JPS63124410A - Vapor growth method - Google Patents
Vapor growth methodInfo
- Publication number
- JPS63124410A JPS63124410A JP26964086A JP26964086A JPS63124410A JP S63124410 A JPS63124410 A JP S63124410A JP 26964086 A JP26964086 A JP 26964086A JP 26964086 A JP26964086 A JP 26964086A JP S63124410 A JPS63124410 A JP S63124410A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- substrate
- flow
- reaction tube
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 9
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims description 19
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- 150000004820 halides Chemical class 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 42
- 230000000694 effects Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は気相成長法に係り、特に大面積で均一な薄膜結
晶成長に好適な気相成長法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth method, and particularly to a vapor phase growth method suitable for uniform thin film crystal growth over a large area.
従来の装置はT、P 、・pearsall著のrGa
InAsP半導体」ジョン、ウィリーaddソンズ社刊
、第1982年、第63〜65頁(”GaIrAsPA
lloy Sem1coHductors 、”JOh
n Wiley &5onS s 1982、p、 6
3−p、 65)に記載のように、反応管内にカーボン
サセプタを置きその上に基板を置くようになっていた。The conventional device is rGa by T.P.Pearsall.
"InAsP Semiconductor" John, Willie Addsons, 1982, pp. 63-65 ("GaIrAsP Semiconductor")
lloy Sem1coHductors, “JOh
n Wiley & 5onS s 1982, p. 6
As described in 3-p. 65), a carbon susceptor was placed in the reaction tube and a substrate was placed on top of it.
従来技術は反応管内にある基板が、管壁に向かい合うよ
うに配置されていた。その管壁を時には温めるもしくは
逆に冷やすことにより管壁からの影響を少なくしていた
。しかし、その効果は不充分であり、管壁に付着したも
のが再蒸発し、成長層に悪影響を与えていた。また、そ
れらの効果を小さくしようとし基板面と管壁の距離を大
きくすると必然的に反応管が大きくなり、大量の原料ガ
スが必要となるためガス効率が悪くなる問題があった。In the prior art, the substrate inside the reaction tube was placed so as to face the tube wall. The influence of the tube wall was reduced by sometimes warming it or, conversely, cooling it. However, the effect was insufficient, and the substances adhering to the tube wall were re-evaporated, adversely affecting the growth layer. Furthermore, if the distance between the substrate surface and the tube wall is increased in an attempt to reduce these effects, the reaction tube will inevitably become larger and a large amount of raw material gas will be required, resulting in a problem of poor gas efficiency.
また従来技術は適描な径を持つ丸型、もしくは角形の反
応管内に高温になるサセプタを置き、その上に基板をの
せ成長を行なっていた。原料ガスが流れる領域は反応管
内に全面に渡っていた。そしてサセプタはそのガス流を
妨げる形で置かれており、その部分でガス流が乱れ大面
積で均一なエピタキシャル層を得るのは困難であった。In addition, in the conventional technology, a susceptor heated to high temperature is placed in a round or square reaction tube having an appropriate diameter, and a substrate is placed on top of the susceptor to perform growth. The region through which the raw material gas flowed was spread over the entire interior of the reaction tube. The susceptor is placed in such a way as to obstruct the gas flow, and the gas flow is disturbed at that portion, making it difficult to obtain a uniform epitaxial layer over a large area.
また反応管内全面にガスを流すので原料ガスの消費量が
多く効率の悪い成長法であった。Furthermore, since the gas was flowed over the entire surface of the reaction tube, a large amount of raw material gas was consumed, making it an inefficient growth method.
本発明の目的は、基板の成長面同志を向かい合わせ、そ
の中にガスを流すことにより、管壁からの影響を無くす
ことにおる。An object of the present invention is to eliminate the influence from the tube wall by facing the growth surfaces of the substrates and flowing a gas therein.
また、本発明は原料ガスを流す部分を小さなダクト状に
し、そのダクト内面に基板を置くことにより、ガスを層
流化し大面積で均一なエピタキシャル層を得ることにあ
る。Another object of the present invention is to form a small duct-like part through which source gas flows, and to place a substrate on the inner surface of the duct, thereby making the gas laminar and producing a uniform epitaxial layer over a large area.
