JP2004333039A - Operating method of absorption refrigerating machine - Google Patents

Operating method of absorption refrigerating machine Download PDF

Info

Publication number
JP2004333039A
JP2004333039A JP2003130812A JP2003130812A JP2004333039A JP 2004333039 A JP2004333039 A JP 2004333039A JP 2003130812 A JP2003130812 A JP 2003130812A JP 2003130812 A JP2003130812 A JP 2003130812A JP 2004333039 A JP2004333039 A JP 2004333039A
Authority
JP
Japan
Prior art keywords
valves
condenser
reaction
cooling water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130812A
Other languages
Japanese (ja)
Other versions
JP4565539B2 (en
Inventor
Michito Kanamori
道人 金森
Masayoshi Hiramatsu
正義 平松
Fujio Komatsu
富士夫 小松
Hiroyuki Suzuki
啓之 鈴木
Shinya Ishizuka
伸哉 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Chubu Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Chubu Electric Power Co Inc
Priority to JP2003130812A priority Critical patent/JP4565539B2/en
Publication of JP2004333039A publication Critical patent/JP2004333039A/en
Application granted granted Critical
Publication of JP4565539B2 publication Critical patent/JP4565539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently switch a regenerating process and an absorbing process without giving a bad influence on a gas transporting means (MBP) mounted between a condenser and a reactor in an absorption refrigerating machine. <P>SOLUTION: A MBP (mechanical booster pump) 21 for transporting the refrigerant vapor to the condenser is mounted between first and second valves 17a, 17b and the condenser 15. When the regenerating process and the absorbing process are switched between the first and second reaction parts 11a, 11b, the first and second reaction parts are communicated with the condenser once, after the regenerating process and the absorbing process are terminated, then the fluid flowing in the first and second reaction parts is alternately switched from the hot waste water to the cooling water, and then the regenerating process and the absorbing process are switched between the first and second reaction parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学反応を利用して、高温熱源から熱を吸収し、低温の熱を生成するか又は低温熱源から熱を吸収し高温の熱を発生させる吸着冷凍機の運転方法に関するものである。
【0002】
【従来の技術】
まず、図4を参照して、従来の吸着冷凍機について説明すると、図示の吸着冷凍機は、反応器11を有しており、この反応器11は第1及び第2の反応部11a及び11bを備え、各反応部11a及び11bには吸着剤(例えば、シリカゲル)12が充填されている。第1及び第2の反応部11a及び11bにはそれぞれ吸着剤12を加熱・冷却する第1及び第2の熱交換器13及び14が備えられている。
【0003】
そして、反応器11には凝縮器15及び蒸発器16が連結されている。つまり、凝縮器15はそれぞれ弁17a及び17bを介して第1及び第2の反応部11a及び11bに接続され、蒸発器16はそれぞれ弁18a及び18bを介して第1及び第2の反応部11a及び11bに接続されている。
【0004】
ここで、図5を参照すると、図5は、吸着冷凍機の作動原理を示す図であり、説明の便宜上、反応器11には一つの反応部のみを示している(つまり、反応器11は第1の反応部11aのみを有する状態を示している)。
【0005】
図5(a)に示すように、再生工程においては、第1の熱交換器13に、例えば、温排水が流され、これによって、吸着剤12から脱着(脱気)が行われる。凝縮器15には熱交換器15aが備えられ、この熱交換器15aには冷却水が流されて、反応器14からの脱気によって輸送される冷媒蒸気(水蒸気)が凝縮器15(つまり、熱交換器15a)によって凝縮・液化して凝縮器15内に冷媒液(水)として溜まる。
【0006】
このようにして、温排水の熱駆動によって反応器11において脱気を行うにつれて、吸着剤12中の冷媒液が冷媒蒸気として凝縮器15に輸送されて、吸着剤12は乾燥することになる。この際、凝縮器15を流れる冷却水は冷媒蒸気から熱を吸収して温められることになる。
【0007】
一方、吸着工程においては、図5(b)に示すように、第1の熱交換器13に、例えば、冷却水が流される。蒸発器16には熱交換器16aが備えられるとともにポンプ16bが備えられ、熱交換器16aには冷水が流される。ポンプ16bによって蒸発器16に溜まった冷媒液が、蒸発器16の上部から熱交換器16aにシャワー状に降り注がれて、熱交換器16aによって、冷媒液(水)が蒸発して、冷媒蒸気となって反応器11に輸送される。
【0008】
この際、つまり、蒸発の際、熱交換器16aを流れる冷水は冷やされることになる。そして、蒸発器16から輸送された冷媒蒸気は吸着剤12に吸着される。そして、水分の吸収に伴って、吸着剤12が発熱するため、第1の熱交換器13を流れる冷却水によって吸着熱が除去される(冷やされる)。
