JPS61186791A - Heat storage device - Google Patents

Heat storage device

Info

Publication number
JPS61186791A
JPS61186791A JP60028590A JP2859085A JPS61186791A JP S61186791 A JPS61186791 A JP S61186791A JP 60028590 A JP60028590 A JP 60028590A JP 2859085 A JP2859085 A JP 2859085A JP S61186791 A JPS61186791 A JP S61186791A
Authority
JP
Japan
Prior art keywords
reaction
container
vessel
na2s
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028590A
Other languages
Japanese (ja)
Inventor
Masaki Ikeuchi
正毅 池内
Takeshi Doi
全 土井
Gorou Yamanaka
山中 晤郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60028590A priority Critical patent/JPS61186791A/en
Publication of JPS61186791A publication Critical patent/JPS61186791A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To obtain a heat storage device not requiring a separate reproduction operation or heat source for heating by raising the pressure of vapor generated in one reaction vessel by means of a compressor or a blower and carrying out an inverse reaction in another reaction vessel by the pressure raising. CONSTITUTION:The bath B8 of a reaction vessel B6 is filled with Na2S (converted into Na2S.5H2O after the reaction) which is the same reaction substance as that within the bath A3 of a reaction vessel A1. During a coolness discharging operation I, cooling water 4 flows on the side of the vessel A1. When cool water 9 utilized in space cooling or the like flows on the side of the vessel B6, a reaction as represented by Na2S.5H2O Na3S+5H2O occurs, and cool heat is generated. In the vessel A1, a reaction represented by a reaction formula Na2S+5H2O Na2S.5H2 occurs. These reactions are continued until a predetermined ability cannot be obtained. After completion of the operation, the reaction substance 2 within respectively vessels A1 and B6 assumes a state which is the same as that before the beginning of the coolness dissipating operation I, and it is made possible to again carry out the coolness dissipating operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化学変化や物理変化などを利用する蓄熱装
置の構成をζ関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the configuration of a heat storage device that utilizes chemical changes, physical changes, and the like.

〔従来の技術〕[Conventional technology]

第4図は、例えば[エネルギー・資源JVo1.4゜N
o4 (’88 ) 、 P、 60に示された従来の
蓄熱装置を示 。
Figure 4 shows, for example, [Energy/Resources JVo1.4°N
o4 ('88), P, 60.

す図であり、図において(1)は化学反応する物質(2
)(例えば硫化ナトリウム; Na、8 )の充てんさ
れた槽ム(3)や、冷却あるいは加熱用熱媒体(4)(
例えば水)の流れる熱交換部人(5)から構成される反
応容器人であl)%(6)は化学反応に供される物質(
7)(例えば水;40)の充てんされた槽B(8)や、
冷却あるいは加熱用熱媒体(9)(例えば水)の流れ、
る熱交換部B QGから構成される反応容器Bである。
In the diagram, (1) is a chemically reacting substance (2).
) (for example, sodium sulfide; Na, 8), or a cooling or heating heat medium (4) (
For example, in a reaction vessel consisting of a heat exchanger (5) through which water) flows, % (6) is a substance (1)% (6) to be subjected to a chemical reaction.
7) (e.g. water; 40) filled tank B (8),
a flow of a cooling or heating heat medium (9) (e.g. water);
This is a reaction vessel B consisting of a heat exchange section B QG.

これら反応容器人(1)と反応容器B(6)は配管路a
υで接続されていて、この配管の途中には反応を停止さ
せるための開閉弁(ロ)が設置されている。第5図は、
金側にとっている水(以下H,0で示す)と硫化すトリ
ウム5水塩(以下Nat8・6IitOで示す。)の温
度・圧力平衡線図であり、縦軸が対数圧力(logP 
)。
These reaction vessel person (1) and reaction vessel B (6) are connected to piping path a.
They are connected by υ, and an on-off valve (b) is installed in the middle of this piping to stop the reaction. Figure 5 shows
This is a temperature/pressure equilibrium diagram of water held on the gold side (hereinafter referred to as H,0) and thorium sulfide pentahydrate (hereinafter referred to as Nat8.6IitO), where the vertical axis is the logarithmic pressure (logP
).

