行
う基体温度調整機構と;成膜すべき金属を含む有機金属
化合物の所定の気体を該処理室内に導入する気体導入機
構と;該処理室内を排気する排気機構と;該処理室内に
設置あるいは該処理室を構成する一部分として設けら
れ、該所定の気体を均一に該基体の表面に供給する分配
板と;を含んで構成され、該所定の気体に含まれる金属
の薄膜を該基体の表面に堆積させる成膜装置において、 該分配板の温度を調整して該所定の気体に第一の熱変化
を与えることが可能な分配板温度調整機構を備え、第一
の熱変化が与えられた該所定の気体は、前記基体温度調
整機構による熱により第二の熱変化が与えられるもので
あり、該分配板温度調整機構は、分配板を150℃から350
℃の範囲内の所定の温度に調整するものであることを特
徴とする成膜装置。
1. A processing chamber capable of maintaining a vacuum; a substrate holder installed in the processing chamber for holding a substrate and adjusting the temperature; a substrate temperature adjusting mechanism for adjusting the temperature of the substrate through the substrate holder; A gas introduction mechanism for introducing a predetermined gas of an organometallic compound containing a metal to be filmed into the processing chamber; an exhaust mechanism for exhausting the processing chamber; provided in the processing chamber or provided as a part of the processing chamber A distribution plate for uniformly supplying the predetermined gas to the surface of the substrate, and depositing a thin metal film contained in the predetermined gas on the surface of the substrate. A distribution plate temperature adjusting mechanism capable of adjusting the temperature of the distribution plate to give a first heat change to the predetermined gas, wherein the predetermined gas to which the first heat change is given is the substrate temperature. Due to heat from the adjusting mechanism A second heat change is applied, and the distribution plate temperature adjusting mechanism moves the distribution plate from 150 ° C to 350 ° C.
A film forming apparatus, which is adjusted to a predetermined temperature within a range of ° C.
【請求項2】該分配板温度調整機構は該分配板の加熱手
段、温度モニターおよびフィードバック制御手段を具
え、該加熱手段は大気圧側から分配板を抵抗加熱あるい
は放射加熱する構造となっており、且つ、該温度モニタ
ーは熱電対または測温抵抗により分配板の温度を測定す
る構造となっていることを特徴とする特許請求の範囲第
1項記載の成膜装置。
2. The distribution plate temperature adjusting mechanism comprises a heating means for the distribution plate, a temperature monitor and a feedback control means, and the heating means has a structure for resistance heating or radiant heating of the distribution plate from the atmospheric pressure side. The film forming apparatus according to claim 1, wherein the temperature monitor has a structure for measuring the temperature of the distribution plate by a thermocouple or a temperature measuring resistor.
【請求項3】該排気機構は、到達圧力10-4Torr以下の能
力を有することを特徴とする特許請求の範囲第1または
2項記載の成膜装置。
3. The film forming apparatus according to claim 1 or 2, wherein the exhaust mechanism has an ultimate pressure of 10 −4 Torr or less.
【請求項4】該排気機構はターボ分子ポンプを用いてい
ることを特徴とする特許請求の範囲第3項記載の成膜装
置。
4. The film forming apparatus according to claim 3, wherein the exhaust mechanism uses a turbo molecular pump.
【請求項5】該所定の気体がトリイソブチルアルミニウ
ムであり、該分配板温度調整機構が該分配板の温度を、
150〜350℃の範囲内で±2℃以内の精度に調整出来るも
のであることを特徴とする特許請求の範囲第1,2,3又は
4項記載の成膜装置。
5. The predetermined gas is triisobutylaluminum, and the distribution plate temperature adjusting mechanism adjusts the temperature of the distribution plate by
The film forming apparatus according to claim 1, 2, 3, or 4, which can be adjusted within a range of 150 to 350 ° C with an accuracy of ± 2 ° C or less.
【請求項6】成膜すべき金属を含む有機金属化合物の所
定の気体を150℃から350℃の範囲内の所定の温度に加熱
して先ず第1段の熱変化を生じさせた後に基体表面に供
給し、基体表面における加熱の第2段の熱変化により、
該所定の気体に含まれる金属の薄膜を該基体の表面に作
成する成膜を行うことを特徴とする成膜方法。
6. A substrate surface after first heating a predetermined gas of an organometallic compound containing a metal to be formed to a predetermined temperature within a range of 150 ° C. to 350 ° C. to cause a first-stage thermal change. And the second stage heat change of the heating on the substrate surface,
A film forming method comprising forming a thin film of a metal contained in the predetermined gas on the surface of the substrate.
【請求項7】該所定の気体がトリイソブチルアルミニウ
ムであり、該第1段の熱変化温度が150〜350℃であり、
該第2段の熱変化温度が150〜420℃であるような、アル
ミニウム薄膜またはアルミニウム合金薄膜を基体表面に
作成する特許請求の範囲第6項記載の成膜方法。
7. The predetermined gas is triisobutylaluminum, the heat change temperature of the first stage is 150 to 350 ° C.,
7. The film forming method according to claim 6, wherein an aluminum thin film or an aluminum alloy thin film having a heat change temperature of the second stage of 150 to 420 ° C. is formed on the surface of the substrate.
JP62254268A 1987-07-10 1987-10-08 Film forming apparatus and method Expired - Lifetime JPH0826460B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62254268A JPH0826460B2 (en) 1987-07-10 1987-10-08 Film forming apparatus and method
US07/253,820 US4963423A (en) 1987-10-08 1988-10-06 Method for forming a thin film and apparatus of forming a metal thin film utilizing temperature controlling means
US07/424,799 US4981103A (en) 1987-10-08 1989-10-20 Apparatus for forming a metal thin film utilizing temperature controlling means
US08/009,446 US5594280A (en) 1987-10-08 1993-01-27 Method of forming a thin film and apparatus of forming a metal thin film utilizing temperature controlling means
US08/561,747 US5744377A (en) 1987-10-08 1995-11-22 Method for forming a thin film and apparatus of forming a metal thin film utilizing temperature controlling means

