JPS612344A - Vapor growth equipment - Google Patents

Vapor growth equipment

Info

Publication number
JPS612344A
JPS612344A JP12346184A JP12346184A JPS612344A JP S612344 A JPS612344 A JP S612344A JP 12346184 A JP12346184 A JP 12346184A JP 12346184 A JP12346184 A JP 12346184A JP S612344 A JPS612344 A JP S612344A
Authority
JP
Japan
Prior art keywords
gas
sample
air flow
vapor phase
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12346184A
Other languages
Japanese (ja)
Inventor
Takaaki Kimura
記村 隆章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12346184A priority Critical patent/JPS612344A/en
Publication of JPS612344A publication Critical patent/JPS612344A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45506Turbulent flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To uniformize the film thickness of a vapor growth layer made to grow in vapor phase by a method wherein the air flow of raw gas is turned into a turbulent air flow by disposing a sample or by disposing a fluid obstacle and the vapor growth layer is formed on the sample in the turbulent air flow. CONSTITUTION:A source chain bar 3 and a liner tube 5 are provided in the interior of the reaction tube of the epitaxial growth equipment. The source chain bar 3 is provided with a source boat 6, wherein magnesium chloride is charged, and the gaseous magnesium chloride is made to generate by applying heat. This gas is included in the air flow of hydrogen gas and is sent onto a growing substrate 20 placed on a wafer boat 12 and a vapor growth is performed. Here, a block 21 is disposed in front of the growth substrate 20 in such a structure that the flow velocity of fluid gas is obstructed. This block 21 makes a turbulent air flow generate in the flow direction of the gas. As a result, the flow rate of the gas in the reaction tube is uniformized and the thickness of the film made to grow in vapor phase becomes uniform.

Description

【発明の詳細な説明】 fal  発明の技術分野 本発明は、気相成長装置に係り、特に成長基板上に均一
な気相成長をなす気相成長装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION fal Technical Field of the Invention The present invention relates to a vapor phase growth apparatus, and more particularly to the configuration of a vapor phase growth apparatus that performs uniform vapor growth on a growth substrate.

(bl  技術の背景 近年、半導体装置の製造工程において、気相成長工程は
極めて重要であり、特にエピタキシャル成長は、鏡面に
仕上げられた単結晶基板上に、所要の抵抗率や厚みの単
結晶を基板と同様の結晶方向に成長させることができる
ので、半導体装置の製造工程では広範囲に利用されてい
る。
(bl Technology background) In recent years, the vapor phase growth process has become extremely important in the manufacturing process of semiconductor devices. In particular, epitaxial growth is a process in which a single crystal with a desired resistivity and thickness is grown on a mirror-finished single crystal substrate. Since it can be grown in the same crystal direction, it is widely used in the manufacturing process of semiconductor devices.

特に、最近使用されはじめたマグネシアスピネルは、高
耐圧の絶縁物で、シリコン基板上に高品質のものが成長
し、又マグネシアスピネル上にも、高品質のシリコンが
成長することが知られていて、このため半導体素子の誘
電体分離などに応用できることから各方面で注目されて
いるが、これをエピタキシャル成長をさせる時には、特
に膜厚が均一で、膜全面にわたり特性の均一性が必要で
あって、この要望に応える成膜方法が要望されている。
In particular, magnesia spinel, which has recently begun to be used, is a high-voltage insulator, and it is known that high quality silicon can be grown on silicon substrates, and high quality silicon can also be grown on magnesia spinel. For this reason, it is attracting attention in various fields because it can be applied to dielectric isolation of semiconductor devices, but when growing it epitaxially, it is necessary to have a uniform film thickness and uniform properties over the entire surface of the film. There is a need for a film forming method that meets this demand.

(C)  従来技術と問題点 以下図面によって、従来の従来のエピタキシャル成長の
方法を説明する。
(C) Prior Art and Problems The conventional epitaxial growth method will be explained below with reference to the drawings.

従来例として、マグネシアスピネル層のエビタキシャル
成長の方法を説明するが、横型のエピタキシャル成長炉
について一般に応用出来るものである。
As a conventional example, a method of epitaxial growth of a magnesia spinel layer will be described, but it can be generally applied to a horizontal epitaxial growth furnace.

