JPH0571887A - Heat accumulation method - Google Patents

Heat accumulation method

Info

Publication number
JPH0571887A
JPH0571887A JP3231926A JP23192691A JPH0571887A JP H0571887 A JPH0571887 A JP H0571887A JP 3231926 A JP3231926 A JP 3231926A JP 23192691 A JP23192691 A JP 23192691A JP H0571887 A JPH0571887 A JP H0571887A
Authority
JP
Japan
Prior art keywords
heat
heat storage
temperature
reactor
mechanical booster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3231926A
Other languages
Japanese (ja)
Inventor
Tetsuo Furukawa
哲郎 古川
Shiro Inoue
司朗 井上
Kenji Yasuda
賢士 保田
Yoshinori Wakiyama
良規 脇山
Toshihiko Yasuda
俊彦 安田
Yoshihide Kawamura
義秀 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL RES ASSOC SUPER HEAT P
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Original Assignee
TECHNOL RES ASSOC SUPER HEAT P
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL RES ASSOC SUPER HEAT P, TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST filed Critical TECHNOL RES ASSOC SUPER HEAT P
Priority to JP3231926A priority Critical patent/JPH0571887A/en
Publication of JPH0571887A publication Critical patent/JPH0571887A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To make it possible to accumulate heat even if it is a low temperature heat source by installing a mechanical booster (steam compressor) between a heat accumulation reactor and a condenser. CONSTITUTION:There is installed a mechanical booster 9 from a pipeline which connects a heat accumulation reactor 1 to a condenser 6 which cools, condenses and returns aqueous vapor generated by a dehydrating reaction by way of valves 10 and 11. This mechanical booster 9 is provided with a capacity to compress a pressure which exceeds a suction pressure of aqueous vapor by a constant value, which lowers a dehydration and regeneration temperature and raises a condensation temperature. This construction makes it possible to accumulate heat even if it is a low temperature heat source, which results in an increase in the degree of freedom about the heat source temperature in a heat accumulation process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体無機化合物の水和
反応熱を利用する蓄熱方法あるいはこの蓄熱方法の応用
技術であるケミカルヒートポンプに関し、さらに詳しく
は、固体無機化合物を蓄熱媒体として用い、水和状態の
蓄熱媒体を脱水反応に付すことによって蓄熱を行なわ
せ、一部ないし全部脱水した蓄熱媒体を水蒸気との水和
反応に付すことによって放熱を行わせる蓄熱システムの
蓄熱過程に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage method utilizing the heat of hydration reaction of a solid inorganic compound or a chemical heat pump which is an application technique of this heat storage method. More specifically, the solid inorganic compound is used as a heat storage medium, The present invention relates to a heat storage process of a heat storage system in which heat is stored by subjecting a heat storage medium in a hydrated state to a dehydration reaction, and heat is released by subjecting a partially or completely dehydrated heat storage medium to a hydration reaction with water vapor.

【0002】[0002]

【従来の技術】始めに、固体無機化合物の水和反応熱を
利用する蓄熱システムの原理を図1と図2を用いて説明
する。図1は従来の蓄熱方法の装置図であり、図2は従
来の蓄熱方法における水と無機水和物の飽和水蒸気圧曲
線を示すグラフである。蓄熱システムは、蓄熱過程と放
熱過程とからなる。
2. Description of the Related Art First, the principle of a heat storage system utilizing the heat of hydration reaction of a solid inorganic compound will be described with reference to FIGS. FIG. 1 is a device diagram of a conventional heat storage method, and FIG. 2 is a graph showing a saturated vapor pressure curve of water and an inorganic hydrate in the conventional heat storage method. The heat storage system includes a heat storage process and a heat dissipation process.