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-172374 1987-07-10
JP17237487 1987-07-10
JP62254268A JPH0826460B2 (en) 1987-07-10 1987-10-08 Film forming apparatus and method

Publications (2)

Publication Number Publication Date
JPH01119674A JPH01119674A (en) 1989-05-11
JPH0826460B2 true JPH0826460B2 (en) 1996-03-13

Family

ID=26494750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254268A Expired - Lifetime JPH0826460B2 (en) 1987-07-10 1987-10-08 Film forming apparatus and method

Country Status (1)

Country Link
JP (1) JPH0826460B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69218152T2 (en) * 1991-12-26 1997-08-28 Canon Kk Manufacturing process of a deposited layer by means of CVD, using liquid raw material and suitable device
US20050109276A1 (en) * 2003-11-25 2005-05-26 Applied Materials, Inc. Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985857A (en) * 1982-11-08 1984-05-17 Semiconductor Energy Lab Co Ltd Preparation of aluminum film

Also Published As

Publication number Publication date
JPH01119674A (en) 1989-05-11

Similar Documents

Publication Publication Date Title
US4634605A (en) Method for the indirect deposition of amorphous silicon and polycrystalline silicone and alloys thereof
EP0493609B1 (en) Method and device for manufacturing diamond
JPH0649944B2 (en) Copper complex capable of selective deposition of copper thin film, its deposition method and selective etching method of thin film
US4981103A (en) Apparatus for forming a metal thin film utilizing temperature controlling means
US5390626A (en) Process for formation of silicon carbide film
JPH06330326A (en) Production of thin silica film
JPH0826460B2 (en) Film forming apparatus and method
JPS5884111A (en) Improved plasma deposition for silicon
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
KR100249825B1 (en) Method of copper chemical vapor deposition using metalorganic precursor
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPH0194613A (en) Vapor growth method
JP2840750B2 (en) Coating method
JP2003100642A (en) Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
JP3049534B2 (en) Method for producing polyperinaphthalene thin film
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JP4634572B2 (en) Copper thin film formation method
JPH062943B2 (en) Method for forming metal thin film
JPH1018036A (en) Forming method for high purity platinum thin film
JP2000054141A (en) Substrate placing stand in vapor growth device and vapor growth device
JPH04325685A (en) Production of thin film
JPH0476348B2 (en)
JPH02138726A (en) Manufacture of compound semiconductor device
JPH0578843A (en) Chemical vapor growth method of copper thin film
Han et al. Laser Assisted Chemical Vapor Deposition of Cu from a New Cu Organometallic Complex

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12