【0009】
再び、図4を参照して、図示の吸着冷凍機では、第1及び第2の反応部11a及び11bで交互に前述の再生工程及び吸着工程が行われる。つまり、第1の反応部11aが再生工程にある際には、第2の反応部11bは吸着工程にあり、第1の反応部11aが吸着工程にある際には、第2の反応部11bは再生工程にある。
【0010】
いま、第1の反応部11aが再生工程にあり、第2の反応部11bが吸着工程にあるものとする。この際には、弁17a及び17bはそれぞれ開状態及び閉状態とされ、弁18a及び18bはそれぞれ閉状態及び開状態とされる。つまり、凝縮器15は第1の反応部11aと連通し、蒸発器16は第2の反応部11bと連通した状態となって、図5(a)及び(b)で説明したように、第1及び第2の反応部11a及び11bでそれぞれ再生工程及び吸着工程が行われることになる。
【0011】
そして、第1及び第2の反応部11a及び11bをそれぞれ吸着工程及び再生工程に移行させる前に、第1の反応部11aの吸着剤12を冷し、第2の反応部11bの吸着剤12を温めるために、熱回収工程が行われる。この熱回収工程においては、図6に示すように、第1及び第2の熱交換器13及び14が連結されて、第1及び第2の熱交換器13及び14間で冷水が循環されて熱回収が行われる。
【0012】
熱回収工程が終了すると、弁17a及び17bがそれぞれ閉状態及び開状態とされるとともに、弁18a及び18bはそれぞれ開状態及び閉状態とされる。つまり、凝縮器15は第2の反応部11bと連通し、蒸発器16は第1の反応部11aと連通した状態となって、図5(a)及び(b)で説明したように、第1及び第2の反応部11a及び11bでそれぞれ吸着工程及び再生工程が行われることになる。
【0013】
その後、再び前述の熱回収工程が行われた後、前述のようにして、第1及び第2の反応部11a及び11bでそれぞれ再生工程及び吸着工程が行われ、以後この動作が繰り返される。
【0014】
一方、上述のような吸着冷凍機において、反応器と凝縮器とを連結する配管に吸引ポンプを配置して、反応器で吐き出された冷媒蒸気を吸引ポンプによって吸引して、加速した状態で凝縮器に送り込むようにして、より多くの冷媒蒸気を反応器から吐き出させ、これによって、熱効率を向上させるようにしたものがある(特許文献1参照)。
【0015】
【特許文献1】
特開平11−37596号公報(段落(0041)〜(0066)、第1図)
【0016】
【発明が解決しようとする課題】
ところで、第1及び第2の反応部において再生工程と吸着工程とを切り換える際、凝縮器と第1及び第2の反応部との間に配置された弁(バルブ)を一旦わずかの時間(数秒程度)二つとも全閉する必要がある。ところが、これらのバルブを全閉すると、吸入ポンプの吸入側に配置されたバルブが閉じられることになって、吸入圧力が急激に低下してしまい、吐出圧力と吸入圧力との差圧が極めて大きくなってしまう。
【0017】
この結果、例えば、図7に示すように、吸入ポンプの動力(kW)が、周期的に2〜2.5倍程度まで跳ね上がってしまい、吸入ポンプに大きな負荷が掛かり、吸入ポンプに悪影響を与えてしまうことになる。さらに、熱回収運転においては、1分程冷水供給が行われず、冷水供給を行わないにもかかわらず、吸入ポンプが運転される結果、動力が無駄となってしまう。
【0018】
本発明の目的は、凝縮器と反応器との間に配置される吸入ポンプ等の気体輸送手段に悪影響を与えることなく、効率的に再生工程及び吸着工程の切り換えを行うことのできる吸着冷凍機の運転方法を提供することにある。
【0019】
【課題を解決するための手段】
本発明によれば、吸着剤が充填された第1及び第2の反応部と、該第1及び該第2の反応部にそれぞれ第1及び第2のバルブを介して連結された凝縮器と、前記第1及び前記第2の反応部にそれぞれ第3及び第4のバルブを介して連結された蒸発器と、前記第1及び前記第2のバルブと前記凝縮器との間に配置され冷媒蒸気を前記凝縮器に輸送する輸送手段とを有し、前記第1及び前記第2の反応部にはそれぞれ第1及び第2の熱交換器が配置されて、前記第1〜第4のバルブを開閉制御して前記第1及び前記第2の反応部で選択的に前記吸着剤から冷媒の脱着を行う再生工程を行うとともに前記吸着剤に前記冷媒の吸着を行う吸着工程を行い、前記第1及び前記第2の反応部で交互に前記再生工程及び前記吸着工程を行うようにした吸着冷凍機の運転方法において、前記第1の熱交換器に流体として冷却水を流すとともに前記第2の熱交換器に流体として温水を流す第1のステップと、前記第2及び前記第3のバルブを開状態とし、前記第1及び前記第4のバルブを閉状態として、前記凝縮器及び前記蒸発器をそれぞれ前記第2及び前記第1の反応部と連通して前記第1及び前記第2の反応部でそれぞれ吸着工程及び再生工程を行う第2のステップと、前記第1及び前記第2の反応部でそれぞれ前記吸着工程及び前記再生工程が終了すると、温水冷却水切り換え制御を行って該温水冷却水切り換え制御が完了するまで前記第1及び前記第2のバルブを開状態とするとともに前記第3及び前記第4のバルブを閉状態として前記第1及び前記第2の反応部を前記凝縮器に連通させる第3のステップと、前記温水冷却水切り換え制御の完了によって、前記第1の熱交換器に流体として温水を流し、前記第2の熱交換器に流体として冷却水を流す第4のステップと、前記第1及び前記第4のバルブを開状態とし、前記第2及び前記第3のバルブを閉状態として、前記凝縮器及び前記蒸発器をそれぞれ前記第1及び前記第2の反応部と連通して前記第1及び前記第2の反応部でそれぞれ再生工程及び吸着工程を行う第5のステップとを有することを特徴とする吸着冷凍機の運転方法。
が得られる。
【0020】
そして、第1及び第2の反応部がそれぞれ吸着工程及び再生工程にある際、上述のような運転制御を行って、第1及び第2の反応部をそれぞれ再生工程及び吸着工程に移行させれば、輸送手段における吸入側圧力と吐出側圧力との差圧が大きくなることがなく、熱回収を行う際、輸送手段が過酷な運転を強いられることがない。従って、輸送手段に悪影響を与えることなく、効率的に再生工程及び吸着工程を行うことができることになる。
【0021】
また、本発明では、前記第1及び前記第2の反応部でそれぞれ前記再生工程及び前記吸着工程が終了すると、前記温水冷却水切り換え制御を行って、該温水冷却水切り換え制御が完了するまで前記第1及び前記第2のバルブを開状態とするとともに前記第3及び前記第4のバルブを閉状態として前記第1及び前記第2の反応部を前記凝縮器に連通させる第6のステップを有し、前記第6のステップにおける温水冷却水切り換え制御の完了によって、前記第1のステップが行われることになる。
【0022】
そして、第1及び第2の反応部がそれぞれ再生工程及び吸着工程にある際、上述のような運転制御を行って、第1及び第2の反応部をそれぞれ吸着工程及び再生工程に移行させれば、輸送手段における吸入側圧力と吐出側圧力との差圧が大きくなることがなく、熱回収を行う際、輸送手段が過酷な運転を強いられることがない。従って、輸送手段に悪影響を与えることなく、効率的に再生工程及び吸着工程を行うことができることになる。
【0023】
【発明の実施の形態】
以下、本発明について図面を参照して説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その他相対的配置等は特に特定的な記載がないかぎり、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
【0024】