横軸が温度の逆数(1/T)を示している。The horizontal axis indicates the reciprocal of temperature (1/T).

次に動作について説明する。Na、S (!: H,0
の反応は(1)式で表わされ、反応が左から右に進むと
き発熱(熱量ΔH)する。
Next, the operation will be explained. Na, S (!: H,0
The reaction is expressed by equation (1), and as the reaction progresses from left to right, heat is generated (heat amount ΔH).

Nap + sH,0、=: Nats ・5H,O+
Δ■・・・・・・・・・・・・(1)今、冷熱を放出(
以下放冷と呼ぶ)したり、反応物質を再生する例につい
て述べる。放冷時には、開閉弁(2)は開となっており
容器A(1)の反応物質(2)はNa、S 、容器B(
6)の反応に供される物質(7)はHρの液状態にあり
、これらの各状態は第5図では、それぞれ点■および点
■で示される。容器B(6)では、檜B(8)内の−O
が、水(9)(例えば温度12℃)により加熱され第5
図に示す点■の温度Tt(例えば5℃)で蒸発し、H,
Oの蒸気となって配管路(2)。
Nap + sH, 0, =: Nats ・5H, O+
Δ■・・・・・・・・・・・・(1) Now, the cold energy is released (
An example of cooling the reactant (hereinafter referred to as cooling) or regenerating the reactant will be described. During cooling, the on-off valve (2) is open, and the reactant (2) in container A (1) is Na, S, and container B (
The substance (7) to be subjected to the reaction 6) is in a liquid state of Hρ, and each of these states is indicated by a point ■ and a point ■ in FIG. 5, respectively. In container B (6), -O in Hinoki B (8)
is heated by water (9) (for example, at a temperature of 12°C) and the fifth
Evaporates at the temperature Tt (for example, 5°C) at point ■ shown in the figure,
It becomes O vapor and enters the pipe line (2).

開閉弁(2)を通り容器人(1)の槽A(3)に行く。It passes through the on-off valve (2) and goes to tank A (3) of the container person (1).

この時、熱交換部B Q(lの水(9)は冷却されて冷
水(例えば7℃)となり冷房などに利用される。槽A(
3)に入ったH、Oの蒸気は、Na、Sと反応し、点■
で示される温度Tt (例えば50”C)で(1)式の
左から右への反応が生じ発熱する。この時の発熱は、熱
交換部A(5)を流れる冷却水(4)により取り去られ
る。このようにして、容器A(1)中のNa、8がNa
、8−5H,Oに変化するか、容器B(6)中の40の
液が全てなくなるまで、もしくは所定の能力が得られな
くなるまで放冷運転が実施され、容器B(6)から冷水
(9)が得られる。
At this time, the water (9) in the heat exchange section BQ(l) is cooled and becomes cold water (for example, 7°C), which is used for air conditioning. Tank A(
The H and O vapors that entered 3) react with Na and S, forming the point ■
At a temperature Tt (for example, 50"C), a reaction from the left to the right in equation (1) occurs and heat is generated.The heat generated at this time is removed by the cooling water (4) flowing through the heat exchange section A (5). In this way, Na in container A (1), 8 is Na.
, 8-5H, O, or until all of the 40 liquid in container B (6) is exhausted, or until the predetermined capacity can no longer be obtained, the cooling operation is carried out, and the cold water ( 9) is obtained.