第1図は従来のマグネシアスピネルのエピタキシャル成
長装置であるが、1は加熱炉であり、この加熱炉の加熱
方式は、3セクシヨンに分割されたそれぞれ独立の温度
ゾーン1a、1b、1cを有していて、温度制御をする
ことができ、2は石英で製作された反応管であって、こ
の反応管の内部には角型で上下二段に隔壁されたソース
チェバー3及び、反応管に生成物が直接付着することを
防止するライナー管5がある。
Figure 1 shows a conventional epitaxial growth apparatus for magnesia spinel. 1 is a heating furnace, and the heating method of this heating furnace is divided into three sections, each having independent temperature zones 1a, 1b, and 1c. 2 is a reaction tube made of quartz, and inside this reaction tube is a rectangular source chamber 3 that is partitioned into upper and lower layers, and There is a liner tube 5 that prevents objects from adhering directly.

このソースチェバーの上段4には、塩化マグネシューム
(MgC12)を装填したソースポート6があり、加熱
炉の1bの比較的温度の高い部分で約800℃に加熱さ
れて、ガス状の塩化マグネシュームが発生される。
In the upper stage 4 of this sauce chamber, there is a source port 6 loaded with magnesium chloride (MgC12), which is heated to about 800°C in the relatively high temperature part of the heating furnace 1b, and gaseous magnesium chloride is released. generated.

この塩化マグネシュームのガスは、ソースチェバー3の
上段の端部に取りつけられた、ガス導入孔7から導入さ
れる水素ガスの気流に混入されて、成長基板8上に送ら
れる。
This magnesium chloride gas is mixed with the hydrogen gas flow introduced from the gas introduction hole 7 attached to the upper end of the source chamber 3 and sent onto the growth substrate 8 .

一方、ソースチェンバー3の下段には、金属アルミニュ
ーム(AI)を装填したソースポート9があって、加熱
炉の比較的低温である1aのゾーンで500℃で加熱さ
れる。
On the other hand, in the lower part of the source chamber 3, there is a source port 9 loaded with metal aluminum (AI), which is heated at 500° C. in a relatively low temperature zone 1a of the heating furnace.

ソースチェンバー3の下段の端部にも、ガスの導入孔1
1が取りつけられており、この導入孔から水素ガスと塩
化水素ガス(HCI )の混合ガスが流入するようにし
てあって、これらのガスとアルミニュームが化学反応し
て、塩化アルミニュームのガスを発生し、このガスも成
長基板8上に送られる。
Gas introduction holes 1 are also located at the lower end of the source chamber 3.
1 is installed, and a mixed gas of hydrogen gas and hydrogen chloride gas (HCI) flows through this introduction hole, and these gases and aluminum react chemically to form aluminum chloride gas. This gas is also sent onto the growth substrate 8.

叉反応管には、ガス導入孔1oがらは水素ガスと共に炭
酸ガス(Co 2 )が混合ガスとして導入され、この
ガスはソースチェンバー3の外側を通って、同様に成長
基板8上に送られる。
Hydrogen gas and carbon dioxide gas (Co 2 ) are introduced as a mixed gas into the reaction tube through the gas introduction hole 1o, and this gas is similarly sent onto the growth substrate 8 through the outside of the source chamber 3.

成長基板はウェハーボート12の上に置かれ、加熱炉の
最も高い1cのゾーンで、温度が900’C乃至100
0℃で加熱される。
The growth substrate is placed on the wafer boat 12, and the temperature ranges from 900'C to 100'C in the highest zone 1c of the heating furnace.
Heated at 0°C.

この成長基板上では、上記のガス雰囲気と加熱温度によ
って下記の化学反応が進行する。
On this growth substrate, the following chemical reaction proceeds due to the above gas atmosphere and heating temperature.

MgCl2+2AICIFl+11co2+4H2= 
 FIgo ・ 八12 0 3  +  8HC1+
4COこのようにして、成長基板上にマグネシアスピネ
ル(MgO・A1203)の膜が成長される。
MgCl2+2AICIFl+11co2+4H2=
FIGo ・812 0 3 + 8HC1+
4CO In this manner, a film of magnesia spinel (MgO.A1203) is grown on the growth substrate.

この化学反応が行われる従来の気相成長装置は横型のた
め、反応管も横になるため、この反応管内を流れる前記
のガスが、主に反応管の中心部で流量が大きくなり、反
対に反応管の壁面に近い部分では流速が小になって流量
が一定にならない欠点がある。
The conventional vapor phase growth apparatus in which this chemical reaction is carried out is horizontal, and the reaction tube is also horizontal, so the flow rate of the gas flowing inside the reaction tube is mainly large in the center of the reaction tube, and vice versa. There is a drawback that the flow velocity is low near the wall of the reaction tube and the flow rate is not constant.