【0003】 (蓄熱過程) 反応器(1) 側 A・nH2 O(固)+Q1(熱)→ A・(n−a)H2 O(固)+aH2 O(気) (1) 凝縮器(6) 側 aH2 O(気)→aH2 O(液)+Q2(熱) (2) 図1において、反応器(1) 内に充填された蓄熱媒体であ
るA・nH2 O(固)で表わされる固体無機水和物(2)
を反応器(1) 内に設けられた熱交換部(3) に温度TS1
熱源流体(4) を流すことによりTE1℃に加熱する。この
時、蓄熱媒体A・nH2 O(固)は図2に示すTE1℃の
平衡水蒸気圧力PE1を示す。一方、この圧力PE1はTC1
℃の水の飽和水蒸気圧力と等しく、反応器(1) と凝縮器
(6) を結ぶ管路(12)に備えられたバルブ(5) を開け、凝
縮器(6) 側の熱交換部(7) にTC1℃よりも低温のTW1
の冷却水を流すと(2) 式の反応により、水蒸気は冷却さ
れ凝縮し復水するので、(1) の反応式右辺の水蒸気が減
少し、(1) 式の反応は右に進むことになる。反応器器
(1) 内のA・nH2 O(固)からaモルの水蒸気が脱水
された状態でバルブ(5) を閉めれば蓄熱過程は終了す
る。
(Heat Storage Process) A.nH 2 O (solid) + Q1 (heat) on the reactor (1) side → A. (N−a) H 2 O (solid) + aH 2 O (gas) (1) Condenser (6) Side aH 2 O (gas) → aH 2 O (liquid) + Q2 (heat) (2) In FIG. 1, A · nH 2 O (solid) which is a heat storage medium filled in the reactor (1) Solid inorganic hydrate represented by (2)
Is heated to T E1 ° C by flowing a heat source fluid (4) having a temperature T S1 through a heat exchange section (3) provided in the reactor (1). At this time, the heat storage medium A · nH 2 O (solid) exhibits the equilibrium steam pressure P E1 of T E1 ° C shown in FIG. On the other hand, this pressure P E1 is T C1
Equivalent to saturated water vapor pressure of water in ° C, reactor (1) and condenser
Open the valve (5) provided in the pipe (12) connecting (6), and in the heat exchange part (7) on the condenser (6) side, T W1 ℃ lower than T C1
When the cooling water of (2) is flowed, the water vapor is cooled, condensed and condensed by the reaction of Eq. (2), so the water vapor on the right side of the reaction equation of (1) decreases and the reaction of Eq. (1) proceeds to the right. Become. Reactor
The heat storage process ends if the valve (5) is closed while a mole of water vapor is dehydrated from A.nH 2 O (solid) in (1).

【0004】なお、ここで述べた蓄熱過程はケミカルヒ
ートポンプの場合、再生過程に相当する。
The heat storage process described here corresponds to a regeneration process in the case of a chemical heat pump.

【0005】 (放熱過程) 蒸発器(6) 側 aH2 O(液)+Q2(熱)→aH2 O(気) (3) 反応器(1) 側 A・(n−a)H2 O(固)+aH2 O(気)→ A・nH2 O(固)+Q1(熱) (4) 蓄熱された熱を放熱する場合は、蓄熱時に分離された凝
縮器(6) 内の水を別に設けられた蒸発器に移動するか、
もしくは凝縮器(6) をそのまま蒸発器として使用して、
蒸発器(6) の熱交換部(7) にTW2℃の補助熱源流体(通
常は水)(8) を流すと、(3) 式の反応によりTC2℃の飽
和水蒸気圧に相当するPE2の水蒸気を発生する。バルブ
(5) を開けて反応器(1) 内にこの水蒸気を導入すると
(1) 式の逆反応、すなわち(4) 式の反応が起こり、元の
無機水和物A・nH2 O(固)が生成すると共に水和反
応熱Q1が発生するので、この熱Q1を熱交換部(3) を
介して熱回収流体(4) によってTS2℃の温度の熱を回収
する。この時の蓄熱媒体の温度は、PE2に相当する平衡
温度TE2まで上昇する。
(Heat dissipation process) Evaporator (6) side aH 2 O (liquid) + Q 2 (heat) → aH 2 O (gas) (3) Reactor (1) side A · (na) H 2 O ( Solid) + aH 2 O (air) → A ・ nH 2 O (solid) + Q1 (heat) (4) When dissipating the stored heat, separate water in the condenser (6) separated during heat storage is provided. To the designated evaporator,
Or use the condenser (6) as it is as an evaporator,
When the auxiliary heat source fluid (usually water) of T W2 ℃ (8) is flown into the heat exchange section (7) of the evaporator (6), the reaction of equation (3) causes the P P equivalent to the saturated vapor pressure of T C2 ℃. Generates E2 water vapor. valve
Open (5) and introduce this steam into the reactor (1)
Since the reverse reaction of the equation (1), that is, the reaction of the equation (4) occurs, the original inorganic hydrate A · nH 2 O (solid) is generated and the hydration reaction heat Q1 is generated. Heat having a temperature of T S2 ° C is recovered by the heat recovery fluid (4) through the heat exchange section (3). At this time, the temperature of the heat storage medium rises to the equilibrium temperature T E2 corresponding to P E2 .