次に反応物質の再生・運転時の動作について述べる。こ
の時も開閉弁側は開となっており、容器A(1)内の槽
A(3)には放冷運転後の反応の終ったNa、8 、5
鴇Oが、容器B(6)内の槽B(8)にはH!Oの蒸気
のみがある。この時、容器ム(1)には加熱用の熱源水
(4)が、容器B(6)には冷却用の冷却水(9)が流
れる容器A (1)では、加熱用熱源水(4)により槽
A(3)内のNatS・5 H,0が加熱されて、第6
図の点■に示される温度T4.圧力PHで(1)式の右
から左への反応が進行し、■!0の蒸気が発生して反応
物質(2)はNa、Sへ再生される。この蒸気は、開閉
弁(2)、配管路αυを通り、容器B(6)内の槽B(
8)に流入するが、この槽B(8]は熱交換部B (1
0を流れる冷却水(9)により冷却されているため、第
5図の点■に示される温度Tsで凝縮・液化しH,Oの
液体となる。このようにして、容器人(1)の槽A(3
)内Na、8 、51(,0がNa2S ニ再生される
まで再生運転が続けられ、この運転が終了後、放冷運転
に移行するまで開閉弁(2)は閉じられる。 − 〔発明が解決しようとする問題点〕 従来の蓄熱装置は以上のように構成されているので、放
冷運転とは別に再生運転という動作が必要であり、さら
にこの再生運転時には、第5図に示すように、加熱源と
してT4という温度の高い熱源が必要であるなどの問題
点があった。
Next, the operation during regeneration and operation of the reactant will be described. At this time as well, the on-off valve side is open, and the tank A (3) in the container A (1) contains Na, 8, 5
Tow O is H! in tank B (8) in container B (6)! There is only O vapor. At this time, in the container A (1), the heat source water (4) for heating flows into the container A (1), and the cooling water (9) flows into the container B (6). ), NatS・5H,0 in tank A(3) is heated, and the sixth
Temperature T4 shown at point ■ in the figure. The reaction from right to left in equation (1) proceeds at pressure PH, and ■! 0 vapor is generated and the reactant (2) is regenerated to Na, S. This steam passes through the on-off valve (2) and the pipe line αυ, and then flows through tank B (
This tank B (8) flows into the heat exchange section B (1
Since it is cooled by the cooling water (9) flowing through 0, it condenses and liquefies into a liquid of H and O at the temperature Ts shown at point 2 in FIG. In this way, tank A (3) of container person (1)
) The regeneration operation continues until Na, 8, 51 (, 0 is regenerated as Na2S), and after this operation is completed, the on-off valve (2) is closed until the air cooling operation begins. [Problems to be Solved] Since the conventional heat storage device is configured as described above, it is necessary to perform a regeneration operation in addition to the cooling operation, and during this regeneration operation, as shown in Fig. 5, There were problems such as the need for a heat source with a high temperature of T4 as a heat source.

この発明は、上記のような問題点を解消するためになさ
れたもので、別途再生運転を必要とせず、したがって加
熱用熱源の不要な蓄熱装置を得ることを目的としている
This invention was made to solve the above-mentioned problems, and aims to provide a heat storage device that does not require a separate regeneration operation and therefore does not require a heat source for heating.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る蓄熱装置は、反応物質を充填した2個の
反応容器、これらの反応容器にそれぞれ設けられた熱交
換部、2回路に分割されて上記反応容器を接続する配管
路、この配管路に設けられた圧縮機またはブロア、およ
び上記回路を切り換える開閉弁を備えたものである。
The heat storage device according to the present invention includes two reaction vessels filled with reactants, a heat exchange section provided in each of these reaction vessels, a piping line that is divided into two circuits and connects the reaction vessels, and this piping line. The system is equipped with a compressor or blower installed in the circuit, and an on-off valve that switches the circuit.

〔作用〕[Effect]

この発明における蓄熱装置は、一方の反応容器で発生す
る蒸気を圧縮機またはブロアにより昇圧する作用があり
、この外圧により他方の反応容器では、容易に上記一方
の反応容器と逆反応を行なわせることができ、放冷と同
時に再生が行なわれる。
The heat storage device according to the present invention has the function of increasing the pressure of vapor generated in one reaction vessel using a compressor or blower, and this external pressure allows the other reaction vessel to easily perform a reverse reaction with that of the one reaction vessel. This allows cooling and regeneration to take place at the same time.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において(1)〜(6) 、 (8)〜α刀は上記従
来装置と同じである。反応容器B(6)の槽B(8)内
には、反応容器A(1)の1PfIA (3)内と同じ
反応物質(2)であるNa、S (反応後Na、S・5
40となる。)が充てんされている。また、容器間を接
続する配管路O刀は2回路に分かれ、1方の回路に開閉
弁IQ3と圧縮機1α41他方の回路に開閉弁2 (I
Iと圧縮機2αQが設置され、また、それぞれの圧縮機
1,2(14,αOは圧縮の方向が逆となっている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) to (6) and (8) to α swords are the same as the above-mentioned conventional device. In tank B (8) of reaction container B (6), Na, S, which is the same reactant (2) as in 1PfIA (3) of reaction container A (1) (after reaction, Na, S.
It will be 40. ) is filled. In addition, the piping line that connects the containers is divided into two circuits, one circuit has on-off valve IQ3 and compressor 1α41, and the other circuit has on-off valve 2 (I
A compressor I and a compressor 2αQ are installed, and the compression directions of the compressors 1 and 2 (14, αO are opposite to each other).

