JPS61188932A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61188932A
JPS61188932A JP2824085A JP2824085A JPS61188932A JP S61188932 A JPS61188932 A JP S61188932A JP 2824085 A JP2824085 A JP 2824085A JP 2824085 A JP2824085 A JP 2824085A JP S61188932 A JPS61188932 A JP S61188932A
Authority
JP
Japan
Prior art keywords
film
silicide
wiring
intermetallic compound
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2824085A
Other languages
Japanese (ja)
Inventor
Shohei Shima
昇平 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2824085A priority Critical patent/JPS61188932A/en
Publication of JPS61188932A publication Critical patent/JPS61188932A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Abstract

PURPOSE:To form wirings of Al including Si by forming an intermetallic compound of Al and metal through reaction of Al metal silicide by the heat processing after formation of Al film mixing a metal silicide and simultaneously dispersing Si in the metal silicide into Al. CONSTITUTION:After an impurity diffused layer 12 is formed into a semiconductor substrate Si 11, an insulation film 13 is covered, an insulation film 13 on the impurity diffused layer 12 is removed and then a contact hole 14 is provided. Thereafter, Al wiring layer 15 is formed. In this case, paradium silicide 16 is mixed to the Al film 15. After forming a wring layer of Al and paradium silicide, the heat processing is carried out for certainly defining the contact hole and thereby an intermetallic compound 17 of paradium and Al is produced and Si 19 is released. In this case, since the intermetallic compound 17 is formed along the crystal grain boundary 18, it becomes a barrier for diffusion in the Al film of Si and prevents growth of gigantic Si grain due to precipitation of Si. Thereby, defect by increase of contact resistance and wiring resistance can be prevented and simultaneously reaction can be generated sufficiently in the sintering process at 450 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、コンタクト抵抗が小さく、シかもエレクトロ
マイグレーションにも強いSi入クシAt配線用いた半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device using a Si-containing comb At wiring which has low contact resistance and is resistant to electromigration.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

Si人りAt配線は、コンタクト部におけるAt配線と
基板Stとの反応による接合破壊防止配線材料として、
広(LSIプロセスに用いられている。
The Si-containing At wiring is used as a wiring material to prevent junction breakdown due to the reaction between the At wiring and the substrate St at the contact part.
Wide (used in LSI process).

Siは450℃においてAt中に約0.5 %まで固溶
する。従って、一般には〜1. O%程度のSi入りA
lt−配線として用い、450℃前後の熱処理工種でも
A/、と基板Siとの反応を生じない様にして電極信頼
性を保っている。
Si dissolves in At at 450°C up to about 0.5%. Therefore, in general ~1. A containing about 0% Si
It is used as an lt-wiring, and electrode reliability is maintained by preventing reaction between A/ and the substrate Si even during heat treatment at around 450°C.

LSIの素子寸法は年々、縮小化されていて、最近では
1.0μm前後のデザインルールが実施されている。A
t配線と基板8iとのコンタクト寸法も、1.0μm前
後になるが、この様な微細コンタクトに対してSi入A
t配線金用いた場合、熱処理によってコンタクト抵抗が
高くなる不良が生じている。この不良が生じる原因を第
3図を用いて説明する。
The element size of LSI is being reduced year by year, and recently a design rule of around 1.0 μm has been implemented. A
The contact dimension between the t wiring and the substrate 8i is also around 1.0 μm, but Si-containing A
When gold is used for the t-wiring, a defect occurs in which the contact resistance increases due to heat treatment. The cause of this defect will be explained using FIG. 3.

基板5i(31)中に不純物拡散層0りを形成し友後、
絶縁膜c13t−被覆する。しかる後に、不純物拡散層
r33上の絶縁膜03t−エツチング除去してコンタク
トホール34)を形成する。
After forming an impurity diffusion layer in the substrate 5i (31),
Insulating film c13t-cover. Thereafter, the insulating film 03t on the impurity diffusion layer r33 is removed by etching to form a contact hole 34).