上記目的は反応管内の基板の成長面を向かい合わせにし
、その中に原料ガスを流すことにより達成され%また反
応管内にダクトを置きその内面に基板を置きその中に原
料ガスを流すことにより達成される。The above objective is achieved by placing the growth surfaces of the substrates in the reaction tube facing each other and flowing the raw material gas through the tube. be done.
成長用基板上では原料がエピタキシャル成長するのでそ
こからの原料の再蒸発は極めて少ない。Since the raw material is epitaxially grown on the growth substrate, re-evaporation of the raw material from there is extremely small.
従って、他の基板への悪影響が少ない。Therefore, there is little adverse effect on other substrates.
また、反応管内のダクト内のみ原料ガスが流れるのでガ
ス流速が大きくなりガス流は層流になる。Furthermore, since the raw material gas flows only in the duct within the reaction tube, the gas flow rate increases and the gas flow becomes laminar.
一方ダクト内に置かれた基板の厚さは小さくて、ガス流
を乱すことが少ないので乱流がおき難い。On the other hand, the thickness of the substrate placed in the duct is small and does not disturb the gas flow, so turbulence is less likely to occur.
原料ガスを流す部分が従来のものより小さくできるので
同じ流速を得るのにより少ないガス量でよく効率のよい
成長ができる。Since the part through which the raw material gas flows can be made smaller than in conventional systems, more efficient growth can be achieved with a smaller amount of gas to obtain the same flow rate.
以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.
実施例1
第1図および第2図により説明する。第2図は第1図の
上面図である。Example 1 This will be explained with reference to FIGS. 1 and 2. FIG. 2 is a top view of FIG. 1.
まず反応管内1にH2を3.2t/mm流し反応管内圧
力を38 Torrに調整する。高周波コイル2に電圧
を加えカーボンサセプタ3を昇温させる。First, H2 was flowed into the reaction tube 1 at a rate of 3.2 t/mm, and the pressure inside the reaction tube was adjusted to 38 Torr. A voltage is applied to the high frequency coil 2 to raise the temperature of the carbon susceptor 3.
カーボンサセプタの温度が300C以上になったらP
Haを250 cc /mix流す。サセプタ温度が6
40Cになったら有機金属TEI(トリエチルインジウ
ム)をl c c /min流す。このようにして基板
4にIpPがエピタキシャル成長する。If the temperature of the carbon susceptor reaches 300C or higher, press P.
Flow Ha at 250 cc/mix. Susceptor temperature is 6
When the temperature reaches 40C, organic metal TEI (triethyl indium) is flowed at l c c /min. In this way, IpP is epitaxially grown on the substrate 4.
InGaAs、InGaAsPなどを成長させる場合は
適当な濃度の原料ガスを流せばよい。When growing InGaAs, InGaAsP, etc., a source gas of an appropriate concentration may be flowed.
ダミー基板5は基板表面が基板4と同じ材料のものが最
適であるが、原料ガスがエピタキシャル成長する基板、
例えばInP、GaAs、Si、サファイア、その他で
もよい。It is optimal for the dummy substrate 5 to have a substrate surface made of the same material as the substrate 4;
For example, InP, GaAs, Si, sapphire, and others may be used.
第3図は複数枚の基板4をチャージできるものである。FIG. 3 shows a device that can charge a plurality of substrates 4.
第4図は基板4とダミー基板5により閉空間を作りその
中に原料を流すことによりガスを層流化した例で、閉空
間内のガス濃度を均一にできるので極めて面内分布の良
好なエピタキシャルカテキる。Figure 4 shows an example in which a closed space is created using the substrate 4 and the dummy substrate 5, and the raw material is flowed into the space to create a laminar flow of gas.The gas concentration in the closed space can be made uniform, resulting in extremely good in-plane distribution. Epitaxial category.
第5図は基板間どうしの間隔を小さくした場合で、特に
グレーティングを表面に形成した時のPなどの離脱によ
るグレーティングの劣化を基板4と基板5で補い合い劣
化を防ぐ。間隔は5〜5鴎の時よい結果が得られ、特に
1閲前後が良い。基板4と基板5の組合せはInPにグ
レーティングを切った場合、I nP−I nP、 I
n P −GaAsの組合せの時比較的良い結果が得
られる。FIG. 5 shows a case where the spacing between the substrates is made small. In particular, when a grating is formed on the surface, deterioration of the grating due to separation of P and the like is compensated for by the substrates 4 and 5, thereby preventing the deterioration. Good results can be obtained when the spacing is 5 to 5, and especially good when the spacing is around 1. When the grating is cut into InP, the combination of substrate 4 and substrate 5 is InP-I nP, I
Relatively good results are obtained with the combination of nP-GaAs.