このため、成長基板面上に接するガス量は、成長基板上
の中心部では多量になり、成長基板上の両端になるほど
ガス量が減少するので、第2図(1)に示す成長基板上
にエピタキシャル成長した膜厚をa−a部で断面を取る
と、第2図(2)に示すp線のようにウェハーの直径方
向に膜厚の不均一な成長膜になり、図で判るように、成
長膜厚が中心の厚みに比較して、両端部は約20%の減
少になっていて実用上極めて不都合であった。
Therefore, the amount of gas in contact with the growth substrate surface is large at the center of the growth substrate, and decreases toward both ends of the growth substrate. If we take a cross-section of the epitaxially grown film along section a-a, we can see that the film is grown with non-uniform thickness in the diametrical direction of the wafer, as shown by the p-line in Figure 2 (2). The thickness of the grown film was reduced by about 20% at both ends compared to the thickness at the center, which was extremely inconvenient in practice.

fdl  発明の目的 本発明は上記従来の欠点に鑑み、従来の気相成長装置の
構造を大幅に変更することなく、反応管内を流れるガス
を乱流化することにより、気相成しした膜厚の均一化を
はかる製造方法を提供することを目的とする。
fdl Purpose of the Invention In view of the above-mentioned drawbacks of the conventional vapor phase growth apparatus, the present invention aims to increase the thickness of the film formed in the vapor phase by making the gas flowing in the reaction tube turbulent without significantly changing the structure of the conventional vapor phase growth apparatus. The purpose of the present invention is to provide a manufacturing method that achieves uniformity.

fel  発明の構成 この目的は、本発明によれば、横型の加熱炉と、その内
部に素材ガスの流入孔と流出孔を有して一定量の該素材
ガスの気流を生じせしめる横型の真空容器があり、該真
空容器の内部にはソースチャンバと試料の配置台を備え
て、該試料を該素材ガスの気流中で加熱して気相成長を
なす横型の気相成長装置において、該真空容器に配置さ
れた該試料の配置、又は該試料の近傍に該素材ガスの気
流に障害をあたえる流体阻害物を配置して、該素材ガス
気流を乱気流とし、該乱気流中で該試料上に気相成長層
を形成することを特徴とする気相成長装置を提供するこ
とによって達成できる。
fel Structure of the Invention According to the present invention, the object is to provide a horizontal heating furnace, and a horizontal vacuum container that has an inflow hole and an outflow hole for a material gas inside the furnace and generates an airflow of a certain amount of the material gas. In a horizontal vapor phase growth apparatus, the vacuum vessel is equipped with a source chamber and a sample placement stage, and the sample is heated in an air flow of the material gas to perform vapor phase growth. The sample is placed in a turbulent flow, or a fluid obstruction that obstructs the flow of the material gas is placed near the sample to make the flow of the material gas turbulent. This can be achieved by providing a vapor phase growth apparatus characterized by forming a growth layer.

(f)  発明の実施例 以下本発明の実施例を図面によって詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の気相成長装置における反応管の内部を
示している。
FIG. 3 shows the inside of the reaction tube in the vapor phase growth apparatus of the present invention.

気相成長装置の全体の構成は、従来の構造と特に異なる
ところは無く、反応管内のガスの流量を均一化するため
、素材ガスの流れ方向に対し乱流にするような流体阻害
物を設けている。
The overall structure of the vapor phase growth apparatus is not particularly different from the conventional structure, and in order to equalize the flow rate of gas in the reaction tube, a fluid obstruction is installed to create turbulence in the flow direction of the material gas. ing.

第3図(1)は、反応管の側面側の模式図であり、第3
図(2)は反応管の平面の模式図であるが、反応管内の
矢印のガスが流入する上流側で、成長基板20の前面に
、流体ガスの流速を妨害するような構造でブーロック2
1を設置している。
FIG. 3 (1) is a schematic diagram of the side surface of the reaction tube, and the third
Figure (2) is a schematic plan view of the reaction tube. On the upstream side of the reaction tube where the gas flows in, there is a block 2 in front of the growth substrate 20 with a structure that obstructs the flow rate of the fluid gas.
1 is installed.

このブロックの大きさは、流体ガスの流速を軽減するか
、乱流を生じるように最も適切な寸法を決定すればよい
が、−例として、75n+mX50mmX5mm程度の
大きさの石英製のブロックを使用することができる。
The size of this block can be determined by determining the most appropriate size to reduce the flow velocity of the fluid gas or to generate turbulence, but for example, a quartz block with a size of about 75n+m x 50mm x 5mm is used. be able to.