【0006】以上が無機水和物を利用する蓄熱システム
の原理であり、補助熱源流体としてやや高温の温度の熱
を用いて蓄熱時の熱源温度よりも高い温度を回収する場
合は昇温型ケミカルヒートポンプとなる。
The above is the principle of the heat storage system using the inorganic hydrate, and when recovering a temperature higher than the heat source temperature at the time of heat storage by using heat of a slightly high temperature as the auxiliary heat source fluid, a temperature rising type chemical is used. It becomes a heat pump.

【0007】図2に示した水の飽和水蒸気圧曲線と無機
水和物の飽和水蒸気圧曲線の間の隔たりを温度差で表わ
したもの(例えばTE1−TC1、TE2−TC2)を一般に昇
温幅と呼んでいるが、昇温幅は当然のことながら無機水
和物の種類によって異なり、それぞれに固有の値とな
る。
The difference between the saturated water vapor pressure curve of water and the saturated water vapor pressure curve of inorganic hydrate shown in FIG. 2 is represented by a temperature difference (for example, T E1 -T C1 , T E2 -T C2 ). Generally, it is called a temperature rise range, but the temperature rise range naturally depends on the type of the inorganic hydrate and has a unique value.

【0008】この蓄熱システムでは昇温幅が大きい程蓄
熱できる温度は高温となるが、逆に高温熱源がなければ
蓄熱あるいは無機化合物を再生できないことになる。例
えば、(1) 式のA・nH2 OがCaBr2 ・2H2 Oで
あり、A・(n−a)H2 OがCaBr2 ・H2 Oであ
る場合、CaBr2 ・2H2 OのTE1とTC1は、概略 TE1=1.24×TC1+87 (5) の関係がある。従って、昇温幅ΔTは、 ΔT=TE1−TC1=0.24×TC1+87 (6) となる。この蓄熱方法を実用する場合、通常は冷却水に
クーリングタワー循環水を用いることが多く、夏場には
C1が40℃程度になる。従って、(5) 式からTE1は1
37℃となり、伝熱温度差を仮に10℃とすると147
℃以上の温度の熱源でないと原理的に蓄熱できないこと
になる。
In this heat storage system, the larger the temperature rise, the higher the temperature at which heat can be stored, but conversely, heat cannot be stored or the inorganic compound cannot be regenerated without a high-temperature heat source. For example, when A · nH 2 O in the formula (1) is CaBr 2 · 2H 2 O and A · (na) H 2 O is CaBr 2 · H 2 O, CaBr 2 · 2H 2 O T E1 and T C1 have a relation of approximately T E1 = 1.24 × T C1 +87 (5). Therefore, the temperature rise width ΔT is ΔT = T E1 −T C1 = 0.24 × T C1 +87 (6). When this heat storage method is put into practical use, normally cooling tower circulating water is often used as cooling water, and T C1 is about 40 ° C. in the summer. Therefore, from equation (5), T E1 is 1
37 ° C, and if the heat transfer temperature difference is 10 ° C, 147
In principle, heat cannot be stored unless the heat source has a temperature of ℃ or more.

【0009】[0009]

【発明が解決しようとする課題】このように脱水水蒸気
の凝縮温度が決まれば、蓄熱あるいは再生用熱源として
の必要な温度が決まってしまうので、これより低温の熱
源による蓄熱反応あるいはケミカルヒートポンプの構成
はできなかった。
If the condensation temperature of the dehydrated water vapor is determined in this manner, the temperature required as a heat source for heat storage or regeneration will be determined, and therefore the heat storage reaction by a heat source at a temperature lower than this or the construction of a chemical heat pump. I couldn't.