図1を参照して、図示の吸着冷凍機において、図4に示す吸着冷凍機と同一の構成要素については同一の参照番号を付し説明を省略する。図示の例では、弁17a及び17bと凝縮器15との間に気体輸送手段であるメカニカルブースターポンプ(MBP)21が配置されており、このMBP21によって、再生工程の際第1又は第2の反応部11a又は11bから冷媒蒸気が強制的に凝縮器15に輸送され、これによって、熱効率を向上させる。
【0025】
なお、弁17a,17b,18a,18bは図示しない制御装置によって開閉制御され、さらに、この制御装置は後述するようにして、第1及び第2の熱交換器13及び14に流す温排水及び冷却水の切換制御を行う(なお、弁17a、弁17b、弁18a、及び弁18bは、それぞれ第1のバルブ、第2のバルブ、第3のバルブ、及び第4のバルブである)。
【0026】
ここで、図2も参照して、まず、第1の熱交換器13に冷却水が流され、第2の熱交換器14に温排水が流される(ステップS1)。その後、制御装置は、弁17b及び18aを開状態とし、弁17a及び18bを閉状態とする(ステップS2)。つまり、凝縮器15は第2の反応部11bと連通し、蒸発器16は第1の反応部11aと連通した状態となって、第1及び第2の反応部11a及び11bでそれぞれ吸着工程及び再生工程が行われることになる。なお、以下の運転制御においてMBP21は常時運転されている(制御装置の制御下で常時運転されている)。
【0027】
第1の反応部11aにおける吸着工程及び第2の反応部11bにおける再生工程が終了すると(ステップS3)、制御装置では、温排水・冷却水の切り換え制御を行う(ステップS4)。そして、温排水・冷却水の切り換え制御が完了しないと(つまり、温排水・冷却水の切り換え制御が完了するまで)、制御装置は、弁17bを開状態とするとともに、弁18bを閉状態とする。つまり、弁17a及び17bが開状態となり、弁18a及び弁18bが閉状態となる(ステップS5)。この結果、凝縮器15は第1及び第2の反応部11a及び11bと連通した状態となる。そして、温排水・冷却水の切り換え制御が完了すると、制御装置では、第1の熱交換器13に冷却水に代えて温排水を流し、第2の熱交換器14に温排水に代えて冷却水を流す(ステップS6)。
【0028】
その後、制御装置は、弁17bを閉状態とし、弁18bを開状態とする。つまり、弁17a及び18bが開状態となり、弁17b及び18aが閉状態となる(ステップS7)。この結果、凝縮器15は第1の反応部11aと連通し、蒸発器16は第2の反応部11bと連通した状態となって、第1及び第2の反応部11a及び11bでそれぞれ再生工程及び吸着工程が行われることになる。
【0029】
第1の反応部11aにおける再生工程及び第2の反応部11bにおける吸着工程が終了すると(ステップS8)、制御装置では、温排水・冷却水の切り換え制御を行う(ステップS9)。そして、温排水・冷却水の切り換え制御が完了しないと(つまり、温排水・冷却水の切り換え制御が完了するまで)、制御装置は、弁17bを開状態とするとともに、弁18bを閉状態とする。つまり、弁17a及び17bが開状態となり、弁18a及び弁18bが閉状態となる(ステップS10)。この結果、凝縮器15は第1及び第2の反応部11a及び11bと連通した状態となる。そして、温排水・冷却水の切り換え制御が完了すると、制御装置はステップS1を行い、以降前述したようにステップが繰り返されることになる。
【0030】
上述のような制御を行うと、凝縮器15と反応器11との間に配置された弁17a及び17bのうち少なくとも一方が開いた状態であるから、MBP21の吸入側圧力と吐出側圧力との差圧が大きくなることがなく、図3に示すように、図7のように従来見られたMBP21の動力が大きくなることがほとんどなくなる。
【0031】
なお、前述のように、第1及び第2の反応部11a及び11bで再生工程と吸着工程とを切り換える前に、温排水と冷却水とを切り換えて第1及び第2の熱交換器13及び14に流すようにしているから、熱回収を行う際、MBP21を停止しなくてもよく(つまり、MBP21を発停しなくてもよく)、例えば、図3に見るように、MBP21が過酷な運転を強いられることがなくなる(つまり、MBP21は劣悪な環境下で運転されることがない)。
【0032】
このように、図1で説明した吸着冷凍機では、凝縮器と反応器との間に配置されるMBP等の気体輸送手段に悪影響を与えることなく、効率的に再生工程及び吸着工程を行うことができる。
【0033】
【発明の効果】
以上説明したように、本発明では、第1の熱交換器に流体として冷却水を流すとともに第2の熱交換器に流体として温水を流して、第2及び第3のバルブを開状態とし、第1の及び第4のバルブを閉状態として、凝縮器及び蒸発器をそれぞれ第2及び第1の反応部と連通して第1及び第2の反応部でそれぞれ吸着工程及び再生工程を行った後、温水冷却水切り換え制御の際、第1及び第2のバルブを開状態とするとともに第3及び第4のバルブを閉状態として、第1及び第2の反応部を凝縮器に連通させ、第1の熱交換器に流れる流体として温水を流し、第2の熱交換器に流れる流体として冷却水を流して、第1及び第4のバルブを開状態とし、第2及び第3のバルブを閉状態として、凝縮器及び蒸発器をそれぞれ第1及び第2の反応部と連通して第1及び第2の反応部でそれぞれ再生工程及び吸着工程を行うようにしたから、第1及び第2の反応部で交互に再生工程及び吸着工程を移行させる際、輸送手段(MBP)における吸入側圧力と吐出側圧力との差圧が大きくなることがなく、熱回収を行う際、輸送手段が過酷な運転を強いられることがない。この結果、輸送手段に悪影響を与えることなく、効率的に再生工程及び吸着工程の切り換えを行うことができるという効果がある。
【図面の簡単な説明】
【図1】本発明による吸着冷凍機の一例を示す図である。
【図2】図1に示す吸着冷凍機の制御の一例を説明するためのフローチャートである。
【図3】図1に示すMBPの動力変化を示す図である。
【図4】従来の吸着冷凍機の一例を示す図である。
【図5】吸着冷凍機における再生工程及び吸着工程を説明するための図であり、(a)は再生工程を示す図、(b)は吸着工程を示す図である。
【図6】図4に示す吸着冷凍機における熱回収工程を説明するための図である。
【図7】図4に示す吸着冷凍機に吸引ポンプを備えた際の吸引ポンプの動力変化を示す図である。
【符号の説明】
11 反応器
11a 第1の反応部
11b 第2の反応部
12 吸着剤
13 第1の熱交換器
14 第2の熱交換器
15 凝縮器
16 蒸発器
17a,17b,18a,18b 弁(バルブ)
21 メカニカルブースターポンプ(MBP)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for operating an adsorption refrigerator that absorbs heat from a high-temperature heat source to generate low-temperature heat or absorbs heat from a low-temperature heat source to generate high-temperature heat by using a chemical reaction. .
[0002]
[Prior art]