このようにして気相成長で製作されたマグネシアスピネ
ルは、従来の製造方法で製作されたマグネシアスピネル
層の膜厚に比較して中心部の膜厚が4%だけ減少したが
、(即ち僅かに成長速度が減少するが)膜厚分布につい
ては、第2図(2)に示すq線の膜厚分布となり、中心
部の膜厚に比較して、両端部の膜厚は約8%の差が認め
られるまで改善される。
The magnesia spinel produced in this way by vapor phase epitaxy had a thickness reduced by 4% in the center compared to the thickness of the magnesia spinel layer produced by the conventional manufacturing method (i.e., slightly However, the film thickness distribution becomes the q-line film thickness distribution shown in Figure 2 (2), and the film thickness at both ends is about 8% different from the film thickness at the center. will be improved until it is recognized.

実施例では、ブロックとして形状が小さい直方体を用い
たが、特に形状に制限が無く、反応管内を流れるガスの
流れを大きく乱すことがなければ円筒形等、他の形状の
ブロックを用いても良く、叉材質についても、石英、グ
ラファイト、炭化シリコンをコーテングしたグラファイ
ト、セラミック、シリコン等、成長雰囲気の組成に影響
を与えない材料であれば良い。
In the examples, a small rectangular parallelepiped was used as the block, but if there is no particular restriction on the shape and the flow of gas flowing inside the reaction tube is not significantly disturbed, blocks of other shapes such as a cylinder may also be used. The material of the fork may be any material that does not affect the composition of the growth atmosphere, such as quartz, graphite, graphite coated with silicon carbide, ceramic, and silicon.

第4図から$6図までは、反応管の成長基板の部分の断
面図であるが、第4図は配置台12上の成長基板23の
上面にブロック22が設置された例であり、叉第5図は
第4図に相当するブロック24が山形の形状であり、又
第6図は成長基板23の上面に密着しておかれたブロッ
クが、成長基板と密着しておかれたブロック25と上面
のブロック26の両面に設置された例である。
FIGS. 4 to 6 are cross-sectional views of the growth substrate portion of the reaction tube, and FIG. In FIG. 5, the block 24 corresponding to that in FIG. 4 has a chevron shape, and in FIG. This is an example in which they are installed on both sides of the block 26 on the top surface.

上記のような気相成長方法において、基板上に均一な膜
厚の成長をさせるために、素材ガスを乱流にすることが
良結果を雪すということから、成長基板を配置台である
ウェハーボート12の上に置く際に、気流の方向に対し
平行に配列するだけでな(、成長基板を気流方向に傾斜
をつけて配列するか、或いは気流方向に対しほぼ直角に
配列することにより素材ガス気流を乱気流とすることが
可能であり、同様な効果を得ることができる。
In the above-mentioned vapor phase growth method, in order to grow a film with a uniform thickness on the substrate, it is said that creating a turbulent flow of the material gas will yield better results. When placed on the boat 12, the growth substrates can be placed on the boat 12 by arranging them not only parallel to the direction of the airflow (or by arranging them at an angle to the direction of the airflow, but also by arranging them approximately perpendicular to the direction of the airflow). It is possible to make the gas flow turbulent, and a similar effect can be obtained.

(gl  発明の効果 以上、詳細に説明したように、本発明は気相成長方法を
採用することにより、半導体基板に均一な厚みの膜を気
相成長をさせることが出来、半導体基板の性能の向上に
供し得るという効果大なるものがある。
(gl) Effects of the Invention As explained in detail above, the present invention uses a vapor phase growth method to grow a film with a uniform thickness on a semiconductor substrate, thereby improving the performance of the semiconductor substrate. There are some things that have a great effect on improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の気相成長装置の模式図、第2図は成長
基板上の成膜の厚み分布を示す状態図、第3図、第4図
、第5図、第6図は本発明の詳細な説明する断面図であ
る。 図において、1は加熱炉、2は反応管、3はソースチェ
バー、4はソースチェバーの上段、5はライナー管、6
.9はソースポー1〜.7はガス導入孔、8は成長基板
、10.11はガス導入孔、12は成長基板のウェハ−
ボート、20.23は成長基板、21.22.24.2
5.26はブロックである。
Fig. 1 is a schematic diagram of a conventional vapor phase growth apparatus, Fig. 2 is a phase diagram showing the thickness distribution of a film formed on a growth substrate, and Figs. FIG. 2 is a cross-sectional view explaining the invention in detail. In the figure, 1 is a heating furnace, 2 is a reaction tube, 3 is a sauce chamber, 4 is the upper stage of the sauce chamber, 5 is a liner tube, and 6
.. 9 is source po 1~. 7 is a gas introduction hole, 8 is a growth substrate, 10.11 is a gas introduction hole, and 12 is a wafer of the growth substrate.
Boat, 20.23 is growth substrate, 21.22.24.2
5.26 is a block.