次に動作について説明する。まず、放冷運転1時には、
容器A(1)側に冷却水(4)が流れ、容器B(6)側
に冷房等に利用する冷水(9)が流れる。また開閉弁I
Q3は閉、開閉弁2(2)は開、圧縮機1 (14はオ
フ・圧縮機2 Q*はオンとなっている。このとき、容
器B(6)の槽B(8)内は第5図の点■で示す状態に
あり、この槽B(8)の熱交換部B aoに、冷房など
に使用された戻りの水(9)(例えば12℃)が流れる
と、槽B(8)内のNa、8 、5I(、Oは、温度T
t(例えば6°C)で反応が(1)式の右から左に進行
してNa、SとH2Oの蒸気に分離するとともに吸熱す
る。このため、水(9)は冷却されて冷水(例えば7℃
)となり再び冷房などに利用される。容器B(6)から
放出されたHρの蒸気は、配管路(l])を通り圧縮機
2α・に吸い込まれ、圧力が第5図に示すPL′からP
Lに昇圧して、開閉弁2(2)を通り容器A(1)に行
く。容器人(1)内では、圧力がPLであるためNa、
8は第6図の点■の状態にあり、熱交換部A(5)に冷
却水(4)を流すことにより、温度Tt (例えば50
℃)で(1)式の反応が左から右へ進む。この時の発熱
は、冷却水(4)により除去される。このようにして、
容器B(0)ではNa、S・5H,0−+Na、8 +
 5 HtOの反応が生じ冷熱が発生すると共に、” 
28 A (1) テハ、Na、8 +5 Hρ−+ 
Na、8 ・5 HtOLD 反応カ生じ、これら反応
は、所定の放冷能力が得られなくなるまで続けられる。
Next, the operation will be explained. First, at 1 o'clock in the cooling operation,
Cooling water (4) flows into the container A (1) side, and cold water (9) used for cooling, etc. flows into the container B (6) side. Also, on-off valve I
Q3 is closed, on-off valve 2 (2) is open, compressor 1 (14 is off, compressor 2 Q* is on. At this time, the inside of tank B (8) of container B (6) is The state is shown by point ■ in Figure 5, and when return water (9) (for example, 12°C) used for air conditioning flows into the heat exchange part Bao of tank B (8), ) in Na, 8, 5I (, O is temperature T
At t (for example, 6° C.), the reaction proceeds from right to left in equation (1), separating into vapors of Na, S and H2O, and absorbing heat. For this reason, the water (9) is cooled to cold water (e.g. 7°C
) and is used again for cooling purposes. The steam of Hρ released from the container B (6) is sucked into the compressor 2α through the piping (l), and the pressure increases from PL′ to P as shown in FIG.
The pressure is increased to L and passes through the on-off valve 2 (2) to the container A (1). Inside the container (1), the pressure is PL, so Na,
8 is in the state of point ■ in FIG.
℃), the reaction of equation (1) proceeds from left to right. The heat generated at this time is removed by cooling water (4). In this way,
In container B(0), Na, S・5H, 0−+Na, 8 +
5 HtO reaction occurs and cold heat is generated, and
28 A (1) Teha, Na, 8 +5 Hρ-+
Na, 8 .5 HtOLD reactions occur, and these reactions are continued until a predetermined cooling capacity can no longer be obtained.

