JPS61187991A - Chlorination control device for clean water plant - Google Patents

Chlorination control device for clean water plant

Info

Publication number
JPS61187991A
JPS61187991A JP2847185A JP2847185A JPS61187991A JP S61187991 A JPS61187991 A JP S61187991A JP 2847185 A JP2847185 A JP 2847185A JP 2847185 A JP2847185 A JP 2847185A JP S61187991 A JPS61187991 A JP S61187991A
Authority
JP
Japan
Prior art keywords
chlorine
control
residual
residual chlorine
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2847185A
Other languages
Japanese (ja)
Inventor
Ryosuke Miura
良輔 三浦
Shioko Kurihara
潮子 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2847185A priority Critical patent/JPS61187991A/en
Publication of JPS61187991A publication Critical patent/JPS61187991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control dosage adequately by estimating the residual chlorine concn. of the process on the down stream of the intake point of test water to a residual chlorine meter by using a simulation model and executing PI feedback control or impusive chlorination control from the change state thereof. CONSTITUTION:The residual chlorine concn. near an outlet is calculated by a calculator 8 using the simulation model from the detection values of the residual chlorine meter 7 and flow meter 4 on the upper stream near the outlet in a chlorination control device for a clean water plant which controls the residual chorine concn. near the outlet to a target value by controlling the chlorine dosage. The chlorine dosage is subjected to the PI control in the controller 9 in such a manner that the calculated residual chlorine concn. attains the target value; at the same time, the required jump dosage is selected from the calculated residual chlorine concn. and the change rate thereof with time and the jump chlorination control is executed by interrupting the above-mentioned PI control for the required time. As a result, the chlorination rate is adequately controlled as against disturbance and the excessive chlorination in particular is prevented.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は浄水場1;おける塩素注入量を、残留塩素濃度
とその時間変化率とで示される運転状態を考慮して残留
塩素濃度が一定−なるよう(ユ制御する浄水場の塩素注
入制御装置Cユ関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to controlling the amount of chlorine injected into a water treatment plant 1 so that the residual chlorine concentration remains constant by taking into account the operating conditions indicated by the residual chlorine concentration and its rate of change over time. This is related to the chlorine injection control device C in a water treatment plant.

[発明の技術的背景とその問題点] 浄水*(−おける塩素注入l二は、原水l二注入する前
塩素注入、ろ過電の前で注入する中塩素注入。
[Technical background of the invention and its problems] Chlorine injection in purified water *(-) involves chlorine injection before raw water is injected, and intermediate chlorine injection before filtration.

ろ過電の後で注入する後塩素注入がある。There is a post-chlorine injection which is injected after the filtration.

前塩素注入では、塩素注入点から残留塩素を測定する検
水の取水点までの流下(ユ要する時間や、検水の取水か
ら残塩計−二至るまで(n4!する時間などによる長い
遅れ時間があり、さらζユ塩素の注入率を設定してから
実際に塩素注入点C二実行されるまでの集注機系の遅れ
時間が加わるので全体的な遅れ時間は少くとも・30分
程度あり、長い場合e′i90分にも及び、通常のフィ
ードバック制御では安定な制御が困難である。
In pre-chlorine injection, there is a long delay time due to the time required for the flow from the chlorine injection point to the intake point of the test water where residual chlorine is measured, and the time required from the intake of the test water to the residual salt meter (n4!). In addition, the delay time of the collector system from setting the chlorine injection rate to actually executing chlorine injection point C2 is added, so the overall delay time is at least 30 minutes. In the case of a long time, e'i can reach as long as 90 minutes, making it difficult to achieve stable control using normal feedback control.

さら−ユ、浄水場−二おいては、ろ過電の洗浄排水や、
遊水池、雨水槽などからの#i素要求量の異る排水0)
遅過による外乱を受ける。
At Sara-yu and Water Treatment Plant-2, cleaning wastewater from filtration electricity,
Wastewater with different #i element requirements from reservoirs, rain tanks, etc. 0)
Subject to disturbance due to delay.