【0010】また、このように熱源温度が高いことによ
り、蓄熱反応装置の材料についても問題がある。すなわ
ち、軽量のアルミニウムは耐食限界温度150℃であ
り、例えば前述のCaBr2 ・2H2 Oを蓄熱媒体とし
て利用する場合はその腐蝕性のために、従来は装置材料
としてアルミニウムを使用することができず、ステンレ
スを使用していた。このため、装置の軽量化が望まれて
いた。
Further, since the heat source temperature is high as described above, there is a problem in the material of the heat storage reaction device. That is, lightweight aluminum has a corrosion resistance limit temperature of 150 ° C. For example, when CaBr 2 · 2H 2 O is used as a heat storage medium, aluminum is conventionally used as a device material because of its corrosive property. Instead, stainless steel was used. Therefore, it has been desired to reduce the weight of the device.

【0011】本発明はこのような蓄熱方法の欠点を改良
し、より低温の熱源でも蓄熱可能な方法を提供しようと
することを目的とする。
An object of the present invention is to improve the drawbacks of such a heat storage method and to provide a method capable of storing heat even at a lower temperature heat source.

【0012】本発明者らは、鋭意研究した結果、上記目
的を達成する手段を見出だした。
As a result of earnest research, the present inventors have found means for achieving the above object.

【0013】[0013]

【課題を解決するための手段】すなわち、本発明は、固
体無機化合物を蓄熱媒体として用い、水和状態の蓄熱媒
体を脱水反応に付すことによって蓄熱を行なわせ、一部
ないし全部脱水した蓄熱媒体を水蒸気との水和反応に付
すことによって放熱を行わせる蓄熱システムの蓄熱過程
において、蓄熱媒体を減圧下で加熱し脱水再生する蓄熱
反応器(1) と、脱水反応によって発生した水蒸気を冷却
し凝縮させて復水する凝縮器(6) の間にメカニカルブー
スター(9) を設けることにより、脱水再生温度を下げる
と共に凝縮温度を上昇させることを特徴とする蓄熱方法
である。
Means for Solving the Problems That is, the present invention uses a solid inorganic compound as a heat storage medium, and the heat storage medium in a hydrated state is subjected to a dehydration reaction to perform heat storage, and a part or all of the heat storage medium is dehydrated. In the heat storage process of the heat storage system that radiates heat by subjecting water to hydration reaction with water vapor, the heat storage reactor (1) that heats the heat storage medium under reduced pressure to regenerate dehydration and cools the steam generated by the dehydration reaction. The heat storage method is characterized in that a mechanical booster (9) is provided between the condensers (6) that condense and condense water to lower the dehydration regeneration temperature and raise the condensation temperature.

【0014】本発明において、メカニカルブースター
(9) とは、蒸気圧縮機(9) である。
In the present invention, a mechanical booster
(9) is the vapor compressor (9).

【0015】以下の実施例により、本発明をより具体的
に説明するが、これによって本発明が限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention.

【0016】[0016]

【実施例】図3は本発明の蓄熱方法の装置図であり、図
4は本発明の蓄熱方法における水と無機水和物の飽和水
蒸気圧曲線を示すグラフである。
EXAMPLE FIG. 3 is an apparatus diagram of the heat storage method of the present invention, and FIG. 4 is a graph showing a saturated vapor pressure curve of water and an inorganic hydrate in the heat storage method of the present invention.

【0017】図3において、蓄熱反応器(1) と凝縮器
(6) を結ぶ管路(12)からバルブ(10)(11)を介してメカニ
カルブースターと呼ばれる蒸気圧縮器(9) が設けられて
いる。このメカニカルブースター(9) は水蒸気吸引圧力
よりもΔP(mmHg)だけ圧縮する能力をもつものと
する。図中の他の構成は、図1と同様である。
In FIG. 3, the heat storage reactor (1) and the condenser
A vapor compressor (9) called a mechanical booster is installed from a pipe (12) connecting (6) through valves (10) and (11). This mechanical booster (9) has the ability to compress by ΔP (mmHg) than the water vapor suction pressure. Other configurations in the figure are similar to those in FIG.