First, a conventional adsorption refrigerator will be described with reference to FIG. 4. The illustrated adsorption refrigerator has a reactor 11, and the reactor 11 includes first and second reaction units 11 a and 11 b. The reaction sections 11a and 11b are filled with an adsorbent (eg, silica gel) 12. The first and second reaction sections 11a and 11b are provided with first and second heat exchangers 13 and 14 for heating and cooling the adsorbent 12, respectively.
[0003]
The condenser 11 and the evaporator 16 are connected to the reactor 11. That is, the condenser 15 is connected to the first and second reaction units 11a and 11b via valves 17a and 17b, respectively, and the evaporator 16 is connected to the first and second reaction units 11a via valves 18a and 18b, respectively. And 11b.
[0004]
Here, referring to FIG. 5, FIG. 5 is a diagram showing the operation principle of the adsorption refrigerator, and for convenience of explanation, only one reaction unit is shown in the reactor 11 (that is, the reactor 11 is This shows a state having only the first reaction section 11a).
[0005]
As shown in FIG. 5A, in the regeneration step, for example, hot wastewater is caused to flow through the first heat exchanger 13, whereby desorption (degassing) from the adsorbent 12 is performed. The condenser 15 is provided with a heat exchanger 15a, in which cooling water is supplied, and refrigerant vapor (water vapor) transported by degassing from the reactor 14 is supplied to the condenser 15 (that is, The refrigerant is condensed and liquefied by the heat exchanger 15a) and accumulates as a refrigerant liquid (water) in the condenser 15.
[0006]
In this way, as the degassing is performed in the reactor 11 by the thermal drive of the hot waste water, the refrigerant liquid in the adsorbent 12 is transported to the condenser 15 as refrigerant vapor, and the adsorbent 12 is dried. At this time, the cooling water flowing through the condenser 15 is heated by absorbing heat from the refrigerant vapor.
[0007]
On the other hand, in the adsorption step, for example, cooling water is flowed through the first heat exchanger 13 as shown in FIG. The evaporator 16 is provided with a heat exchanger 16a and a pump 16b, and chilled water flows through the heat exchanger 16a. The refrigerant liquid accumulated in the evaporator 16 by the pump 16b is poured into the heat exchanger 16a from the upper part of the evaporator 16 in a shower shape, and the refrigerant liquid (water) evaporates by the heat exchanger 16a. The vapor is transported to the reactor 11.
[0008]
At this time, that is, at the time of evaporation, the cold water flowing through the heat exchanger 16a is cooled. Then, the refrigerant vapor transported from the evaporator 16 is adsorbed by the adsorbent 12. Then, since the adsorbent 12 generates heat with the absorption of water, the heat of adsorption is removed (cooled) by the cooling water flowing through the first heat exchanger 13.
[0009]
Referring again to FIG. 4, in the illustrated adsorption refrigerator, the aforementioned regeneration step and adsorption step are performed alternately in the first and second reaction units 11a and 11b. That is, when the first reaction section 11a is in the regeneration step, the second reaction section 11b is in the adsorption step, and when the first reaction section 11a is in the adsorption step, the second reaction section 11b is in the adsorption step. Is in the regeneration step.