ろ過電を定期的−一洗浄し九洗浄排水の場合は、返送さ
れて原水と混゛合されて再び処珪されるが、洗浄排水は
残留塩素を含んでいるので原水の塩素要求量が下がり、
このため塩素の過剰注入が生じて残留塩素濃度が急上昇
する。急上昇した残留塩素濃度をフィードバック制御す
ると、遅れ時間が長い九めt:目標の値屯:&・すこと
が非常I:困難であるO 浄水場の前塩素注入制御C:おいては、取水した原水の
塩素要求量の変動のほかに、上記のような洗浄排水や遊
水池、雨水槽からの排水の返送(;よる、残留塩素濃度
の急変がある。
If the filtration filter is washed once and washed periodically, then the wastewater is sent back, mixed with raw water, and treated again, but since the washing wastewater contains residual chlorine, the chlorine demand of the raw water is reduced. ,
As a result, excessive chlorine injection occurs and the residual chlorine concentration rapidly increases. Feedback control of the rapidly rising residual chlorine concentration results in a long delay time. In addition to fluctuations in the amount of chlorine required for raw water, there are sudden changes in the concentration of residual chlorine due to the return of wastewater from cleaning wastewater, retarding ponds, and rainwater tanks as described above.

従来は、このような急激な外乱(:よる残留塩素の急上
昇や急降下に対して有効な自動注入制御方式ri無く、
すべての操作員の24時間監視と経験に基づいた注入率
の手動運転が行われている。
Conventionally, there was no automatic injection control method that was effective against such rapid disturbances and rapid drops in residual chlorine.
There is 24-hour monitoring of all operators and manual control of injection rates based on experience.

丁なわち外乱を受けて残留塩素濃度が低下しはじめてか
ら急いで注入率を増大させており、このため塩素の過剰
注入となることが多かった。
In other words, the injection rate was quickly increased after the residual chlorine concentration began to decrease due to disturbances, which often resulted in excessive chlorine injection.

[発明の目的コ 本発明は、残留塩素濃度を測定する残塩計への検水の取
水点より下流のプロセスの残留塩素濃度をシミュレーシ
ョンモデルで推定し、推定し次残留塩素濃度の変化状態
から、PIフィードバック制御またはパルス的注入制御
のいづれかを選択して行ない、これI:よって外乱i二
対応して注入率を適正6二制御し、特に塩素の過剰注入
を防止する浄水場の塩素注入制御装置を提供することを
目的としている。
[Purpose of the Invention] The present invention uses a simulation model to estimate the residual chlorine concentration in the process downstream from the water intake point to the residual salt meter that measures the residual chlorine concentration. , PI feedback control or pulsed injection control is selected and carried out. Therefore, this is a chlorine injection control for water treatment plants that appropriately controls the injection rate in response to disturbances and particularly prevents excessive injection of chlorine. The purpose is to provide equipment.

[発明の概要] 本発明は、塩素の注入量を制御して出口附近の残留塩素
濃度を目標値堪;制御する浄水場の塩素注入制御装[+
二おいて、出口附近よりも上流C二股けられた残塩計お
よび流量計の検出値から出口附近の残留塩素濃度をシミ
ュレーションモデルを用いて算出する演算器と、算出し
た残留塩素濃度が目標値(:なるようCユ塩素注入量を
PI制御すると共(ユ、算出し元残留塩素濃度とその時
間変化率とから所要のジャンプ注入量を選定し所要の時
間だけPI制御を中断してジャンプ注入制御を行う、制
御器を備え、これ(;よって洗浄排水や雨水などC二よ
る急激な外乱がある場合(;も、出口附近の残留塩素濃
度を安定Cユ保持できるようにしたものであるO [発明の実施例コ 本発明の一実施例を第1図に示す。
[Summary of the Invention] The present invention provides a chlorine injection control system for a water treatment plant that controls the amount of chlorine injection to control the residual chlorine concentration near the outlet to a target value.
2, there is a calculator that uses a simulation model to calculate the residual chlorine concentration near the outlet from the detected values of the residual salt meter and flow meter, which are split into two parts upstream of the outlet; PI control the chlorine injection amount so that (C) It is equipped with a controller that performs control, and is designed to maintain a stable residual chlorine concentration near the outlet even when there is a sudden disturbance due to C2, such as cleaning drainage or rainwater. [Embodiment of the Invention] An embodiment of the present invention is shown in FIG.