この放冷運転Iが終了する時には、容器ム(1)では反
応物質(2)の大部分がNa28・5鳴Oとなっており
、また容器B(0)では同じく大部分がNa!8となっ
ている。したがって、放冷運転を始める前の容器A(1
)と容器B(6)が連転じた関係になっており、次の放
冷運転1を開始するときは、前回と逆に容器A(1)側
に冷房等に利用する冷水(4)が流れ、容器B(6)側
に冷却水(9)が流れる。
At the end of this cooling operation I, most of the reactant (2) in container M (1) is Na28.5, and in container B (0), the majority is also Na! It is 8. Therefore, container A (1
) and container B (6) are in a sequential relationship, and when starting the next cooling operation 1, the cold water (4) used for cooling etc. is placed on the container A (1) side, contrary to the previous time. The cooling water (9) flows to the container B (6) side.

開閉弁IQ3は開、開閉弁2(!9は閉、圧縮機I Q
4)はオン、圧縮機2α・はオフとなっている。このと
き、容器ム(1)の槽A(3)内は、圧縮機1α4によ
りE[、Oの蒸気が吸引されるため圧力はPL′まで低
下し第5図点■で示す状態にある。容器A(1)の熱交
換部人(5)に、冷房などに使用された戻りの水(4)
(例えば12℃)が流れると、槽A(3)内ノNa、B
 −5Hρは、温度Tt (例えば5°C)で反応が(
1)式の右から左に進行してNa、8とHlOの蒸気に
分離すると共に吸熱する。
On-off valve IQ3 is open, on-off valve 2 (!9 is closed, compressor IQ
4) is on, and compressor 2α is off. At this time, the pressure inside the tank A(3) of the container M(1) is reduced to PL' because the compressor 1α4 sucks the vapors of E[ and O, and the pressure is in the state shown by dot 3 in Figure 5. Return water (4) used for cooling, etc. to the heat exchanger (5) in container A (1)
(For example, 12℃) flows, Na in tank A (3), B
-5Hρ means that the reaction (at temperature Tt (e.g. 5°C)
1) Proceeding from right to left in the equation, it separates into vapors of Na, 8 and H1O, and absorbs heat.

このため、水(4)は冷却されて冷水(例えば7℃)と
なり再び冷房などに利用される。容器A(1)から放出
されたHlOの蒸気は、配管(ロ)を通り圧縮機104
に吸い込まれ、圧力が第5図に示すPL′からPLに昇
圧して開閉弁1(L3を通り、容器B(6)に行く。
Therefore, the water (4) is cooled to become cold water (for example, 7° C.) and is used again for cooling. The HlO vapor released from the container A (1) passes through the pipe (b) to the compressor 104.
The pressure increases from PL' to PL shown in FIG. 5, and goes through the on-off valve 1 (L3) to the container B (6).

容器B(6)の楢B(8)内では、圧力がPLであるた
めNa−は第5図点■の状態にある。このとき、熱交換
部B goに冷却水(9)を流すことにより、温度Tz
(例えば50℃)で(1)式の反応が左から右へ進む。
In the oak B (8) of the container B (6), since the pressure is PL, Na- is in the state shown by point (■) in Figure 5. At this time, by flowing the cooling water (9) into the heat exchange part B go, the temperature Tz
(for example, at 50°C), the reaction of formula (1) proceeds from left to right.

この時の発熱は、冷却水(4)により除去される。この
よう(こして、容器A(1)では、Na、8−5Hρ→
Na、s +5■20 の反応が生じ冷熱が発生すると
共:こ、容器B(6)では、Na、s + 5 H,O
−) Na 2B −5k120の反応が生じ、これら
反応は、所定の放冷能力が得られなくなるまで続けられ
る。この運転終了後には、各容器A。
The heat generated at this time is removed by cooling water (4). In this way (thus, in container A (1), Na, 8-5Hρ →
The reaction of Na, s + 5 ■20 occurs and cold heat is generated. In container B (6), Na, s + 5 H, O
-) Na2B-5k120 reactions occur, and these reactions are continued until a predetermined cooling capacity is no longer obtained. After this operation is completed, each container A.