[0010]
Now, it is assumed that the first reaction section 11a is in the regeneration step and the second reaction section 11b is in the adsorption step. At this time, the valves 17a and 17b are opened and closed, respectively, and the valves 18a and 18b are closed and opened, respectively. That is, the condenser 15 is in communication with the first reaction unit 11a, and the evaporator 16 is in communication with the second reaction unit 11b. As described with reference to FIGS. The regeneration step and the adsorption step are performed in the first and second reaction units 11a and 11b, respectively.
[0011]
Then, before the first and second reaction sections 11a and 11b are shifted to the adsorption step and the regeneration step, respectively, the adsorbent 12 of the first reaction section 11a is cooled, and the adsorbent 12 of the second reaction section 11b is cooled. A heat recovery step is performed to warm up the heat. In this heat recovery step, as shown in FIG. 6, the first and second heat exchangers 13 and 14 are connected, and cold water is circulated between the first and second heat exchangers 13 and 14. Heat recovery is performed.
[0012]
When the heat recovery process is completed, the valves 17a and 17b are closed and opened, respectively, and the valves 18a and 18b are opened and closed, respectively. That is, the condenser 15 is in communication with the second reaction section 11b, and the evaporator 16 is in communication with the first reaction section 11a. As described with reference to FIGS. The adsorption step and the regeneration step are performed in the first and second reaction units 11a and 11b, respectively.
[0013]
Thereafter, after the above-described heat recovery step is performed again, the regeneration step and the adsorption step are performed in the first and second reaction units 11a and 11b, respectively, as described above, and this operation is repeated thereafter.
[0014]
On the other hand, in the adsorption refrigerator as described above, a suction pump is arranged in a pipe connecting the reactor and the condenser, and the refrigerant vapor discharged in the reactor is sucked by the suction pump and condensed in an accelerated state. There is one in which more refrigerant vapor is discharged from a reactor by feeding the refrigerant into a reactor, thereby improving thermal efficiency (see Patent Document 1).
[0015]
[Patent Document 1]
JP-A-11-37596 (paragraphs (0041) to (0066), FIG. 1)
[0016]
[Problems to be solved by the invention]
By the way, when switching between the regeneration step and the adsorption step in the first and second reaction sections, a valve (valve) disposed between the condenser and the first and second reaction sections is temporarily set for a short time (several seconds). It is necessary to fully close both. However, when these valves are fully closed, the valves arranged on the suction side of the suction pump are closed, so that the suction pressure drops rapidly, and the pressure difference between the discharge pressure and the suction pressure becomes extremely large. turn into.
[0017]
As a result, for example, as shown in FIG. 7, the power (kW) of the suction pump periodically jumps up to about 2 to 2.5 times, and a large load is applied to the suction pump, which adversely affects the suction pump. Will be. Further, in the heat recovery operation, chilled water is not supplied for about one minute, and power is wasted as a result of operating the suction pump even though chilled water is not supplied.
[0018]
An object of the present invention is to provide an adsorption refrigerator capable of efficiently switching between a regeneration step and an adsorption step without adversely affecting gas transport means such as a suction pump disposed between a condenser and a reactor. To provide a driving method.
[0019]
[Means for Solving the Problems]
According to the present invention, a first and a second reaction section filled with an adsorbent, and a condenser connected to the first and the second reaction section via a first and a second valve, respectively. An evaporator connected to the first and second reaction units via third and fourth valves, respectively, and a refrigerant disposed between the first and second valves and the condenser. Transport means for transporting steam to the condenser, wherein first and second heat exchangers are disposed in the first and second reaction sections, respectively, and the first to fourth valves are provided. Performing a regenerating step of selectively desorbing the refrigerant from the adsorbent in the first and second reaction sections by controlling the opening and closing of the first and second reaction units, and performing an adsorption step of adsorbing the refrigerant to the adsorbent, Adsorption cooling in which the regeneration step and the adsorption step are performed alternately in the first and second reaction sections A first step of flowing cooling water as a fluid to the first heat exchanger and flowing hot water as a fluid to the second heat exchanger; and operating the second and third valves. The first and fourth valves are closed and the first and fourth valves are closed, and the condenser and the evaporator are communicated with the second and first reaction units, respectively, so that the first and second reactions are performed. A second step of performing an adsorption step and a regeneration step in each of the units, and when the adsorption step and the regeneration step are completed in the first and second reaction units, respectively, performs hot water cooling water switching control to perform the hot water cooling. Until the water switching control is completed, the first and second valves are opened, and the third and fourth valves are closed, and the first and second reaction units are connected to the condenser. No. to communicate And a fourth step of flowing hot water as a fluid to the first heat exchanger and flowing cooling water as a fluid to the second heat exchanger by completing the hot water / cooling water switching control. The first and fourth valves are opened, the second and third valves are closed, and the condenser and the evaporator communicate with the first and second reaction units, respectively, to And a fifth step of performing a regeneration step and an adsorption step in the first and second reaction sections, respectively.
Is obtained.
[0020]
When the first and second reaction units are in the adsorption step and the regeneration step, respectively, the above-described operation control is performed, and the first and second reaction units are shifted to the regeneration step and the adsorption step, respectively. For example, the pressure difference between the suction side pressure and the discharge side pressure in the transportation means does not increase, and the transportation means does not have to be subjected to severe operation when performing heat recovery. Therefore, the regeneration step and the adsorption step can be performed efficiently without adversely affecting the transportation means.