第1図ζ;おいて、図示しない取水源から取水された原
水は、管路Aを通って、着水井I C流入し、さら(−
図示しカい洗浄排水池、遊水池および雨水槽からの排水
が管路Bを通って着水井11ユ流入する0 着水井1から管路Cを通って混和池2Cユ流下する被処
理水1:Fi、管路Cの途中で注入管3から塩素が、図
示しない他の注入管からの凝集剤および中和剤と共(:
注入され、混和池2で混合される。
In Figure 1 ζ, raw water taken from a water intake source (not shown) passes through pipe A, flows into the landing well IC, and further (-
As shown in the figure, wastewater from the washing drainage pond, retarding pond, and rainwater tank flows into the landing well 11 through pipe B.Water to be treated 1 flows from the landing well 1 through pipe C to the mixing pond 2C. :Fi, in the middle of pipe C, chlorine from injection pipe 3 is mixed with flocculant and neutralizing agent from other injection pipes (not shown).
It is injected and mixed in the mixing basin 2.

混和池2を流出した被処理水に流量計4が設置されてい
る管路りを通って70ツク形成池5ζユ流下する。
The water to be treated that has flowed out of the mixing pond 2 flows down to the 70-piece formation pond 5ζ through a conduit in which a flow meter 4 is installed.

混和池2の出口附近で検出ポンプ6(ユよって取水され
几検水に、残留塩素濃度を測定する残塩計7(ユ導かれ
る。
Water is taken in near the outlet of the mixing basin 2 by a detection pump 6, and then a residual salt meter 7 is introduced to measure the residual chlorine concentration.

流量計4の検出信号Q1と残塩計7の検出信号Reはフ
ロック形成池5の出口:ユおける残留塩素濃度Rcfを
算出するシミュレーションそデルを内蔵した演算器8(
ユ伝送される。
The detection signal Q1 of the flowmeter 4 and the detection signal Re of the residual salt meter 7 are calculated by a calculation unit 8 (with a built-in simulation model) for calculating the residual chlorine concentration Rcf at the outlet of the floc formation pond 5.
will be transmitted.

演算器8で算出され九残留塩素濃度Rcfは、制御器9
C二人力され、所定の演算C:従って塩素注入率の設定
値8nが計算され、設定器10 (ユ伝送される0股定
器10で設定された塩素の注入率Snは塩素の注入流量
の設定値感ユ変換されて塩素注入機1IC−送信され、
これシーよって塩素の注入が行われる。
The residual chlorine concentration Rcf calculated by the calculator 8 is calculated by the controller 9.
Therefore, the set value 8n of the chlorine injection rate is calculated by two people, and the chlorine injection rate Sn set by the setting device 10 (0) is the chlorine injection rate Sn of the chlorine injection flow rate. The set value is converted into chlorine injection machine 1 IC-sent,
This is how chlorine is injected.

次Cユ演算器8が行なう計算(一ついて説明する。Next, calculations performed by the C unit 8 (one will be explained below).

演算器8に内蔵されたシミュレーションモデルは、管路
りとフロック形成池5番−おける流動状態を混合毎デル
で表現したもので、管路Dには押出そデルが用いられ、
フロック形成池(:Fi5檜の完全混合モデルが用いら
れる。
The simulation model built into the computing unit 8 expresses the flow state in the pipe line and the floc formation pond No. 5 in terms of dels for each mixing.
A complete mixture model of flocculation pond (:Fi5 Cypress) is used.

押出モデルによる管路りから70ツク形成池の奮11.
+−目−−流出する時刻tの残留塩素濃度Rc、 (t
)は次の(1)式であたえられる。
11. Formation of 70 ponds from pipe construction using an extrusion model.
+-th--residual chlorine concentration Rc at time t of outflow, (t
) is given by the following equation (1).

ここで、 Vaは管路りの容積、 Q(t)は時刻臼ユ
おける流量計4の指示値、 Va/Q(りは管路り内で
の処理水の滞留時間、 Re(りは時刻tにおける残塩
計7の指示値である。
Here, Va is the volume of the pipe, Q(t) is the indicated value of the flow meter 4 in the time mill, Va/Q (is the residence time of the treated water in the pipe, Re is is the time) This is the indicated value of the residual salt meter 7 at t.