第6図は第4図の閉空間の数を増やした場合でこのよう
にすると限られた空間内に効率良く基板が並べられかつ
その閉空間を流れる原料ガスを均一にできるため効率よ
く面内分布のよい多数枚結晶成長ができる。Figure 6 shows a case where the number of closed spaces in Figure 4 is increased.In this way, the substrates can be efficiently arranged in a limited space, and the raw material gas flowing through the closed spaces can be made uniform, so that the number of closed spaces in Figure 4 can be increased. Able to grow multiple crystals with good distribution.
第7図は基板を六角形に並べその中に原料ガスを流した
場合で、n角形でもよい。FIG. 7 shows a case where the substrates are arranged in a hexagonal shape and the raw material gas is flowed therein, but an n-gon shape may also be used.
実施例で縦型反応管で説明したが横型反応管でも同じで
ある。Although the embodiments have been explained using a vertical reaction tube, the same applies to a horizontal reaction tube.
実施例2
第8図により説明する。ガス導入口A、B15゜16よ
り水素ガスをトータル3174M導入する。Example 2 This will be explained with reference to FIG. A total of 3174M of hydrogen gas is introduced from gas inlets A and B15°16.
高周波コイル10に電圧を加えカーボンサセプタ2を昇
温させる。3000以上になったらガス導入口B16よ
りPHaを250CC/馴流す。基板温度が640tl
:’になったらガス導入口B16より有機金属トリエチ
ルインジウム(TEI)を0.3c c 7m1tt、
PHaを60 c c、Anm流す。コノヨウニして基
板13上にInPがエピタキシャル成長する。他の材料
を成長させる場合は適当な濃度の原料ガスを流せばよい
。排気口A、B18,19はダクト14内の圧力が若干
反応管11内の圧力より小さくなるように調整するのが
望ましい。そうすることによりガス供給口17より出た
原料ガスのほとんどがダクト内に流れ、ガス効率が向上
する。A voltage is applied to the high frequency coil 10 to raise the temperature of the carbon susceptor 2. When the temperature reaches 3000 or more, 250 cc of PHa is introduced from the gas inlet B16. Substrate temperature is 640tl
: When the temperature reaches ', add 0.3 c c 7 m 1 tt of organometallic triethyl indium (TEI) from the gas inlet B16.
Flow PHa at 60 cc, Anm. Then, InP is epitaxially grown on the substrate 13. When growing other materials, it is sufficient to flow source gas at an appropriate concentration. It is desirable that the exhaust ports A, B 18 and 19 be adjusted so that the pressure inside the duct 14 is slightly lower than the pressure inside the reaction tube 11. By doing so, most of the raw material gas discharged from the gas supply port 17 flows into the duct, improving gas efficiency.
第9図はガス供給口17を2つにしそれぞれ別別の原料
ガスを流しかつそれを移動することにより異なった組成
を持つ材料を連続成長させる場合の例である。この時、
基板側を動かしても同じ効果が得られる。これにより極
めてペテロ界面を急峻にできる。FIG. 9 shows an example in which two gas supply ports 17 are provided, and materials having different compositions are continuously grown by flowing and moving different raw material gases. At this time,
The same effect can be obtained by moving the board side. This allows the Peter interface to be made extremely steep.
第10図はガス供給口17を省略した例であるが、ダク
ト内の流線は妨げられないので層流になりやすいという
効果がある。一方従来の装置にすぐ実装できる利点を持
つ。Although FIG. 10 is an example in which the gas supply port 17 is omitted, there is an effect that the flow lines in the duct are not obstructed, so that laminar flow tends to occur. On the other hand, it has the advantage that it can be easily implemented in conventional equipment.
第11図はダクトの1面のみをカーボンサセプタを用い
た例であり簡単な方法となる。21は石英カバーである
が、第10図には図示されていない。FIG. 11 shows an example in which a carbon susceptor is used on only one side of the duct, which is a simple method. 21 is a quartz cover, which is not shown in FIG.