B (1) 、 (6)内の反応物質(2)は、放冷運
転Iの始まる前と同じ状態になっており、再び放冷運転
を行なうことが可能である。
The reactant (2) in B (1) and (6) is in the same state as before the start of the cooling operation I, and it is possible to perform the cooling operation again.

なお、上記実施例では圧縮機を2台用いたが、このかわ
りに、第2図に示すごとく圧縮機1台とし流路を切り換
える開閉弁を設けても良い。例えば亀容器人(1)から
容器B(6)側に蒸気が流れる時は開閉弁8.6(ロ)
、曽が開、開閉弁4.5(ト)、α呻が閉となっており
、蒸気は開閉弁8(ロ)を通り圧縮機1 (14で圧縮
されて開閉弁6勾を経由して容器B(6)に行く。
In the above embodiment, two compressors are used, but instead, as shown in FIG. 2, one compressor may be used and an on-off valve for switching the flow path may be provided. For example, when steam flows from turtle container person (1) to container B (6) side, open/close valve 8.6 (b)
, 5 is open, on-off valve 4.5 (g), and α on-off are closed, and the steam passes through on-off valve 8 (b) and is compressed in compressor 1 (14), and then passes through on-off valve 6. Go to container B (6).

また、第2図に示す開閉弁のかわりに、第8図に示す2
個の8方弁を用いても良い。例えば、容器A(1)から
容器B(6)側に蒸気が流れるときは、三方弁1 、2
@、(至)は図示のごとくなっており、蒸気は三方弁1
(2)から圧縮機I Q4に入り圧縮されて、三方弁2
翰を通り容器B(6)へ行く。
Also, instead of the on-off valve shown in Fig. 2, the 2 valve shown in Fig.
8-way valves may also be used. For example, when steam flows from container A (1) to container B (6), three-way valves 1 and 2
@, (to) are as shown in the diagram, and steam is supplied through three-way valve 1.
(2) enters the compressor I Q4 and is compressed, and the three-way valve 2
Pass through the fence and go to container B (6).

以上の例では、反応物* (2)としてNa、8を用い
た場合について説明したが、このかわりにH,Oを各容
器に入れ、片方で蒸発、片方で凝縮させても良いし、ま
た、金属水素化物など他の反応物質を用。
In the above example, the case was explained in which Na and 8 were used as the reactants* (2), but instead, H and O may be placed in each container and evaporated in one and condensed in the other. , using other reactants such as metal hydrides.

いても上記実施例と同様の効果が得られることば言うま
でもない。
Needless to say, the same effects as in the above embodiment can be obtained even if the above embodiment is used.