さらC:、フロック形成池の5槽の容積をそれぞれVb
Hbc@ vd、 ve、 ■fとすると時刻tにおけ
るそれぞれの残留塩素濃度Rcb(t)、 Rcc(t
)、 Rcd(t)、 Rce(t)。
Further C:, the volume of each of the 5 tanks of the floc formation pond is Vb.
If Hbc@vd, ve, ■f, the respective residual chlorine concentrations Rcb(t) and Rcc(t
), Rcd(t), Rce(t).

Rcf(t)t:iそれぞれ(2)〜(6)式であたえ
られる。
Rcf(t)t:i are given by equations (2) to (6), respectively.

ここでhHシミュレーションモデルの計算周期であり、
例えば4分C二設定されている。
Here is the calculation cycle of the hH simulation model,
For example, it is set to 4 minutes C2.

このようζユして、演算器8は、流量計4の指示値Q1
と残塩計の指示値RCとから上記(1)〜(6)式を用
いて、フロック形成池出口に相当する残留塩素濃度Rc
f (t)を計算し、制御器9に出力する。
In this manner, the calculator 8 calculates the indicated value Q1 of the flowmeter 4.
Using the above equations (1) to (6) from the indicated value RC of the residual salt meter, the residual chlorine concentration Rc corresponding to the outlet of the floc formation pond is calculated.
f (t) is calculated and output to the controller 9.

第2図は第1図における制御器9の機能構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing the functional configuration of the controller 9 in FIG. 1.

第2図C−おいて、12はPI演算回路、13は差分計
算回路、14は状態判定回路、1stjジャンプ発生回
路、16は出力修正回路である。
In FIG. 2C, 12 is a PI calculation circuit, 13 is a difference calculation circuit, 14 is a state determination circuit, a 1stj jump generation circuit, and 16 is an output correction circuit.

第1図の演算器8から計算周期4分ととCユ出力される
フロック形成池出口の残留塩素濃度Rcfは、制御周期
(例えば8分)ごとシニPIfi31[回路12および
状態判定回路14に人力されると共に、計算周期4分と
とC二差分計算回路135:入力される。
The residual chlorine concentration Rcf at the outlet of the floc formation pond, which is output from the calculator 8 in FIG. At the same time, a calculation cycle of 4 minutes is input to the C2 difference calculation circuit 135.

PI演算回路12には残塩嬢度Rcfの制御目標値Sv
が設定され、次の(力、(8)式C:よって塩素注入率
の出力偏差ΔSが計算され、出力修正回路161:、伝
達されるO B、 = 8V −Rcf   −−−−−−−−−−
−−−−−−一−−−(7)Δ8 = Kp−(En−
Bn−1)+−・Bn −−−−−−−(8)TI ここで、Kp ilt比例ゲイン、In、In−Inそ
れぞれ今回制御周期および前回の制御周期の入力偏差、
hは制御謁期(8分)、TIは積分時間であり、比例ゲ
インKpと積分時間Ti flあらかじめ設定された値
である。
The PI calculation circuit 12 has a control target value Sv of the residual salt level Rcf.
is set, and the following (power, (8) formula C: Therefore, the output deviation ΔS of the chlorine injection rate is calculated, and the output correction circuit 161:, transmitted O B, = 8V −Rcf −−−−−−− ---
−−−−−−1−−−(7) Δ8 = Kp−(En−
Bn-1)+-・Bn --------(8) TI Here, Kpilt proportional gain, In, In-In are the input deviations of the current control cycle and the previous control cycle, respectively.
h is the control period (8 minutes), TI is the integral time, and the proportional gain Kp and the integral time Ti fl are preset values.

また差分計算回路131ユおいては、次の(9)式(:
よって、残塩濃度Rcfの時間変化率I)rcが計算さ
れるO ここで、RcflRcfIll−1uそれぞれ演算器8
の今回計算周期および前回計算周期の残塩濃度であり、
残塩濃度の時間変化率Drc (以下残塩変化率と呼ぶ
)の単位fl (t/rl/Hr )である。
Furthermore, in the difference calculation circuit 131, the following equation (9) (:
Therefore, the time rate of change I)rc of the residual salt concentration Rcf is calculated.
is the residual salt concentration in the current calculation cycle and the previous calculation cycle,
The unit of the time change rate Drc (hereinafter referred to as residual salt change rate) of the residual salt concentration is fl (t/rl/Hr).