【0018】(蓄熱過程)凝縮器(6) 側には図1におい
て述べたと同じTW1℃の冷却水を流し、メカニカルブー
スター(9) を運転しながらバルブ(10)と(11)を開ける。
反応器(1) 側には温度TS1' ℃の熱源流体を流す。TC1
℃で水蒸気が凝縮されるとすると、凝縮器(6) 内の圧力
はPC1を示し、(図1の例では反応器側の圧力PE1と等
しかったのであるが、)メカニカルブースター(9) を運
転すると、図4のように反応器(1)側の圧力PE1' は、 PE1' =(PC1−ΔP)(mmHg) となる。従って、反応器側の蓄熱媒体はPE1' に相当す
る平衡温度TE1' ℃で脱水反応が生ずることになる。す
なわち、(TE1−TE1' )=ΔTD 分だけ脱水反応温度
が低下する。
(Heat Storage Process) On the side of the condenser (6), the same cooling water of T W1 ° C. as described in FIG. 1 is flown, and the valves (10) and (11) are opened while operating the mechanical booster (9).
On the reactor (1) side, a heat source fluid having a temperature T S1 ' ° C is flown. T C1
Assuming that water vapor is condensed at ℃, the pressure in the condenser (6) shows P C1 , which is the same as the pressure P E1 on the reactor side in the example of FIG. 1, but the mechanical booster (9) 4, the pressure P E1 ′ on the reactor (1) side becomes P E1 ′ = (P C1 −ΔP) (mmHg) as shown in FIG. Therefore, the heat storage medium on the reactor side causes a dehydration reaction at an equilibrium temperature T E1 ′ ° C. corresponding to P E1 ′ . That is, the dehydration reaction temperature is lowered by (TE1-T E1 ' ) = ΔT D.

【0019】それゆえ、反応器に流す熱源流体の温度T
S1' ℃はTE1' ℃よりもやや高い温度であればよいこと
になり、メカニカルブースター(9) が設けられていない
図1に述べた場合の熱源温度TS1℃よりも低温で蓄熱が
可能となる。
Therefore, the temperature T of the heat source fluid flowing in the reactor is
S1 ' ℃ needs to be a temperature slightly higher than T E1' ℃, and heat can be stored at a temperature lower than the heat source temperature T S1 ℃ in the case shown in Fig. 1 where the mechanical booster (9) is not provided. Becomes

【0020】例えば、TC1=40℃とすると、PC1=5
5.3(mmHg)となるが、ΔP=17(mmHg)
のメカニカルブースター(9) を介在させると吸引側(反
応器(1) 側)の圧力PE1'は、 PE1' =55.3−17=38.3(mmHg) となり、TC1=33.3(℃)で凝縮させるのと同じこ
とになる。従って、 TE1' =1.24×33.3+87=121.5(℃) であり、図1に述べた場合と同様に伝熱温度差を10℃
とすると蓄熱用熱源流体の必要温度は132℃となり、
メカニカルブースター(9) を介在させない場合に比べて
15℃低下させることができる。
For example, assuming that T C1 = 40 ° C., P C1 = 5
It becomes 5.3 (mmHg), but ΔP = 17 (mmHg)
When the mechanical booster (9) of No. 1 is interposed, the pressure P E1 ' on the suction side (reactor (1) side) becomes P E1' = 55.3-17 = 38.3 (mmHg), and T C1 = 33. This is the same as condensing at 3 (° C). Therefore, T E1 ′ = 1.24 × 33.3 + 87 = 121.5 (° C.), and the heat transfer temperature difference is 10 ° C. as in the case described in FIG.
Then, the required temperature of the heat source fluid for heat storage is 132 ° C,
The temperature can be lowered by 15 ° C compared to the case where no mechanical booster (9) is interposed.

【0021】(放熱過程)バルブ(11)と(10)を閉とし、
バルブ(5) を開として図1において述べたと同じ方法で
放熱する。
(Heat dissipation process) The valves (11) and (10) are closed,
The valve (5) is opened to radiate heat in the same way as described in FIG.

【0022】[0022]

【発明の効果】本発明の方法によると、メカニカルブー
スターが設けられているので、低温熱源でも蓄熱が可能
となる。その結果、蓄熱過程の熱源温度の自由度が増
し、各熱源温度に対応して蓄熱反応あるいはケミカルヒ
ートポンプの設計を行うことが可能になる。
According to the method of the present invention, since a mechanical booster is provided, heat can be stored even in a low temperature heat source. As a result, the degree of freedom of the heat source temperature in the heat storage process is increased, and the heat storage reaction or the chemical heat pump can be designed corresponding to each heat source temperature.

【0023】また、本発明の方法により低温熱源でも蓄
熱が可能となるので、蓄熱反応装置の材料としてアルミ
ニウムを使用することができ、装置軽量化が可能とな
る。
Further, since the method of the present invention can store heat even at a low temperature heat source, aluminum can be used as a material for the heat storage reaction device, and the weight of the device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の蓄熱方法の装置図である。FIG. 1 is a device diagram of a conventional heat storage method.

【図2】従来の蓄熱方法の操作線図を表わすグラフであ
る。
FIG. 2 is a graph showing an operation diagram of a conventional heat storage method.

【図3】本発明の蓄熱方法の装置図である。FIG. 3 is a device diagram of a heat storage method of the present invention.

【図4】本発明の蓄熱方法の操作線図を表わすグラフで
ある。
FIG. 4 is a graph showing an operation diagram of the heat storage method of the present invention.

【符号の説明】 (1) …反応器 (2) …固体無機水和物 (3) …熱交換部 (4) …熱源流体 (5) …バルブ (6) …凝縮器 (7) …熱交換部 (8) …補助熱源流体 (9) …メカニカルブースター (10)(11)…バルブ (12)…管路[Description of symbols] (1)… Reactor (2)… Solid inorganic hydrate (3)… Heat exchange section (4)… Heat source fluid (5)… Valve (6)… Condenser (7)… Heat exchange Part (8)… Auxiliary heat source fluid (9)… Mechanical booster (10) (11)… Valve (12)… Pipeline

───────────────────────────────────────────────────── フロントページの続き (72)発明者 保田 賢士 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 脇山 良規 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 安田 俊彦 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 川村 義秀 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Yasuda 5-328 Nishi Kujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. (72) Yoshinori Wakiyama 5-3-28 Nishijojo, Konohana-ku, Osaka Within Hitachi Shipbuilding Co., Ltd. (72) Toshihiko Yasuda, 5-3-28 Nishikujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. (72) Yoshihide Kawamura, 5-3-28 Nishikujo, Konohana-ku, Osaka Hitachi Shipbuilding Co., Ltd. Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体無機化合物を蓄熱媒体として用い、
水和状態の蓄熱媒体を脱水反応に付すことによって蓄熱
を行なわせ、一部ないし全部脱水した蓄熱媒体を水蒸気
との水和反応に付すことによって放熱を行わせる蓄熱シ
ステムの蓄熱過程において、蓄熱媒体を減圧下で加熱し
脱水再生する蓄熱反応器(1) と、脱水反応によって発生
した水蒸気を冷却し凝縮させて復水する凝縮器(6) の間
にメカニカルブースター(9) を設けることにより、脱水
再生温度を下げると共に凝縮温度を上昇させることを特
徴とする蓄熱方法。
1. A solid inorganic compound is used as a heat storage medium,
In the heat storage process of the heat storage system, the hydrated heat storage medium is subjected to a dehydration reaction to store heat, and the partially or completely dehydrated heat storage medium is subjected to a hydration reaction with steam to release heat. By installing a mechanical booster (9) between the heat storage reactor (1) that heats and recycles water under reduced pressure and the condenser (6) that cools and condenses the steam generated by the dehydration reaction to condense water, A heat storage method characterized by lowering the dehydration regeneration temperature and raising the condensation temperature.
JP3231926A 1991-09-11 1991-09-11 Heat accumulation method Pending JPH0571887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3231926A JPH0571887A (en) 1991-09-11 1991-09-11 Heat accumulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3231926A JPH0571887A (en) 1991-09-11 1991-09-11 Heat accumulation method