[0021]
Further, in the present invention, when the regeneration step and the adsorption step are completed in the first and second reaction sections, respectively, the hot water cooling water switching control is performed, and the hot water cooling water switching control is performed until the hot water cooling water switching control is completed. A sixth step of opening the first and second valves and closing the third and fourth valves to communicate the first and second reaction sections to the condenser; The completion of the hot water / cooling water switching control in the sixth step causes the first step to be performed.
[0022]
When the first and second reaction sections are in the regeneration step and the adsorption step, respectively, the above-described operation control is performed, and the first and second reaction sections are shifted to the adsorption step and the regeneration step, respectively. For example, the pressure difference between the suction side pressure and the discharge side pressure in the transportation means does not increase, and the transportation means does not have to be subjected to severe operation when performing heat recovery. Therefore, the regeneration step and the adsorption step can be performed efficiently without adversely affecting the transportation means.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. However, the dimensions, materials, shapes, and other relative arrangements of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just
[0024]
Referring to FIG. 1, in the illustrated adsorption refrigerator, the same components as those in the adsorption refrigerator illustrated in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. In the illustrated example, a mechanical booster pump (MBP) 21 serving as a gas transport means is disposed between the valves 17a and 17b and the condenser 15, and the MBP 21 allows the first or second reaction during the regeneration step. Refrigerant vapor is forcibly transported to the condenser 15 from the part 11a or 11b, thereby improving thermal efficiency.
[0025]
The valves 17a, 17b, 18a, and 18b are controlled to open and close by a control device (not shown), and the control device further controls the warm drainage and cooling flowing to the first and second heat exchangers 13 and 14 as described later. The switching control of water is performed (note that the valves 17a, 17b, 18a, and 18b are a first valve, a second valve, a third valve, and a fourth valve, respectively).
[0026]
Here, referring also to FIG. 2, first, cooling water is caused to flow through the first heat exchanger 13, and hot waste water is caused to flow through the second heat exchanger 14 (step S <b> 1). Thereafter, the control device opens the valves 17b and 18a and closes the valves 17a and 18b (step S2). That is, the condenser 15 communicates with the second reaction unit 11b, and the evaporator 16 communicates with the first reaction unit 11a. A regeneration step will be performed. In the following operation control, the MBP 21 is constantly operated (always operated under the control of the control device).
[0027]
When the adsorption step in the first reaction section 11a and the regeneration step in the second reaction section 11b are completed (step S3), the control device performs control of switching between hot drainage and cooling water (step S4). If the switching control of the hot water / cooling water is not completed (that is, until the switching control of the hot water / cooling water is completed), the control device opens the valve 17b and closes the valve 18b. I do. That is, the valves 17a and 17b are opened, and the valves 18a and 18b are closed (step S5). As a result, the condenser 15 is in a state of communicating with the first and second reaction sections 11a and 11b. When the switching control of the hot water / cooling water is completed, the control device causes the first heat exchanger 13 to flow hot water instead of the cooling water, and the second heat exchanger 14 to cool the water instead of the hot water. Water is poured (step S6).
[0028]
Thereafter, the control device closes the valve 17b and opens the valve 18b. That is, the valves 17a and 18b are opened, and the valves 17b and 18a are closed (Step S7). As a result, the condenser 15 is in communication with the first reaction section 11a, and the evaporator 16 is in communication with the second reaction section 11b, and the first and second reaction sections 11a and 11b respectively perform a regeneration process. And an adsorption process will be performed.
[0029]
When the regeneration step in the first reaction section 11a and the adsorption step in the second reaction section 11b are completed (step S8), the control device performs control of switching between hot waste water and cooling water (step S9). If the switching control of the hot water / cooling water is not completed (that is, until the switching control of the hot water / cooling water is completed), the control device opens the valve 17b and closes the valve 18b. I do. That is, the valves 17a and 17b are opened, and the valves 18a and 18b are closed (step S10). As a result, the condenser 15 is in a state of communicating with the first and second reaction sections 11a and 11b. Then, when the switching control of the hot water / cooling water is completed, the control device performs step S1, and thereafter, the steps are repeated as described above.
[0030]
By performing the above control, at least one of the valves 17a and 17b disposed between the condenser 15 and the reactor 11 is in an open state. The differential pressure does not increase, and as shown in FIG. 3, the power of the MBP 21 conventionally seen in FIG. 7 hardly increases.
[0031]
Note that, as described above, before switching between the regeneration step and the adsorption step in the first and second reaction units 11a and 11b, the first and second heat exchangers 13 and 14, it is not necessary to stop the MBP 21 when performing heat recovery (that is, it is not necessary to start and stop the MBP 21). For example, as shown in FIG. The driver is not forced to drive (that is, the MBP 21 is not driven in a poor environment).
[0032]
Thus, in the adsorption refrigerator described in FIG. 1, the regeneration step and the adsorption step can be efficiently performed without adversely affecting the gas transport means such as the MBP disposed between the condenser and the reactor. Can be.
[0033]
【The invention's effect】
As described above, in the present invention, the cooling water flows as a fluid through the first heat exchanger and the hot water flows through the second heat exchanger as a fluid, and the second and third valves are opened, With the first and fourth valves closed, the condenser and the evaporator were connected to the second and first reaction units, respectively, and the first and second reaction units performed the adsorption step and the regeneration step, respectively. Thereafter, at the time of hot water / cooling water switching control, the first and second valves are opened and the third and fourth valves are closed, so that the first and second reaction units communicate with the condenser, Hot water is allowed to flow as a fluid flowing through the first heat exchanger, cooling water is allowed to flow as a fluid flowing through the second heat exchanger, the first and fourth valves are opened, and the second and third valves are opened. In the closed state, the condenser and the evaporator are connected to the first and second reaction sections, respectively. Then, the regeneration step and the adsorption step are performed in the first and second reaction sections, respectively. Therefore, when the regeneration step and the adsorption step are alternately performed in the first and second reaction sections, the transportation means (MBP) Therefore, the pressure difference between the suction side pressure and the discharge side pressure does not increase, and the transport means is not forced to perform a severe operation when performing heat recovery. As a result, there is an effect that the switching between the regeneration step and the adsorption step can be efficiently performed without adversely affecting the transportation means.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an adsorption refrigerator according to the present invention.