第12図はダクト内の上下に基板をs’etl、た例で
同時に2枚の成長ができる一方、ホットウォールの分解
生成物からの再蒸発を少なくできるので、高純度のエピ
タキシャル成長が可能となる。側面にもウェハーをse
tするとより効果的である。Figure 12 shows an example in which two substrates are placed above and below in a duct, allowing two substrates to be grown at the same time, while reducing re-evaporation from hot wall decomposition products, making it possible to achieve high-purity epitaxial growth. . Se the wafer on the side too
t is more effective.
12はカバーであるが第10図には図示されていない。12 is a cover, which is not shown in FIG.
第13図はダクトにテーパーをつけた例でそのテーパー
角は1〜10°ぐらいが適当でガスの進行方向の面内均
一性をより向上できる。FIG. 13 shows an example in which the duct is tapered, and the taper angle is preferably about 1 to 10 degrees, which can further improve the in-plane uniformity of the gas in the traveling direction.
本発明によれば反応管内壁によるエピタキシャル層への
影響を少なくできるので設計の自由度が高くなる。特に
基板で囲まれた閉空間に原料を流す場合、高効率で均、
−性の良い結晶が得られる。According to the present invention, it is possible to reduce the influence of the inner wall of the reaction tube on the epitaxial layer, thereby increasing the degree of freedom in design. Especially when flowing raw materials into a closed space surrounded by a substrate, it is highly efficient and uniform.
- Crystals with good properties can be obtained.
例えば内径φ80 m nの横型反応炉を用いた場合、
従来法では2inch 基板が1枚しか成長できなかっ
たが本発明では少なくとも4枚はチャージでき、その面
内分布均一性も膜厚で±10チから±5%、組成では±
5%から±2チにそれぞれ改善できる。For example, when using a horizontal reactor with an inner diameter of φ80 mn,
With the conventional method, only one 2-inch substrate could be grown, but with the present invention, at least four substrates can be grown, and the in-plane distribution uniformity is ±10 inches to ±5% in film thickness, and ±5% in composition.
Each can be improved from 5% to ±2 inches.
組成急峻性はInPからInGaA3成長界面で5Å以
下InGaASからInP成長界面で10Å以下と従来
法のほぼ半分となる。The compositional steepness is 5 Å or less at the InP to InGaA3 growth interface and 10 Å or less at the InGaAS to InP growth interface, which is approximately half of the conventional method.
また、本発明によれば、ガス流速を高め容易に層流化で
きるので大面積に渡り均一なエピタキシャル膜が得られ
る。膜厚のバラツキ、組成バラツキ、再現性などは従来
の1/2以下におさえることができる。従来のガス流速
でも流線を妨げるものがないので均一なガス流が得られ
、原料ガスの流量を1/2以下にでき、従って成長効率
を同一条件の元で従来の2倍以上にできる。Further, according to the present invention, since the gas flow rate can be increased and laminar flow can be easily achieved, a uniform epitaxial film can be obtained over a large area. Variations in film thickness, composition variations, reproducibility, etc. can be reduced to 1/2 or less of conventional values. Even at the conventional gas flow rate, a uniform gas flow can be obtained because there is no obstacle to the streamlines, and the flow rate of the raw material gas can be reduced to 1/2 or less, so that the growth efficiency can be more than twice that of the conventional method under the same conditions.
局所的に原料ガスを流すので原料供給口又は基板を少し
だけ移動させることにより異なった材料を連続成長でき
、その界面急峻性は5人程度と従来の半分になる。Since the raw material gas is flowed locally, different materials can be grown continuously by slightly moving the raw material supply port or the substrate, and the steepness of the interface is about 5 people, which is half that of the conventional method.
局所的に原料ガスを流すので反応生成物による汚れは局
所的であり、従来のものより清浄回数が少なくメインテ
ナンスが楽となり2倍以上長持ちする。Since the raw material gas is flowed locally, stains caused by reaction products are localized, and the number of cleanings is reduced compared to conventional products, making maintenance easier and lasting more than twice as long.
第1図は本発明の一実施例の側面図、第2図は第1図の
上面図、第3図〜第7図は他実施例の上面図である。
第8図(a)は装置の横断面図、第8図(b)は第8図
(a)のA−A’断面図、第9.10.13図は他の装
置の横断面図、第11図および第12図は第10図のA
−A’断面図である。
1・・・反応管、2・・・高周波コイル、3・・・カー
ボンサセプタ、4・・・基板、5・・・ダミー基板、1
0・・・高周波コイル、11・・・反応管、12・・・
カーボンサセプタ、13・・・基板、14・・・石英ダ
クト、15・・・ガス導入口A、16・・・ガス導入口
B、17・・・ガス供給口、18・・・排気日入、工9
・・・排気口B、21・・・石英板。FIG. 1 is a side view of one embodiment of the present invention, FIG. 2 is a top view of FIG. 1, and FIGS. 3 to 7 are top views of other embodiments. FIG. 8(a) is a cross-sectional view of the device, FIG. 8(b) is a cross-sectional view taken along line AA' in FIG. 8(a), and FIG. 9.10.13 is a cross-sectional view of another device. Figures 11 and 12 are A of Figure 10.
-A' sectional view. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... High frequency coil, 3... Carbon susceptor, 4... Substrate, 5... Dummy substrate, 1
0...High frequency coil, 11...Reaction tube, 12...
Carbon susceptor, 13... Substrate, 14... Quartz duct, 15... Gas inlet A, 16... Gas inlet B, 17... Gas supply port, 18... Exhaust sunlight, Engineering 9
...Exhaust port B, 21...Quartz plate.
Claims (1)
E法において基板の成長面を向かい合わせ、対称に近い
形に配置し、その間に原料ガスを流すことを特徴とする
気相成長法。 2、有機金属とハライドガスの反応を利用するOMVP
E法において、その原料ガスを流す部分を小さなダクト
状にし、その内面に基板を配置することを特徴とする気
相成長法。[Claims] 1. OMVP using reaction between organic metal and halide gas
A vapor phase growth method characterized by placing the growth surfaces of the substrates facing each other in a nearly symmetrical manner in the E method, and flowing a source gas between them. 2. OMVP using reaction between organic metal and halide gas
In the E method, a vapor phase growth method is characterized in that the part through which the raw material gas flows is formed into a small duct shape, and a substrate is placed on the inner surface of the duct.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26964086A JPS63124410A (en) | 1986-11-14 | 1986-11-14 | Vapor growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26964086A JPS63124410A (en) | 1986-11-14 | 1986-11-14 | Vapor growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63124410A true JPS63124410A (en) | 1988-05-27 |
Family
ID=17475161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26964086A Pending JPS63124410A (en) | 1986-11-14 | 1986-11-14 | Vapor growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63124410A (en) |
-
1986
- 1986-11-14 JP JP26964086A patent/JPS63124410A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3042335B2 (en) | Vapor phase growth method and apparatus | |
JPH04193799A (en) | Production of silicon carbide single crystal | |
JPS63124410A (en) | Vapor growth method | |
JPS60112694A (en) | Gas-phase growth method of compound semiconductor | |
JP3702403B2 (en) | Vapor growth method | |
JPH0416597A (en) | Production of silicon carbide single crystal | |
JPH0677136A (en) | Method and device for vapor growing compound semiconductor thin film crystal | |
JPH02126632A (en) | Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor | |
Beccard et al. | High temperature CVD systems to grow GaN or SiC based structures | |
JPH04338636A (en) | Semiconductor vapor growth device | |
JP3104677B2 (en) | Group III nitride crystal growth equipment | |
JP3252644B2 (en) | Vapor phase growth method and apparatus | |
JPH04337627A (en) | Vapor growth device | |
JP3936425B2 (en) | Vapor growth method | |
JPS63122212A (en) | Vapor growth equipment | |
JPS58223317A (en) | Method and device for growing of compound semiconductor crystal | |
JPS62247520A (en) | Vapor phase treating device | |
JPS61174624A (en) | Semiconductor growing apparatus | |
JP3010739B2 (en) | Method and apparatus for growing compound semiconductor crystal | |
JPH01206618A (en) | Organic metal vapor growth method | |
JPS61186286A (en) | Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor | |
JPS63188934A (en) | Vapor growth system | |
JPH03236220A (en) | Vapor growth method for semiconductor | |
JPS6290925A (en) | Method for vapor growth | |
JPS62119919A (en) | Device for crystal growth of compound semiconductor |