Publications (1)

Publication Number Publication Date
JPH0571887A true JPH0571887A (en) 1993-03-23

Family

ID=16931231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3231926A Pending JPH0571887A (en) 1991-09-11 1991-09-11 Heat accumulation method

Country Status (1)

Country Link
JP (1) JPH0571887A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978696A1 (en) * 1998-08-03 2000-02-09 SASKIA Solar- und Energietechnik GmbH Heating or refrigerating machine with evaporable heat transfer fluid
JP2004333039A (en) * 2003-05-08 2004-11-25 Chubu Electric Power Co Inc Operating method of absorption refrigerating machine
WO2009069701A1 (en) * 2007-11-30 2009-06-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermal exchange type heat use device and method for manufacturing the same
WO2012108288A1 (en) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
JP2014044000A (en) * 2012-08-27 2014-03-13 Toyota Central R&D Labs Inc Heat exchange type reactor and adsorption type heat pump
US8915115B2 (en) 2010-07-09 2014-12-23 Oval Corporation Piston prover
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086301A (en) * 1983-10-17 1985-05-15 日立造船株式会社 Method of generating steam
JPS61186791A (en) * 1985-02-15 1986-08-20 Mitsubishi Electric Corp Heat storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086301A (en) * 1983-10-17 1985-05-15 日立造船株式会社 Method of generating steam
JPS61186791A (en) * 1985-02-15 1986-08-20 Mitsubishi Electric Corp Heat storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978696A1 (en) * 1998-08-03 2000-02-09 SASKIA Solar- und Energietechnik GmbH Heating or refrigerating machine with evaporable heat transfer fluid
JP2004333039A (en) * 2003-05-08 2004-11-25 Chubu Electric Power Co Inc Operating method of absorption refrigerating machine
WO2009069701A1 (en) * 2007-11-30 2009-06-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermal exchange type heat use device and method for manufacturing the same
JP2009133588A (en) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc Heat exchange type heat utilization device and its manufacturing method
US20100252248A1 (en) * 2007-11-30 2010-10-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
US9074827B2 (en) 2007-11-30 2015-07-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat exchanger heat-utilization device and method of manufacturing the same
US9120959B2 (en) 2010-03-25 2015-09-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Chemical thermal energy storage material structure, method of producing the same, and chemical heat accumulator
US8915115B2 (en) 2010-07-09 2014-12-23 Oval Corporation Piston prover
WO2012108288A1 (en) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 Heat storage device
JP2014044000A (en) * 2012-08-27 2014-03-13 Toyota Central R&D Labs Inc Heat exchange type reactor and adsorption type heat pump

Similar Documents

Publication Publication Date Title
US4754805A (en) Method for transforming the temperature of heat and heat transformer
JP2959141B2 (en) Absorption refrigeration equipment
JPH0571887A (en) Heat accumulation method
JPH0352627A (en) Membrane distillation apparatus
JPH0332709B2 (en)
JP2766027B2 (en) heat pump
JP6307279B2 (en) Carbon dioxide gas recovery device and recovery method
JPH06272989A (en) Refrigerator
US4377073A (en) Methods for converting heat into mechanical energy and/or useful heat
JP2005172380A (en) Adsorption-type heat pump
JPS58219371A (en) Double effect absorption type heat pump
JP3466018B2 (en) Liquid phase separation type absorption refrigeration system
JPH07198222A (en) Heat pump including reverse rectifying part
JP5123666B2 (en) Generation of cryogenic cooling in thermochemical equipment.
JPS6124943A (en) Temperature difference solar heat collector
JPS58175767A (en) Absorption type heat pump device
JPS61138059A (en) Heat pump for high temperature
JPH05288485A (en) Waste heat temperature increasing and recovering device
JPS629839B2 (en)
JPS59225266A (en) Multiple effect multistage absorption heat pump
JPS6136137Y2 (en)
JPS58156392A (en) Desalinator using waste heat of engine
JPS60103266A (en) Two step absorption type heat pump device
JPS5847973A (en) Absorption type refrigerator
JPS63226501A (en) Engine exhaust-heat recovery type steam generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961022