次いでコンタクトホール(ロ)、絶縁膜(至)上にSi
入t)Atp(至)をスパッタ・蒸着等の方法で被覆し
、配線とする。この状態でAt中KSi(至)がほぼ均
一に分散している(以上、第3図(a)に示す)。しか
る後に、At配線と基板84中の不純物拡散層との間の
コンタクトを確実にとる為に、450’C程度の熱処理
を施す。この時にAt膜中のSiは。
Next, Si is formed on the contact hole (b) and the insulating film (to).
Input t) Atp (to) is coated by a method such as sputtering or vapor deposition to form a wiring. In this state, KSi(to) in At is almost uniformly dispersed (as shown in FIG. 3(a)). Thereafter, heat treatment at about 450'C is performed to ensure contact between the At wiring and the impurity diffusion layer in the substrate 84. At this time, Si in the At film.

450℃における固溶度力〜0.5 %であることから
Since the solid solubility at 450°C is ~0.5%.

通常の1チSi入りAt膜では〜0.5 %はAt中に
固溶するが、残D 0.5 %は析出する。更に熱処理
後の降温過程において、固溶度の低下とともに過剰Si
がさらに析出し、室温においては固溶度が〜0チに近い
ことから、AtのSiのほとんど全てが析出してしまう
In a typical 1-Si-containing At film, ~0.5% of D is dissolved in At, but the remaining D is precipitated. Furthermore, during the cooling process after heat treatment, the solid solubility decreases and excess Si
further precipitates, and since the solid solubility is close to ~0 at room temperature, almost all of the Si in At will precipitate.

この析出Siは第3図(b)図に示すごとく、コンタク
ト部への析出(至)や配線中への析出G7)の形態をな
す。これら析出Siは高抵抗である為、コンタクト抵抗
や配線抵抗の増大不良を引き起こす。
As shown in FIG. 3(b), this precipitated Si takes the form of precipitation (G7) on the contact portion and in the wiring. Since these precipitated Si have high resistance, they cause an increase in contact resistance and wiring resistance.

このような析出S1が生じるのは、At中のsiの拡散
係数が大きい為であり1例えば、〜300℃。
Such precipitation S1 occurs because the diffusion coefficient of Si in At is large, for example, at ~300°C.

3分間で、〜3μmもの距離全移動する程である。It travels a total distance of ~3 μm in 3 minutes.

従って、最初、膜中に均一に8iが分散していても、短
時間の熱処理で容易にSiの析出を生じてしまう。
Therefore, even if 8i is initially uniformly dispersed in the film, Si will easily precipitate after a short heat treatment.

〔発明の目的〕[Purpose of the invention]

本発明は上述し念従来のSi人、9At配線の問題点を
改良し念もので、Slのコンタクト部および配線中の析
出を防止し得る信頼性の高いSi人クシAt配線有する
半導体装置の製造方法を提供することを目的とする。
The present invention is intended to improve the problems of the conventional Si and 9At interconnects as described above, and to manufacture a semiconductor device having highly reliable Si and At interconnects that can prevent the precipitation of Sl in contact areas and interconnections. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

この発明は、金属シリサイドを混入したAt膜を形成後
、熱処理を施して、At金属シリサイドを反応させAt
と金属との金属間化合物を形成すると同時に、金属シリ
サイド中のSiをA/、中に分散させてSI人jOAt
配a!ヲ形成するものである。
In this invention, after forming an At film mixed with metal silicide, heat treatment is performed to cause the At metal silicide to react.
At the same time, Si in the metal silicide is dispersed in A/, to form an intermetallic compound with the metal.
Distribution a! It is something that forms.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Atと金属シリサイドを構成する金属
との合金がAt膜中およびAt膜中の結晶粒界に析出す
ることから、金属シリサイドから放出されたSiのAt
膜中における拡散が抑制される。この結果、Siの析出
が最小限に抑見られて、コンタクト抵抗や配線抵抗の増
大不良が生じなくなると同時に、At中に81が存在す
る為、従来の84入りAt配線と同様な、基板8iとA
tとの反応による不純物拡散層の破壊不良も防止できる
。さらには、Atと金属との金属間化合物は。
According to the present invention, since an alloy of At and the metal constituting the metal silicide is precipitated in the At film and at the grain boundaries in the At film, the At of Si released from the metal silicide is
Diffusion in the membrane is suppressed. As a result, the precipitation of Si is minimized and no increase in contact resistance or wiring resistance occurs. At the same time, since 81 is present in At, the substrate 8 and A
Destruction failure of the impurity diffusion layer due to reaction with t can also be prevented. Furthermore, intermetallic compounds of At and metals.