状態判定回路14では残塩濃度Rcfと残塩変化率I)
rcとを制御周期毎に読込み、あらかじめ設定されてい
るRc日二対すモ練数の上限値と複数の下限値とC:よ
って分画された階級のどれシ;現在のRcfが属するか
を判定すると同時Cユ、あらかじめ設定されているDr
c C対する複数の上限値と複数の下限値とによって分
画され九階級のどれ(ユ現在の制御周期の残塩変化率I
)reが属するかを判定し、Rcfの階級番号YjとI
)rcの階級番号Xjとをジャンプ発生回路15に出力
する。
In the state determination circuit 14, the residual salt concentration Rcf and the residual salt change rate I)
rc is read every control cycle, and it is determined which of the divided classes the current Rcf belongs to, based on the preset upper limit and multiple lower limit values of the number of morsels for the Rc day and two. Then, at the same time, the preset Dr.
c Which of the nine classes is divided by a plurality of upper limit values and a plurality of lower limit values for C (residual salt change rate I of the current control cycle)?
) Determine whether re belongs to the class number Yj and I of Rcf.
) The class number Xj of rc is output to the jump generation circuit 15.

ジャンプ発生回路15には、Rcf階級YとI)rcの
階級Xによる2次元のマトリックスM(Y、、X)が用
意されて、マトリックスMの各要素Y、X(=対応して
あらかじめ塩素注入率のジャンプ幅が設定されており、
状態判定り路14の出力値YjとXjを用いてジャンプ
幅ΔSJが次の(1(1式(ユ従って選択され、出力修
正回路161ユ伝達される。
In the jump generation circuit 15, a two-dimensional matrix M(Y,, The rate jump width is set,
Using the output values Yj and Xj of the state judgment path 14, the jump width ΔSJ is selected as follows and transmitted to the output correction circuit 161.

Δ8J= M (Yj 、 Xj)   −−−−−−
−−−−−−−−α〔出力修正回路16はジャンプ発生
回路から伝達され九ジャンプ幅Δ8jが正また負の値を
もつと、次回の制御周期から出力修正回路16から設定
器10への設定出力snを一時停止する時間の長さ、す
なわち保持時間H1oを入力する接点を有し、ジャンプ
幅Δ8Jが0の場合は次の住υ式C:よって設定器lO
へ出力する設定値snが計算されるO Bn = sc+ΔS    ・−−−−一−−−一−
−−−−−−αυここで、ScH第1図の注入機11 
によって管路CC:注入された塩素の実注入率であり、
注入機11ζユよって注入され念塩素1icI(f/H
r)と流量計4の指示値である処理水量Q i (rr
l/Hr ”]から図示しない計算回路で次の(1力式
によって計算された値である。
Δ8J=M (Yj, Xj) --------
−−−−−−−−α [The output correction circuit 16 receives the information from the jump generation circuit, and if the jump width Δ8j has a positive or negative value, the output correction circuit 16 inputs the data from the output correction circuit 16 to the setter 10 from the next control cycle. It has a contact point for inputting the length of time during which the set output sn is temporarily stopped, that is, the holding time H1o, and when the jump width Δ8J is 0, the following υ formula C: Therefore, the setter lO
The set value sn to be output to is calculated O Bn = sc + ΔS ・----1---1-
−−−−−−αυHere, the injection machine 11 of ScH Figure 1
Pipe CC: is the actual injection rate of injected chlorine,
Injected by injection machine 11ζU, 1icI (f/H)
r) and the amount of treated water Q i (rr
l/Hr''] by a calculation circuit (not shown) using the following (1 force formula).

またジャンプ幅Δ8jが正または負の場合は次の0式に
よって設定値8nが計算されて設定器lO(:出力され
、同時(−保持時間の残り時間Htのカウントが開始さ
れる。
If the jump width Δ8j is positive or negative, a set value 8n is calculated by the following equation 0 and outputted to the setter lO(:), and at the same time, counting of the remaining time Ht of the (-holding time) is started.