FIG. 2 is a flowchart for explaining an example of control of the adsorption refrigerator shown in FIG.
FIG. 3 is a diagram showing a power change of the MBP shown in FIG.
FIG. 4 is a diagram showing an example of a conventional adsorption refrigerator.
5A and 5B are views for explaining a regeneration step and an adsorption step in the adsorption refrigerator, wherein FIG. 5A is a view illustrating the regeneration step, and FIG. 5B is a view illustrating the adsorption step.
FIG. 6 is a diagram for explaining a heat recovery step in the adsorption refrigerator shown in FIG.
7 is a diagram showing a change in power of a suction pump when the suction refrigerator shown in FIG. 4 is provided with a suction pump.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Reactor 11a 1st reaction part 11b 2nd reaction part 12 Adsorbent 13 1st heat exchanger 14 2nd heat exchanger 15 Condenser 16 Evaporator 17a, 17b, 18a, 18b Valve (valve)
21 Mechanical Booster Pump (MBP)

Claims (2)

吸着剤が充填された第1及び第2の反応部と、該第1及び該第2の反応部にそれぞれ第1及び第2のバルブを介して連結された凝縮器と、前記第1及び前記第2の反応部にそれぞれ第3及び第4のバルブを介して連結された蒸発器と、前記第1及び前記第2のバルブと前記凝縮器との間に配置され冷媒蒸気を前記凝縮器に輸送する輸送手段とを有し、前記第1及び前記第2の反応部にはそれぞれ第1及び第2の熱交換器が配置されて、前記第1〜第4のバルブを開閉制御して前記第1及び前記第2の反応部で選択的に前記吸着剤から冷媒の脱着を行う再生工程を行うとともに前記吸着剤に前記冷媒の吸着を行う吸着工程を行い、前記第1及び前記第2の反応部で交互に前記再生工程及び前記吸着工程を行うようにした吸着冷凍機の運転方法において、
前記第1の熱交換器に流体として冷却水を流すとともに前記第2の熱交換器に流体として温水を流す第1のステップと、
前記第2及び前記第3のバルブを開状態とし、前記第1及び前記第4のバルブを閉状態として、前記凝縮器及び前記蒸発器をそれぞれ前記第2及び前記第1の反応部と連通して前記第1及び前記第2の反応部でそれぞれ吸着工程及び再生工程を行う第2のステップと、
前記第1及び前記第2の反応部でそれぞれ前記吸着工程及び前記再生工程が終了すると、温水冷却水切り換え制御を行って該温水冷却水切り換え制御が完了するまで前記第1及び前記第2のバルブを開状態とするとともに前記第3及び前記第4のバルブを閉状態として前記第1及び前記第2の反応部を前記凝縮器に連通させる第3のステップと、
前記温水冷却水切り換え制御の完了によって、前記第1の熱交換器に流体として温水を流し、前記第2の熱交換器に流体として冷却水を流す第4のステップと、
前記第1及び前記第4のバルブを開状態とし、前記第2及び前記第3のバルブを閉状態として、前記凝縮器及び前記蒸発器をそれぞれ前記第1及び前記第2の反応部と連通して前記第1及び前記第2の反応部でそれぞれ再生工程及び吸着工程を行う第5のステップとを有することを特徴とする吸着冷凍機の運転方法。
A first and second reaction section filled with an adsorbent; a condenser connected to the first and second reaction sections via first and second valves, respectively; An evaporator connected to a second reaction section via third and fourth valves, respectively, and a refrigerant vapor disposed between the first and second valves and the condenser, the refrigerant vapor being supplied to the condenser. Transport means for transporting, a first and a second heat exchanger are respectively arranged in the first and second reaction sections, and the first to fourth valves are controlled to open and close, and The first and the second reaction sections perform a regeneration step of selectively desorbing a refrigerant from the adsorbent and perform an adsorption step of adsorbing the refrigerant on the adsorbent, and perform the first and second In the operation method of the adsorption refrigerator in which the regeneration step and the adsorption step are alternately performed in the reaction section. Stomach,
A first step of flowing cooling water as a fluid to the first heat exchanger and flowing hot water to the second heat exchanger as a fluid;
Opening the second and third valves and closing the first and fourth valves to communicate the condenser and the evaporator with the second and first reaction units, respectively. A second step of performing an adsorption step and a regeneration step in the first and second reaction sections, respectively,
When the adsorption step and the regeneration step are completed in the first and second reaction sections, respectively, the control of switching hot water / cooling water is performed, and the first and second valves are switched until the control of switching hot water / cooling water is completed. Opening the third and fourth valves and closing the third and fourth valves to communicate the first and second reaction sections to the condenser; and
A fourth step of flowing hot water as a fluid to the first heat exchanger and flowing cooling water as a fluid to the second heat exchanger upon completion of the hot water / cooling water switching control;
The condenser and the evaporator are communicated with the first and second reactors, respectively, with the first and fourth valves open and the second and third valves closed. And a fifth step of performing a regeneration step and an adsorption step in the first and second reaction sections, respectively.