Claims (1)

【特許請求の範囲】[Claims] 横型の加熱炉と、その内部に素材ガスの流入孔と流出孔
を有して一定量の該素材ガスの気流を生じせしめる横型
の真空容器があり、該真空容器の内部にはソースチャン
バと試料の配置台を備えて、該試料を該素材ガスの気流
中で加熱して気相成長をなす横型の気相成長装置におい
て、該真空容器に配置された該試料の配置、又は該試料
の近傍に該素材ガスの気流に障害をあたえる流体阻害物
を配置して、該素材ガス気流を乱気流とし、該乱気流中
で該試料上に気相成長層を形成することを特徴とする気
相成長装置。
There is a horizontal heating furnace, and a horizontal vacuum container inside which has inflow and outflow holes for material gas to generate a certain amount of gas flow, and inside the vacuum container there is a source chamber and a sample. In a horizontal vapor phase growth apparatus that is equipped with a placement table and performs vapor phase growth by heating the sample in an airflow of the material gas, the sample is placed in the vacuum container or in the vicinity of the sample. A vapor growth apparatus characterized in that a fluid impediment that obstructs the airflow of the material gas is arranged to make the airflow of the material gas turbulent, and a vapor growth layer is formed on the sample in the turbulence. .
JP12346184A 1984-06-14 1984-06-14 Vapor growth equipment Pending JPS612344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12346184A JPS612344A (en) 1984-06-14 1984-06-14 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12346184A JPS612344A (en) 1984-06-14 1984-06-14 Vapor growth equipment

Publications (1)

Publication Number Publication Date
JPS612344A true JPS612344A (en) 1986-01-08

Family

ID=14861202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12346184A Pending JPS612344A (en) 1984-06-14 1984-06-14 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JPS612344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236811A2 (en) * 2001-02-28 2002-09-04 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus and chemical deposition method
WO2006114686A1 (en) * 2005-04-25 2006-11-02 CARL ZEISS VISION SOUTH AFRICA (Pty) LTD A method and apparatus for coating objects

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236811A2 (en) * 2001-02-28 2002-09-04 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus and chemical deposition method
EP1236811A3 (en) * 2001-02-28 2004-01-02 Japan Pionics Co., Ltd. Chemical vapor deposition apparatus and chemical vapor deposition method
WO2006114686A1 (en) * 2005-04-25 2006-11-02 CARL ZEISS VISION SOUTH AFRICA (Pty) LTD A method and apparatus for coating objects

Similar Documents

Publication Publication Date Title
RU2059025C1 (en) Boron nitride crucible manufacture method
JPH09330884A (en) Epitaxial growth device
US7011711B2 (en) Chemical vapor deposition reactor
JP2003166059A (en) Film-forming apparatus and film-forming method
JPH04210476A (en) Formation of silicon carbide film
JPS612344A (en) Vapor growth equipment
CN112501590A (en) MOCVD (metal organic chemical vapor deposition) equipment
JP2003086516A (en) Susceptor, cvd unit, film-forming method and semiconductor device
JPS61186288A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JPH02262324A (en) X-ray transmitting film and its manufacture
JPS6168393A (en) Hot wall type epitaxial growth device
JPS59159980A (en) Vapor growth device
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPS58145697A (en) Epitaxial silicon producer
JPS6010621A (en) Depressurized epitaxial growing equipment
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
JPS61189623A (en) Vapor growth equipment
JP3084881B2 (en) Metal organic chemical vapor deposition equipment
JPS6117493A (en) Vapor-phase treatment of plate articles
JPH03126696A (en) Method for synthesizing diamond
JPS63177412A (en) Vapor growth reaction tube
JPS6321822A (en) Vapor phase epitaxial growth method for silicon
JPS61111521A (en) Vertical vapor growth equipment
JPS63177525A (en) Plasma treatment and device therefor
JPS63124410A (en) Vapor growth method