8、 == 8c+Δ8j     −−−−−−−−
−−−−−−−−(13残り時間H9のカウントハ、ジ
ャンプ注入が開始御周期ごと(−次のa4式の計算が行
なわれ、 Hl (IC−なるまで続けられる。
8, == 8c+Δ8j −−−−−−−−
-----------(13 Count of remaining time H9, jump injection starts every control period (-) Calculation of the next a4 formula is performed, and continues until Hl (IC-).

Ht = Ht −1−−−−−−−−−−−−−−−
−−−−−(14残り時間H1が1へ下i″−なる制御
周期で出力修正回路16から設定器10への設定出力8
nを一時停止していた保持動作は解除され、実行された
ジャンプ注入はジャンプ前の値(ユあらかじめ設定され
ている復帰率Kb (:、従って戻され、同時(;再び
ジャンプ発生回路15からのジャンプ幅Δ8Jの値lユ
よって制御出力snが計算される。
Ht = Ht −1−−−−−−−−−−−−−−−
-------(14 Setting output 8 from the output correction circuit 16 to the setting device 10 at a control period in which the remaining time H1 decreases to 1 i''-
The holding operation that had temporarily stopped n is canceled, and the executed jump injection is returned to the pre-jump value (Y) and the preset return rate Kb (:, therefore, the same time (; again from the jump generation circuit 15). The control output sn is calculated from the value l of the jump width Δ8J.

保持動作が解除された制御周期では、Δ5j=0の時の
制御出力Snは次のa9式で与えられる。
In the control period in which the holding operation is canceled, the control output Sn when Δ5j=0 is given by the following equation a9.

8n: Se −Kl)−Δ81’ +Δ8 −−−−
−−−−−−(1!9また、Δs3’−,oの時は8n
は次のαの式で計算され、再度ジャンプ注入が行われて
今回の保持動作が開始される。
8n: Se −Kl) −Δ81′ +Δ8 −−−−
--------(1!9 Also, when Δs3'-, o is 8n
is calculated using the following formula for α, jump injection is performed again, and the current holding operation is started.

sn = sc−Kl)−ΔSj′ +ΔJ  ・−−
−−−−−−(161上記αS、(Le式でΔSj′は
前回の保持動作が始まった時のジャンプ幅である。
sn = sc-Kl)-ΔSj' +ΔJ ・--
--------(161 above αS, (In the Le equation, ΔSj' is the jump width when the previous holding operation started.

第3図は演算器8と制御器9Cユおける演算手順を示す
7I:I−チャートである〇 このようにして算出し九塩素注入率anを基準として塩
素の注入を制御すると、ろ過電の洗浄排水や遊水池や雨
水槽水のような塩素要求量の異る排水の返送(;よる外
乱によって細かく急変する塩素注入点より下流でこの点
に可能なかぎり近い点で残塩計への検水を取水する浄水
場の残留塩素濃度に対して演算器はこの残留塩素濃度の
変化を平滑化するのでPIフィードバック制御を暴走さ
せることなく安定化し、さら(ユジャンプ注入を行なう
こと(−よって注入の遅れを補償するので、制御の追従
性が改善され、注入不足や過剰注入が防止されて適正な
塩素注入が可能となる。
Figure 3 is a 7I:I-chart showing the calculation procedure in the calculator 8 and the controller 9C. If the chlorine injection is calculated in this way and is controlled based on the 9 chlorine injection rate an, the filtration charge cleaning Water is returned to the residual salinity meter at a point as close as possible to the chlorine injection point downstream of the chlorine injection point, where the chlorine demand changes rapidly due to disturbances, such as wastewater and water from reservoirs and rainwater tanks. The computing unit smoothes the changes in the residual chlorine concentration at the water treatment plant that takes water, so it stabilizes the PI feedback control without causing it to run out of control. Since this compensates for chlorine, control followability is improved, under-injection and over-injection are prevented, and appropriate chlorine injection becomes possible.

なお上記実施例は前塩素注入の場合であるが、中塩素注
入および後塩素注入に対しても本発明の適用が可能であ
る。
Although the above embodiment deals with pre-chlorine injection, the present invention can also be applied to intermediate chlorine injection and post-chlorine injection.

[発明の効果コ 以上説明したように本発明(ユよれば、細かく変化する
残留塩素濃度の測定値をシミュレーションモデルで加工
し平滑化してその目標値と比較し、その偏差C:応じて
塩素注入鷺をフィードバック制御すると共(ユ、残留塩
素濃度が急変する外乱を受けた時はジャンプ的C二注入
率を変化させているので、制御の追従性が改膏され、浄
水場から需要家Cユ送られる水道水の残留塩素濃度を好
ましい目標値(;制御することが可能となる。
[Effects of the Invention] As explained above, according to the present invention (Yu), the measured value of the residual chlorine concentration, which varies minutely, is processed and smoothed using a simulation model, and compared with the target value, and the deviation C: chlorine is injected accordingly. In addition to feedback controlling the heron, the jump C2 injection rate is changed when a disturbance that causes a sudden change in the residual chlorine concentration improves the followability of the control, allowing the water treatment plant to flow from the consumer C unit. It becomes possible to control the residual chlorine concentration of the supplied tap water to a desirable target value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は第1
図における制御器の機能構成を示すブロック図、第3図
は本発明における演算動作を示すフローチャートである
0 1・・・着水井     2・・・混和池3・・・注入
管     4・・・流量計5・・・フロック形成池 
6・・・検水ボングア・・・残塩計     8・・・
演算器9・・・制御器     lO・・・設定器11
−・・注入機 代理人 弁理士 猪 股 祥 晃(ほか1名)第  3
  図 手続補正書く方式) 1、事件の表示 特願昭60−28471号 2、発明の名称 浄水場の塩素注入制御装置 3、補正をする者 事件との関係  特許出願人 (307)株式会社 東芝 4、代理人 〒105 東京都港区虎ノ門1丁目9番10号 昭和60年5月8日 (発送日 昭和60年5月28日) 6、補正の対象 明細書の発明の名称の欄 7、補正の内容 明細書簡1頁3行目「浄水場の塩素注入装置」とあるを
[浄水場の塩素注入制御装置]に訂正する。 以上
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
FIG. 3 is a block diagram showing the functional configuration of the controller in the figure, and FIG. 3 is a flowchart showing the calculation operation in the present invention. Total 5...floc formation pond
6...Water test Bongua...Residual salt meter 8...
Arithmetic unit 9...controller lO...setter 11
- Injection machine agent Patent attorney Yoshiaki Inomata (and 1 other person) No. 3
1. Indication of the case Japanese Patent Application No. 60-28471 2. Name of the invention Chlorine injection control device for water purification plants 3. Person making the amendment Relationship with the case Patent applicant (307) Toshiba Corporation 4 , Agent Address: 1-9-10 Toranomon, Minato-ku, Tokyo 105 May 8, 1985 (Date of dispatch: May 28, 1985) 6. Column 7 of the title of the invention in the specification to be amended, Amendment On page 1, line 3 of the letter detailing the contents, the phrase ``Chlorine injection equipment for water treatment plants'' is corrected to [Chlorine injection control equipment for water treatment plants]. that's all

Claims (1)

【特許請求の範囲】[Claims] 塩素の注入量を制御して出口附近の残留塩素濃度を目標
値に制御する浄水場の塩素注入制御装置において、上記
出口附近よりも上流に設けられた残塩計および流量計の
検出値から上記出口附近の残留塩素濃度をシミュレーシ
ョンモデルを用いて算出する演算器と、上記算出した残
留塩素濃度が目標値になるように塩素注入量をPI制御
すると共に、上記算出した残留塩素濃度とその時間変化
率とから所要のジャンプ注入量を選定し、所要の時間だ
け上記P1制御を中断してジャンプ注入制御を行う制御
器を備えたことを特徴とする浄水場の塩素注入制御装置
In a chlorine injection control device at a water treatment plant that controls the amount of chlorine injected to keep the residual chlorine concentration near the outlet to the target value, the above value is calculated from the detected values of the residual salt meter and flow meter installed upstream of the outlet area. A calculator that calculates the residual chlorine concentration near the outlet using a simulation model, a PI control of the chlorine injection amount so that the residual chlorine concentration calculated above becomes the target value, and a computer that calculates the residual chlorine concentration calculated above and its time change. A chlorine injection control device for a water purification plant, comprising a controller that selects a required jump injection amount from the ratio and performs jump injection control by interrupting the P1 control for a required time.
JP2847185A 1985-02-18 1985-02-18 Chlorination control device for clean water plant Pending JPS61187991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2847185A JPS61187991A (en) 1985-02-18 1985-02-18 Chlorination control device for clean water plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2847185A JPS61187991A (en) 1985-02-18 1985-02-18 Chlorination control device for clean water plant

Publications (1)

Publication Number Publication Date
JPS61187991A true JPS61187991A (en) 1986-08-21

Family

ID=12249563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2847185A Pending JPS61187991A (en) 1985-02-18 1985-02-18 Chlorination control device for clean water plant

Country Status (1)

Country Link
JP (1) JPS61187991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411385A (en) * 1992-11-20 1995-05-02 Calsonic Corporation Rotary compressor having oil passage to the bearings
US6935854B2 (en) 2002-05-24 2005-08-30 Calsonic Compressors Manufacturing Inc. Gas compressor
JP2009247944A (en) * 2008-04-02 2009-10-29 Jfe Engineering Corp Method and apparatus for treating ballast water
JP2018001049A (en) * 2016-06-27 2018-01-11 有限会社イシズチコーポレーション Method for sterilizing pool water
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water
CN111470608A (en) * 2020-04-08 2020-07-31 河海大学 Midway chlorine supplementing optimization method for long-distance drinking water transmission and distribution pipe network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765379A (en) * 1980-10-08 1982-04-20 Toshiba Corp Controller for injection of chlorine
JPS5888091A (en) * 1981-11-20 1983-05-26 Hitachi Ltd Method for controlling injection of chlorine in water purification plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765379A (en) * 1980-10-08 1982-04-20 Toshiba Corp Controller for injection of chlorine
JPS5888091A (en) * 1981-11-20 1983-05-26 Hitachi Ltd Method for controlling injection of chlorine in water purification plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411385A (en) * 1992-11-20 1995-05-02 Calsonic Corporation Rotary compressor having oil passage to the bearings
US6935854B2 (en) 2002-05-24 2005-08-30 Calsonic Compressors Manufacturing Inc. Gas compressor
JP2009247944A (en) * 2008-04-02 2009-10-29 Jfe Engineering Corp Method and apparatus for treating ballast water
JP2018001049A (en) * 2016-06-27 2018-01-11 有限会社イシズチコーポレーション Method for sterilizing pool water
JP2019093371A (en) * 2017-11-28 2019-06-20 アクアス株式会社 Method and apparatus for treating ammoniac nitrogen in water
CN111470608A (en) * 2020-04-08 2020-07-31 河海大学 Midway chlorine supplementing optimization method for long-distance drinking water transmission and distribution pipe network

Similar Documents

Publication Publication Date Title
US20180037471A1 (en) Wastewater treatment system
JPS61187991A (en) Chlorination control device for clean water plant
CN105756008A (en) Automatic sand adding device for tidal estuary sediment physical model
JPH0615295A (en) Controlling method of sodium carbonate injection amount in softening treatment of treated water containing calcium of fluorine-containing waste water
JP2000146947A (en) Water quality control system
JPS5840113A (en) Flocculant pouring control apparatus in water treatment
JP2004113853A (en) Regulation and control apparatus for ph value of inflow raw water in water purifying treatment process
JPH0440079B2 (en)
JPS62237994A (en) Apparatus for controlling injection of chlorine
JPS643522B2 (en)
JPS6319236B2 (en)
JP2768810B2 (en) Water injection plant chemical injection control device
JPS5876185A (en) System for controlling amount of mlss in active sludge process
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
JPS5579091A (en) Drawing controller for excessive sludge
JPS60212201A (en) Chlorine injection control apparatus of water purification plant
JPH0215278B2 (en)
JPS60161707A (en) Flocculant injection control of water purification plant
SU514774A1 (en) Device for automatic control of wastewater treatment process
JPS5876193A (en) System for controlling total amount of sludge
JPH0679717B2 (en) Return sludge amount control device
JPS60175508A (en) Flocculation reaction apparatus
JPH02187188A (en) Apparatus for controlling quality of purified water
JPH0215277B2 (en)
JPH0472596B2 (en)