また、圧縮機のかわりにブロアを用いてもよい。Also, a blower may be used instead of the compressor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、反応物質を充填した
2個の反応容器、これらの反応容器にそれぞれ設けられ
た熱交換部、2回路に分割されて上記反応容器を接続す
る配管路、この配管路に設けられた圧縮機またはブロア
、および上記回路を切り換える開閉弁を備えたので、別
途再生運転を必要としない蓄熱装置が得られる効果があ
る。
As described above, according to the present invention, two reaction vessels filled with reactants, a heat exchange section provided in each of these reaction vessels, a piping line that is divided into two circuits and connects the reaction vessels, Since the compressor or blower provided in this piping path and the on-off valve for switching the circuit are provided, a heat storage device that does not require a separate regeneration operation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による蓄熱装置を示す構成
断面図、第2図、第8図はこの発明の他の実施例による
蓄熱装置の要部を示す構成図、第4図は従来の蓄熱装置
を示す構成断面図、第5図は反応物質の温度−圧力の平
衡状態を示す特性図である。 図において、(1) 、 (6)は反応容器、(2)は
反応物質、(5)、αGは熱交換部、(ロ)は配管、(
2)、(ト)、Qη〜(転)は開閉弁、α4.α・は圧
縮機、に)、@は三方切換弁である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a cross-sectional view showing the structure of a heat storage device according to an embodiment of the present invention, FIGS. 2 and 8 are block diagrams showing main parts of a heat storage device according to other embodiments of the invention, and FIG. FIG. 5 is a cross-sectional view showing the structure of the heat storage device, and FIG. 5 is a characteristic diagram showing the temperature-pressure equilibrium state of the reactant. In the figure, (1) and (6) are reaction vessels, (2) are reactants, (5) and αG are heat exchange parts, (b) are piping, (
2), (G), Qη~(T) are on-off valves, α4. α・ is a compressor, @ is a three-way switching valve. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)反応物質を充填した2個の反応容器、これらの反
応容器にそれぞれ設けられた熱交換部、2回路に分割さ
れて上記反応容器を接続する配管路、この配管路に設け
られた圧縮機またはブロア、および上記回路を切り換え
る開閉弁を備えた蓄熱装置。
(1) Two reaction vessels filled with reactants, a heat exchange section provided in each of these reaction vessels, a piping line that is divided into two circuits and connects the reaction vessels, and a compression line provided in this piping line. A heat storage device equipped with a blower or a blower, and an on-off valve that switches the above circuit.
(2)各回路にそれぞれ圧縮機またはブロアと開閉弁を
、その圧縮方向が互に逆向きとなるごとく設置したこと
を特徴とする特許請求の範囲第1項記載の蓄熱装置。
(2) The heat storage device according to claim 1, wherein a compressor or a blower and an on-off valve are installed in each circuit so that the compression directions thereof are opposite to each other.
(3)各回路に2個ずつ開閉弁を設置すると共に、各回
路の2個の開閉弁の間同士を、圧縮機またはブロアを備
えた配管で接続したことを特徴とする特許請求の範囲第
1項記載の蓄熱装置。
(3) Two on-off valves are installed in each circuit, and the two on-off valves in each circuit are connected to each other by piping equipped with a compressor or a blower. The heat storage device according to item 1.
(4)各回路の分岐点に3方切換弁を設けると共に、各
回路を圧縮機を備えた回路で接続したことを特徴とする
特許請求の範囲第1項記載の蓄熱装置。
(4) The heat storage device according to claim 1, characterized in that a three-way switching valve is provided at a branch point of each circuit, and each circuit is connected by a circuit equipped with a compressor.
JP60028590A 1985-02-15 1985-02-15 Heat storage device Pending JPS61186791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028590A JPS61186791A (en) 1985-02-15 1985-02-15 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028590A JPS61186791A (en) 1985-02-15 1985-02-15 Heat storage device

Publications (1)

Publication Number Publication Date
JPS61186791A true JPS61186791A (en) 1986-08-20

Family

ID=12252810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028590A Pending JPS61186791A (en) 1985-02-15 1985-02-15 Heat storage device

Country Status (1)

Country Link
JP (1) JPS61186791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571887A (en) * 1991-09-11 1993-03-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571887A (en) * 1991-09-11 1993-03-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulation method

Similar Documents

Publication Publication Date Title
JPH02230067A (en) Cooling and/or heating device by utilizing reaction between solid and gas
JPH02500384A (en) Low temperature generation method and device by solid-gas reaction
JPS61186791A (en) Heat storage device
JPH076708B2 (en) Chemical heat storage system
JPH06272989A (en) Refrigerator
JPS61202089A (en) Condensing and vaporizing device
US2599428A (en) Tube bundle for heat exchangers
JPS62294897A (en) Heat accumulation type heat exchanger
JPS61186792A (en) Heat storage device
US3386502A (en) Heat recovery system
JPS60226674A (en) Chemical heat pump
JPS61197993A (en) Heat accumulating device
JPH04263754A (en) Chemical heat pump
JPS60161325A (en) Apparatus for producing ammonium sulfate from coke oven gas
JPH03282190A (en) Heat accumulating device
JPS6048467A (en) Method of driving heat pump device
JPS6280459A (en) Absorption type heat pump
JPS601542B2 (en) Absorption type thermal storage heating and cooling equipment
JPH056118B2 (en)
GB1359537A (en) Temperature control in vessels
JPS6256751A (en) Heat accumulating and heat dissipating device
JPS62218792A (en) Chemical heat storage device and method of using the same
US1659682A (en) davenport
JPS59180259A (en) High temperature-difference chemical heat pump
JPH05288485A (en) Waste heat temperature increasing and recovering device