At自身の拡散も抑制する効果がある為、配線のエレク
トロマイグレーシコン不良が生じにくくなるという利点
がある。
Since it has the effect of suppressing the diffusion of At itself, it has the advantage that electromigration silicon failures in wiring are less likely to occur.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面全参照して説明する。 Embodiments of the present invention will be described below with reference to all the drawings.

(実施例1) 第1図は本発明の一実施例を説明するための工程断面図
である。以下に本発明を製造・工程用に説明する。
(Example 1) FIG. 1 is a process sectional view for explaining an example of the present invention. The present invention will be explained below in terms of manufacturing and processing.

第1図(a)に示すごとく、半導体基板5i(11)中
に不純物拡散層(13ヲ形成後、絶縁膜a3ヲ被覆して
から不純物拡散層Q3上の絶縁II(11除去してコン
タクトホールα4)ヲ設ける5次いで第1図(b)に示
すとと(、At配線層a9ヲ形成する。この際、At膜
へ9中にパラジウム珪化物Ql19を混入させる。混入
する方法としてはktとパラジウム珪化物の混合ターゲ
ラトラスパッタする方法、Atとパラジウム珪化物を別
々の蒸発源から蒸着する方法などの方法がある。この様
なAtとパラジウム珪化物の配線層を形成後、コンタク
トを確実にとるための、450℃での熱処理を施すと、
第3図(C)に示すごとくパラジウム珪化物αeとht
aaが反応して、パラジウムとAtとの金属間αηが生
成されS#σ■が放出される。この際、Atとパラジウ
ムの金属間化合物σηは主にAtpの結晶粒界α印に沿
って形成されることから、SiのAt膜中の拡散障壁と
なってStの析出による巨大Si粒の成長を妨げる。
As shown in FIG. 1(a), after an impurity diffusion layer (13) is formed in a semiconductor substrate 5i (11), an insulating film (a3) is covered, and then an insulating film (11) on the impurity diffusion layer Q3 is removed to form a contact hole. As shown in FIG. 1(b), an At wiring layer a9 is formed.At this time, palladium silicide Ql19 is mixed into the At film 9.As a method of mixing, kt and There are several methods, such as a method of mixed target latte sputtering of palladium silicide, and a method of evaporating At and palladium silicide from separate evaporation sources.After forming such a wiring layer of At and palladium silicide, it is necessary to ensure contact. When heat treated at 450℃ to remove
As shown in Figure 3(C), palladium silicide αe and ht
aa reacts to generate intermetallic αη between palladium and At, and S#σ■ is released. At this time, since the intermetallic compound ση of At and palladium is mainly formed along the grain boundary α mark of Atp, it acts as a diffusion barrier for Si in the At film, resulting in the growth of giant Si grains due to the precipitation of St. prevent.

この結果、コンタクト抵抗や配線抵抗の増大不良が生じ
なくなると同時に%A/、膜中にSiがあることから、
従来の8i人りAtと同等の性質を有する。パラジウム
珪化物の場合Atとは300℃から反応を開始する為1
通常の450℃シンタ一工程で充分上記の反応を起こさ
せることができる。又。
As a result, defects due to increased contact resistance and wiring resistance do not occur, and at the same time, since there is Si in the film,
It has the same properties as the conventional 8i At. In the case of palladium silicide, the reaction with At starts at 300℃, so 1
One step of ordinary sintering at 450° C. is enough to cause the above reaction. or.

パラジウム珪化物の混入量としては、1〜lQwt%で
あれば、At配線の抵抗をそれほど上げることなく%A
A中に5it−充分供給できる。
If the amount of palladium silicide mixed is between 1 and 1Qwt%, the resistance of At wiring will not increase significantly and
5 it can be sufficiently supplied in A.

(実施例2) 第2図は本発明の他の実施例を示したものである。第2
図(a)に示すごとく、半導体基板Qυ中に不純物拡散
層(イ)を形成後、絶縁膜(ハ)中にコンタクトホール
■4を設ける5次いでAt配線層を形成する場合、At
膜層12!9.!−パラジウム珪化物層(至)を交互に
設けて、積層膜構造とする(第2図(b)に示す)。
(Embodiment 2) FIG. 2 shows another embodiment of the present invention. Second
As shown in Figure (a), after forming an impurity diffusion layer (A) in the semiconductor substrate Qυ, a contact hole (4) is formed in the insulating film (C).
Membrane layer 12!9. ! - Palladium silicide layers are alternately provided to form a laminated film structure (as shown in FIG. 2(b)).

この後、熱処理を施こすことによって、第2図(C)に
示す様に、Si入りAt膜層(ハ)と、パラジウムとA
tとの金属間化合物層−が交互(至)に形成される。こ
の配線層も実施例1と同様に、Siの拡散がAt−パラ
ジウム金属間化合物層で阻止される為に、析出S1によ
る配線不良が生じない。
After that, by performing heat treatment, as shown in FIG. 2(C), the Si-containing At film layer (c), palladium and
t and intermetallic compound layers are formed alternately. In this wiring layer, as in Example 1, diffusion of Si is blocked by the At-palladium intermetallic compound layer, so that wiring defects due to precipitation S1 do not occur.

以上金属珪化物としてパラジウム珪化物を用いる場合に
ついて説明したが、白金珪化物、ハフニウム珪化物など
Atと反応してAtとの金属間化合物を作る金属珪化物
なら同様の効果がある。
The case where palladium silicide is used as the metal silicide has been described above, but a metal silicide such as platinum silicide or hafnium silicide that reacts with At to form an intermetallic compound with At can have the same effect.

以上説明した如く、この発明によれば、従来のSi入t
)At配線と同様に基板StとAtとの反応による不純
物拡散層の破壊を防止できると同時に、金属珪化物を構
成する金属とAtとの金属間化合物が81の拡散を阻止
し、Sl析出を防止できることからコンタクト抵抗や配
線抵抗の増大不良を防止できさらにエレクトロマイグレ
ーシ冒ンにも強い、高信頼性を有するAt配線が得られ
る。
As explained above, according to the present invention, the conventional Si-containing t
) As with the At wiring, destruction of the impurity diffusion layer due to the reaction between the substrate St and At can be prevented, and at the same time, the intermetallic compound of At and the metal constituting the metal silicide blocks the diffusion of 81 and prevents Sl precipitation. Since this can be prevented, an increase in contact resistance and wiring resistance can be prevented, and a highly reliable At wiring that is resistant to electromigration can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるAt配線の形成を示す
工程断面図、第2図は本発明の他の実施例を示す工程断
面図、第3図は従来のAt配線不良を説明するための工
程断面図である。 図中。 11.21.31・・・半導体基板。 12.22,32・・・不純物拡散層。 13.23.33・・・絶縁物層。 14.24.34・・・フンタクトホール、15.25
,35・・・AA膜層。 16.26・・・金属珪化物。 17.27・・・金属珪化物中の金属とAtとの金属間
化合物。 (7317)  弁理士 則近憲佑(ほか1名)第  
1 図         第  2 図第  3 図
FIG. 1 is a process cross-sectional view showing the formation of an At wiring according to an embodiment of the present invention, FIG. 2 is a process cross-sectional view showing another example of the present invention, and FIG. 3 is a diagram explaining a conventional At wiring defect. FIG. In the figure. 11.21.31...Semiconductor substrate. 12.22,32... Impurity diffusion layer. 13.23.33...Insulator layer. 14.24.34...Hung Takt Hall, 15.25
, 35...AA membrane layer. 16.26...Metal silicide. 17.27...Intermetallic compound of metal and At in metal silicide. (7317) Patent attorney Kensuke Norichika (and 1 other person) No.
1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  不純物を含む半導体領域の作り込まれた基板の表面に
形成された絶縁膜に対し、該半導体領域へのコンタクト
用の窓を形成する穿孔工程と、形成された窓内から前記
絶縁膜上に、アルミニウムと金属珪化物の混合された金
属配線層を形成する工程と、熱処理によってアルミニウ
ム中にシリコンを拡散すると同時に、金属珪化物の金属
とアルミニウムとの金属間化合物を形成する工程とを有
する半導体装置の製造方法。
A drilling step of forming a window for contacting the semiconductor region in an insulating film formed on the surface of the substrate in which a semiconductor region containing impurities is formed, and a drilling step on the insulating film from within the formed window. A semiconductor device comprising a step of forming a metal wiring layer containing a mixture of aluminum and metal silicide, and a step of diffusing silicon into aluminum by heat treatment and simultaneously forming an intermetallic compound of metal silicide and aluminum. manufacturing method.
JP2824085A 1985-02-18 1985-02-18 Manufacture of semiconductor device Pending JPS61188932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2824085A JPS61188932A (en) 1985-02-18 1985-02-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2824085A JPS61188932A (en) 1985-02-18 1985-02-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61188932A true JPS61188932A (en) 1986-08-22

Family

ID=12243063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2824085A Pending JPS61188932A (en) 1985-02-18 1985-02-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61188932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249481A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Semiconductor device
US8003526B2 (en) 1997-08-21 2011-08-23 Micron Technology, Inc. Low resistance metal silicide local interconnects and a method of making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249481A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Semiconductor device
JP2523489B2 (en) * 1986-04-23 1996-08-07 株式会社日立製作所 Semiconductor device
US8003526B2 (en) 1997-08-21 2011-08-23 Micron Technology, Inc. Low resistance metal silicide local interconnects and a method of making

Similar Documents

Publication Publication Date Title
JPS63301548A (en) Manufacture of semiconductor device
JPH02219223A (en) Manufacture of semiconductor device
JPS61188932A (en) Manufacture of semiconductor device
JPS5961146A (en) Manufacture of semiconductor device
JPS59197162A (en) Semiconductor device
JPS59200418A (en) Manufacture of semiconductor device
US5565380A (en) Semiconductor device and process for production thereof
JPS60251663A (en) Semiconductor device
JPS62235775A (en) Semiconductor device and manufacture theeof
JPS62291146A (en) Manufacture of semiconductor device
JPH021126A (en) Semiconductor device and its manufacture
JPS6276518A (en) Manufacture of semiconductor device
JPS5939049A (en) Semiconductor device
JPH01255220A (en) Manufacture of semiconductor device
JP2754653B2 (en) Aluminum wiring formation method
JP2764933B2 (en) Semiconductor device and manufacturing method thereof
JPS61225838A (en) Forming method for electrode wirings
JPS63150942A (en) Manufacture of semiconductor device
JP2558732B2 (en) Method for forming thin film wiring for semiconductor device
JPS59121855A (en) Semiconductor device
JPH02121329A (en) Manufacture of semiconductor device
JPH01107569A (en) Semiconductor device and manufacture thereof
JPS63143841A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5922332A (en) Semiconductor device
JPH0314234A (en) Titanium silicide wiring structure