前記第1及び前記第2の反応部でそれぞれ前記再生工程及び前記吸着工程が終了すると、前記温水冷却水切り換え制御を行って、該温水冷却水切り換え制御が完了するまで前記第1及び前記第2のバルブを開状態とするとともに前記第3及び前記第4のバルブを閉状態として前記第1及び前記第2の反応部を前記凝縮器に連通させる第6のステップを有し、
前記第6のステップにおける温水冷却水切り換え制御の完了によって、前記第1のステップを行うようにしたことを特徴とする請求項1に記載の吸着冷凍機の運転方法。
When the regeneration step and the adsorption step are completed in the first and second reaction sections, respectively, the hot water cooling water switching control is performed, and the first and second water cooling water switching controls are completed. A sixth step of opening the valves and opening the third and fourth valves to close the first and second reaction sections to the condenser,
The method according to claim 1, wherein the first step is performed by completing the hot water / cooling water switching control in the sixth step.
JP2003130812A 2003-05-08 2003-05-08 Operation method of adsorption refrigerator Expired - Fee Related JP4565539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130812A JP4565539B2 (en) 2003-05-08 2003-05-08 Operation method of adsorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130812A JP4565539B2 (en) 2003-05-08 2003-05-08 Operation method of adsorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004333039A true JP2004333039A (en) 2004-11-25
JP4565539B2 JP4565539B2 (en) 2010-10-20

Family

ID=33506202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130812A Expired - Fee Related JP4565539B2 (en) 2003-05-08 2003-05-08 Operation method of adsorption refrigerator

Country Status (1)

Country Link
JP (1) JP4565539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299087C (en) * 2005-05-26 2007-02-07 上海交通大学 Back heating type generator of heat pipe with composite adsorbent being adopted
CN106288498A (en) * 2016-08-19 2017-01-04 上海交通大学 Adsorbent bed system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048441A (en) * 2014-05-29 2014-09-17 中国科学院广州能源研究所 Improved adsorption type heat pump and adsorption-desorption method of improved adsorption type heat pump

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571887A (en) * 1991-09-11 1993-03-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulation method
JPH05272833A (en) * 1992-03-24 1993-10-22 Mayekawa Mfg Co Ltd Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JPH05322359A (en) * 1992-05-26 1993-12-07 Sanden Corp Adsorption type cooling system
JPH0842935A (en) * 1994-07-27 1996-02-16 Mayekawa Mfg Co Ltd Adsorption type cooler and cold heat output controlling method therefor
JPH09152221A (en) * 1995-11-29 1997-06-10 Denso Corp Adsorption type refrigerator
JPH1137596A (en) * 1997-07-18 1999-02-12 Chubu Electric Power Co Inc Chemical heat pump
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JP2002048428A (en) * 2000-08-02 2002-02-15 Denso Corp Adsorption type refrigerating machine
JP2002372332A (en) * 2001-02-21 2002-12-26 Mitsubishi Chemicals Corp Adsorptive heat pump, and adsorption member for the adsorptive heat pump, and air conditioning apparatus for vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571887A (en) * 1991-09-11 1993-03-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat accumulation method
JPH05272833A (en) * 1992-03-24 1993-10-22 Mayekawa Mfg Co Ltd Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JPH05322359A (en) * 1992-05-26 1993-12-07 Sanden Corp Adsorption type cooling system
JPH0842935A (en) * 1994-07-27 1996-02-16 Mayekawa Mfg Co Ltd Adsorption type cooler and cold heat output controlling method therefor
JPH09152221A (en) * 1995-11-29 1997-06-10 Denso Corp Adsorption type refrigerator
JPH1137596A (en) * 1997-07-18 1999-02-12 Chubu Electric Power Co Inc Chemical heat pump
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JP2002048428A (en) * 2000-08-02 2002-02-15 Denso Corp Adsorption type refrigerating machine
JP2002372332A (en) * 2001-02-21 2002-12-26 Mitsubishi Chemicals Corp Adsorptive heat pump, and adsorption member for the adsorptive heat pump, and air conditioning apparatus for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299087C (en) * 2005-05-26 2007-02-07 上海交通大学 Back heating type generator of heat pipe with composite adsorbent being adopted
CN106288498A (en) * 2016-08-19 2017-01-04 上海交通大学 Adsorbent bed system
CN106288498B (en) * 2016-08-19 2019-03-15 上海交通大学 Adsorb bed system

Also Published As

Publication number Publication date
JP4565539B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4333627B2 (en) Adsorption heat pump device
KR930005665B1 (en) Method of operating adsorption refrigerator
KR101586518B1 (en) Method for carrying out a heat transfer between alternately working adsorbers and device
JP2010107156A (en) Engine-driven heat pump
JP4363336B2 (en) Air conditioning
JPH09152221A (en) Adsorption type refrigerator
JP4565539B2 (en) Operation method of adsorption refrigerator
JPH0842935A (en) Adsorption type cooler and cold heat output controlling method therefor
JP2009121740A (en) Adsorption type heat pump and its operation control method
JP3831964B2 (en) Adsorption type refrigerator
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
JP4553523B2 (en) Absorption refrigerator
JP2019027715A (en) Heat storage system
JPH09196493A (en) Adsorption refrigerating apparatus
KR100858778B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
JP2787182B2 (en) Single / double absorption chiller / heater
JP4399660B2 (en) Hot water bottle absorption refrigerator
JP3348615B2 (en) Adsorption refrigeration equipment
JP2004232928A (en) Adsorption type refrigerator and method of operating the same
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPH08121893A (en) Heat pump
JPS6011072A (en) Heat pump utilizing adsorbent and method of operating said pump
JP2004161144A (en) Absorption cycle device for vehicle
JPH0765817B2 (en) Adsorption refrigerator and its operating method
JP2000111196A (en) Cooling/heating and hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees