JP2002372332A - Adsorptive heat pump, and adsorption member for the adsorptive heat pump, and air conditioning apparatus for vehicle - Google Patents

Adsorptive heat pump, and adsorption member for the adsorptive heat pump, and air conditioning apparatus for vehicle

Info

Publication number
JP2002372332A
JP2002372332A JP2002042476A JP2002042476A JP2002372332A JP 2002372332 A JP2002372332 A JP 2002372332A JP 2002042476 A JP2002042476 A JP 2002042476A JP 2002042476 A JP2002042476 A JP 2002042476A JP 2002372332 A JP2002372332 A JP 2002372332A
Authority
JP
Japan
Prior art keywords
adsorption
heat pump
adsorbent
adsorbate
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002042476A
Other languages
Japanese (ja)
Other versions
JP2002372332A5 (en
JP4542738B2 (en
Inventor
Hiroyuki Kakiuchi
博行 垣内
Takahiko Takewaki
隆彦 武脇
Katsu Fujii
克 藤井
Masanori Yamazaki
正典 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Denso Corp
Original Assignee
Mitsubishi Chemical Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Denso Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002042476A priority Critical patent/JP4542738B2/en
Publication of JP2002372332A publication Critical patent/JP2002372332A/en
Publication of JP2002372332A5 publication Critical patent/JP2002372332A5/ja
Application granted granted Critical
Publication of JP4542738B2 publication Critical patent/JP4542738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency adsorptive heat pump using an adsorption member where an adsorptive substance is adsorbed and desorbed in a low relative vapor pressure region. SOLUTION: In an absorptive heat pump comprising an adsorbate, an adsorption/desorption section including an adsorption member for absorbing and desorbing the adsorbate, and a vaporization/condensation section for vaporizing/condensing the adsorbate coupled with the adsorption/desorption section, the adsorption member is zeolite involving aluminum, phosphorus, and a hetero atom as a skeleton.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の吸着材を用
いた吸着ヒートポンプ及びその運転方法、ならびに該吸
着ヒートポンプを用いた車両用空調装置に関する。更
に、吸着ヒートポンプ用吸着材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption heat pump using a specific adsorbent, an operation method thereof, and a vehicle air conditioner using the adsorption heat pump. Further, the present invention relates to an adsorbent for an adsorption heat pump.

【0002】[0002]

【従来の技術】吸着ヒートポンプにおいては、吸着質、
例えば水を吸着した吸着材を再生するために、吸着材を
加熱して吸着質を脱着させ、乾燥した吸着材を吸着質の
吸着に使用する温度まで冷却して再度吸着質の吸着に使
用する。比較的高温(120℃以上)の排熱、温熱を、
吸着材の再生熱源として利用する吸収式ヒートポンプが
既に実用化されている。しかし一般にコジェネレーショ
ン機器、燃料電池、自動車エンジンの冷却水や太陽熱な
どによって得られる熱は100℃以下と比較的低温であ
るため、現在実用化されている吸収式ヒートポンプの駆
動熱源としては利用できず、100℃以下、更には60
℃〜80℃の低温排熱の有効利用が求められていた。
2. Description of the Related Art In an adsorption heat pump, an adsorbate,
For example, in order to regenerate an adsorbent that has absorbed water, the adsorbent is heated to desorb the adsorbate, the dried adsorbent is cooled to the temperature used for adsorbate adsorption, and used again for adsorbate adsorption. . Waste heat and heat of relatively high temperature (120 ° C or higher)
Absorption heat pumps that are used as regeneration heat sources for adsorbents have already been put to practical use. However, since the heat obtained by cooling water or solar heat of cogeneration equipment, fuel cells, and automobile engines is relatively low at 100 ° C. or less, it cannot be used as a driving heat source for absorption heat pumps currently in practical use. , 100 ° C or less, and 60
There has been a demand for effective utilization of low-temperature exhaust heat at a temperature of from 80C to 80C.

【0003】吸着ヒートポンプの動作原理は同じでも利
用可能な熱源温度によって吸着材に求められる吸着特性
が大きく異なる。例えば、高温側の熱源として用いられ
るガスエンジンコージェネレーションや固体高分子型燃
料電池の排熱温度は60℃〜80℃であり、自動車エン
ジンの冷却水の温度は85℃〜90℃である。そして冷
却側の熱源温度も装置の設置場所によって異なる。例え
ば自動車の場合はラジエターで得られる温度であり、ビ
ルや住宅などでは水冷塔や河川水などの温度である。つ
まり、吸着ヒートポンプの操作温度範囲は、ビルなどに
設置する場合には低温側が25℃〜35℃、高温側が6
0℃〜80℃、自動車などに設置する場合には低温側が
30℃〜40℃、高温側が85℃〜90℃程度である。
このように、排熱を有効利用するためには、低温側熱源
と高温側熱源の温度差が小さくても駆動できる装置が望
まれている。
[0003] Even if the operation principle of the adsorption heat pump is the same, the adsorption characteristics required for the adsorbent greatly differ depending on the available heat source temperature. For example, the exhaust heat temperature of a gas engine cogeneration or a polymer electrolyte fuel cell used as a heat source on the high temperature side is 60 ° C to 80 ° C, and the temperature of cooling water for an automobile engine is 85 ° C to 90 ° C. The temperature of the heat source on the cooling side also differs depending on the installation location of the device. For example, in the case of a car, the temperature is obtained by a radiator, and in a building or a house, the temperature is a temperature of a water cooling tower or river water. That is, the operating temperature range of the adsorption heat pump is 25 ° C. to 35 ° C. on the low temperature side and 6 ° C. on the high temperature side when installed in a building or the like.
0 ° C. to 80 ° C., when installed in an automobile or the like, the low temperature side is about 30 ° C. to 40 ° C., and the high temperature side is about 85 ° C. to 90 ° C.
As described above, in order to effectively use the exhaust heat, a device that can be driven even when the temperature difference between the low-temperature side heat source and the high-temperature side heat source is small is desired.

【0004】吸着材の周囲が比較的高い温度でも装置が
充分に作動するためには、吸着質を低相対蒸気圧で吸着
させる必要があり、また使用する吸着材を少量にして装
置を小型化するためには吸着材の吸脱着量が多い必要が
ある。そして吸着質の脱着(吸着材の再生)に低温の熱
源を利用するためには脱着温度が低い必要がある。すな
わち吸着ヒートポンプに用いる吸着材として(1)吸着
質を低い相対蒸気圧で吸着し(高温で吸着可能)、
(2)吸脱着量が多く、(3)吸着質を高い相対蒸気圧
で脱着(低温で脱着可能)する吸着材が望まれている。
In order for the apparatus to operate sufficiently even at a relatively high temperature around the adsorbent, it is necessary to adsorb the adsorbate at a low relative vapor pressure, and to reduce the size of the apparatus by using a small amount of adsorbent. To do so, it is necessary that the amount of adsorption and desorption of the adsorbent is large. In order to use a low-temperature heat source for desorption of adsorbate (regeneration of adsorbent), the desorption temperature needs to be low. That is, (1) adsorbate is adsorbed at low relative vapor pressure (adsorbable at high temperature) as adsorbent used for adsorption heat pump,
There is a demand for an adsorbent that (2) has a large amount of adsorption and desorption and (3) desorbs adsorbates at a high relative vapor pressure (can be desorbed at a low temperature).

【0005】また、吸着ヒートポンプに用いる吸着材と
して、各種の吸着材の使用が検討されているが、諸種の
問題点があり、その解決が望まれている。
[0005] In addition, although the use of various adsorbents has been studied as an adsorbent used in an adsorption heat pump, there are various problems, and a solution is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は吸着質を低相
対蒸気圧域で吸脱着しうる吸着材を用いた、効率の良い
吸着ヒートポンプの提供を目的としてなされたものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an efficient adsorption heat pump using an adsorbent capable of adsorbing and desorbing adsorbates in a low relative vapor pressure range.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、吸着質の吸脱着
を装置の駆動源とする吸着ヒートポンプに適した吸着材
を見いだした。すなわち本発明の要旨は、吸着質と、吸
着質を吸脱着する吸着材を備えた吸脱着部と、該吸脱着
部に連結された吸着質の蒸発・凝縮を行う蒸発・凝縮部
とを備えた吸着ヒートポンプにおいて、該吸着材が骨格
構造にアルミニウムとリンとヘテロ原子を含むゼオライ
トであることを特徴とする吸着ヒートポンプおよびその
運転方法に存する。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found an adsorbent suitable for an adsorption heat pump using adsorption and desorption of adsorbate as a driving source of the apparatus. . That is, the gist of the present invention comprises an adsorbate, an adsorption / desorption section provided with an adsorbent for adsorbing and desorbing the adsorbate, and an evaporating / condensing section connected to the adsorption / desorption section for evaporating / condensing the adsorbate. And a method of operating the adsorption heat pump, wherein the adsorbent is a zeolite containing aluminum, phosphorus, and a hetero atom in a skeleton structure.

【0008】本発明の他の要旨は、吸着質と、吸着質を
吸脱着する吸着材を備えた吸脱着部と、該吸脱着部に連
結された吸着質の蒸発を行う蒸発部と、該吸脱着部に連
結された吸着質の凝縮を行う凝縮部とを備えた吸着ヒー
トポンプにおいて、該吸着材が、25℃で測定した水蒸
気吸着等温線において相対蒸気圧0.05以上、0.3
0以下の範囲で相対蒸気圧が0.15変化したときに水
の吸着量変化が0.18g/g以上の相対蒸気圧域を有
する吸着材である、吸着ヒートポンプに存する。
Another object of the present invention is to provide an adsorbent, an adsorption / desorption section provided with an adsorbent for adsorbing and desorbing the adsorbate, an evaporating section connected to the adsorption / desorption section for evaporating the adsorbate, An adsorbent heat pump having a condensing section for condensing adsorbate connected to the adsorbing / desorbing section, wherein the adsorbent has a relative vapor pressure of 0.05 or more, 0.3 or more on a water vapor adsorption isotherm measured at 25 ° C.
The present invention resides in an adsorption heat pump, which is an adsorbent having a relative vapor pressure range in which a change in the amount of water adsorbed is 0.18 g / g or more when the relative vapor pressure changes by 0.15 in a range of 0 or less.

【0009】更に、他の要旨は、25℃で測定した水蒸
気吸着等温線において相対蒸気圧0.05以上、0.3
0以下の範囲で相対蒸気圧が0.15変化したときに水
の吸着量変化が0.18g/g以上の相対蒸気圧域を有
する吸着材からなる吸着ヒートポンプ用吸着材に存す
る。
[0009] Further, another point is that the relative vapor pressure is not less than 0.05 and 0.3 in the water vapor adsorption isotherm measured at 25 ° C.
When the relative vapor pressure changes by 0.15 within the range of 0 or less, the change in the amount of adsorbed water is 0.18 g / g or more.

【0010】[0010]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。吸着ヒートポンプの操作蒸気圧範囲は、高温
熱源温度Thigh、低温熱源温度Tlow1、低温熱
源温度Tlow2および冷熱生成温度Tcoolから求
められる脱着側相対蒸気圧φ1と吸着側相対蒸気圧φ2
によって決定される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The operating vapor pressure range of the adsorption heat pump is as follows: the high-temperature heat source temperature Thigh, the low-temperature heat source temperature Tlow1, the low-temperature heat source temperature Tlow2, and the desorption-side relative vapor pressure φ1 and the adsorption-side relative vapor pressure φ2 obtained from the cold heat generation temperature Tcool.
Is determined by

【0011】φ1とφ2は次式 脱着側相対蒸気圧φ1=平衡蒸気圧(Tlow1)/平
衡蒸気圧(Thigh) 吸着側相対蒸気圧φ2=平衡蒸気圧(Tcool)/平
衡蒸気圧(Tlow2) により、算出でき、φ1とφ2との間が操作可能な相対
蒸気圧範囲である。ここで、高温熱源温度Thighは
吸着材から吸着質を脱着して吸着材を再生する際に加熱
する熱媒の温度を、低温熱源温度Tlow1は凝縮部の
吸着質の温度を、低温熱源温度Tlow2は再生後の吸
着材を吸着に共する際に冷却する熱媒の温度を、冷熱生
成温度Tcoolは蒸発部の吸着質の温度すなわち生成
した冷熱の温度を意味する。平衡蒸気圧は吸着質の平衡
蒸気圧曲線を用いて、温度から求めることができる。
Φ1 and φ2 are represented by the following equation: Desorption-side relative vapor pressure φ1 = Equilibrium vapor pressure (Tlow1) / Equilibrium vapor pressure (High) Adsorption-side relative vapor pressure φ2 = Equilibrium vapor pressure (Tcool) / Equilibrium vapor pressure (Tlow2) , And the operable relative vapor pressure range is between φ1 and φ2. Here, the high-temperature heat source temperature Thigh is the temperature of the heat medium to be heated when the adsorbate is desorbed from the adsorbent to regenerate the adsorbent, the low-temperature heat source temperature Tlow1 is the temperature of the adsorbate in the condensing section, and the low-temperature heat source temperature Tlow2. Represents the temperature of the heat medium that cools the adsorbent after regeneration together with the adsorption, and the cold generation temperature Tcool refers to the temperature of the adsorbate in the evaporator, that is, the temperature of the generated cold. The equilibrium vapor pressure can be determined from the temperature using the equilibrium vapor pressure curve of the adsorbate.

【0012】以下、吸着質が水である場合の操作蒸気圧
範囲を例示する。高温熱源温度80℃、低温熱源温度3
0℃の場合、操作蒸気圧範囲はφ1〜φ2=0.09〜
0.29である。同様に高温熱源温度が60℃の場合、
操作相対水蒸気圧範囲はφ1〜φ2=0.21〜0.2
9である。また、自動車エンジンの排熱を利用して吸着
ヒートポンプを駆動する場合については特開2000−
140625号に詳細に記載されている。この報告を基
に推算すると、高温熱源温度約90℃、低温熱源温度3
0℃である。この場合、操作相対水蒸気圧範囲はφ1〜
φ2=0.06〜0.29である。
The operating vapor pressure range in the case where the adsorbate is water will be exemplified below. High temperature heat source temperature 80 ℃, low temperature heat source temperature 3
In the case of 0 ° C., the operating vapor pressure range is φ1 to φ2 = 0.09 to
0.29. Similarly, when the high-temperature heat source temperature is 60 ° C,
Operation relative steam pressure range is φ1 ~ φ2 = 0.21 ~ 0.2
9 Japanese Patent Laid-Open No. 2000-2000 discloses a case in which an adsorption heat pump is driven by using exhaust heat of an automobile engine.
No. 140625 describes in detail. Estimating based on this report, the high-temperature heat source temperature is about 90 ° C,
0 ° C. In this case, the operation relative steam pressure range is φ1 to
φ2 = 0.06 to 0.29.

【0013】以上より、ガスエンジンコージェネレーシ
ョン、固体高分子型燃料電池または自動車エンジンの排
熱を利用して吸着ヒートポンプを駆動する場合、操作相
対水蒸気圧範囲はφ1〜φ2=0.05〜0.30、さ
らに限定すればφ1〜φ2=0.06〜0.29となる
と考えられる。つまり、この操作湿度範囲の中で吸着量
の変化が大きい材料が好ましい。したがって通常は相対
蒸気圧0.05〜0.30の範囲において、好ましくは
0.06〜0.29の範囲において吸着量が大きく変化
する材料が好ましい。
As described above, when the adsorption heat pump is driven by using the exhaust heat of the gas engine cogeneration, the polymer electrolyte fuel cell, or the automobile engine, the operation relative steam pressure range is φ1 to φ2 = 0.05 to 0.2. 30, and more specifically, φ1 to φ2 = 0.06 to 0.29. That is, a material having a large change in the amount of adsorption in this operating humidity range is preferable. Therefore, a material whose adsorption amount greatly changes in a range of a relative vapor pressure of 0.05 to 0.30, preferably in a range of 0.06 to 0.29 is preferable.

【0014】例えば吸着ヒートポンプにより、3.0k
W(=10,800kJ/hr)の冷房能力を得る場合に
ついて想定する。ここで、3.0kWは一般的な自動車
のエアコンに使用されるエアコンの冷房能力である。吸
着ヒートポンプの容量は、種々の車両のエンジンルーム
調査から少なくとも15リットル以下であることが望ま
しいと考えられる。
[0014] For example, 3.0 k
It is assumed that a cooling capacity of W (= 10,800 kJ / hr) is obtained. Here, 3.0 kW is a cooling capacity of an air conditioner used for a general automobile air conditioner. It is believed that the capacity of the adsorption heat pump should be at least 15 liters or less based on various vehicle engine room surveys.

【0015】次に、15リットル以下の容量の中に充填
可能な吸着剤重量を求める。エンジンルームに載せるべ
き部品としては吸着塔本体、蒸発器、凝縮器および制御
バルブ類がある。これらを概略一体に形成したアッセン
ブリを15リットル以下の容量にする必要がある。我々
の検討では、蒸発器と凝縮器とバルブ類の体格はおよそ
4.5リットルで形成できると考えられる。従って吸着
塔本体の容量はおよそ10.5リットル以下である。吸
着塔内における吸着剤の充填率および吸着剤のかさ密度
は、通常、それぞれ約30%、約0.6kg/リットル
であるので、充填可能な吸着剤重量(W)は10.5×30%
×0.6=1.89kg程度である。
Next, the weight of the adsorbent that can be filled in a volume of 15 liters or less is determined. Parts to be placed in the engine room include the main body of the adsorption tower, the evaporator, the condenser and the control valves. It is necessary to reduce the volume of the assembly formed from these components to approximately 15 liters or less. In our study, it is considered that the size of the evaporator, condenser and valves can be formed in about 4.5 liters. Therefore, the capacity of the adsorption tower body is about 10.5 liter or less. Since the filling rate of the adsorbent and the bulk density of the adsorbent in the adsorption tower are usually about 30% and about 0.6 kg / liter, respectively, the adsorbent weight (W) that can be filled is 10.5 × 30%.
× 0.6 = about 1.89 kg.

【0016】次に吸着剤に求められる特性について説明
する。吸着式ヒートポンプでの冷房能力Rは次式Aで表
される。 R=(W・ΔQ・ηC・ΔH/τ)・ηh (式A) ここでWは吸着塔1台(片側)に充填される吸着剤重
量、ΔQは吸着時と脱離時の条件における平衡吸着量振
幅で前記吸着量差(Q2−Q1)、ηCは平衡吸着振幅
ΔQに対する切り替え時間内の実際の吸着振幅の割合を
示す吸着振幅効率、ΔHは水の蒸発潜熱、τは吸着工程
と脱離工程との切り替え時間、ηhは吸着剤や熱交換器
が温水温度と冷却水温度との間を温度変化することによ
るヒートマス損失を考慮したヒートマス効率、を示す。
Next, the characteristics required for the adsorbent will be described. The cooling capacity R in the adsorption heat pump is represented by the following equation A. R = (W · ΔQ · η C · ΔH / τ) · η h (Equation A) where W is the weight of the adsorbent packed in one adsorption tower (one side), and ΔQ is the condition during adsorption and desorption. Is the difference between the adsorption amounts (Q2-Q1), η C is the adsorption amplitude efficiency indicating the ratio of the actual adsorption amplitude within the switching time to the equilibrium adsorption amplitude ΔQ, ΔH is the latent heat of vaporization of water, and τ is the adsorption. The switching time between the process and the desorption process, η h indicates the heat mass efficiency in consideration of the heat mass loss caused by the adsorbent or the heat exchanger changing the temperature between the hot water temperature and the cooling water temperature.

【0017】Rは前述のように3kW、Wは1.89kg/2=0.9
5kgである。また我々の過去の検討から、τはおよそ6
0secが適当であり、ΔH、ηC、ηhの値はそれぞれお
よそ2500kJ/kg、0.6、0.85であることが得られているの
で(式A)からΔQを求めると、 ΔQ = R/W/ηC/ΔH・τ/ηh=3.0/0.95/0.6/2500・60/0.
85 = 0.149kg/kg となる。すなわち自動車用吸着式ヒートポンプに用いる
吸着剤としては、ΔQは0.15g/g以上、0.18
g/g以上が好ましく、0.20g/g以上が更に好ま
しい。
R is 3 kW and W is 1.89 kg / 2 = 0.9 as described above.
5 kg. Also, from our past studies, τ is about 6
0 sec is appropriate, and the values of ΔH, η C , and η h are approximately 2500 kJ / kg, 0.6, and 0.85, respectively. Therefore, when ΔQ is obtained from (Equation A), ΔQ = R / W / η C / ΔH ・ τ / η h = 3.0 / 0.95 / 0.6 / 2500 ・ 60/0.
85 = 0.149kg / kg. That is, as an adsorbent used for an adsorption heat pump for automobiles, ΔQ is 0.15 g / g or more,
g / g or more is preferable, and 0.20 g / g or more is more preferable.

【0018】吸着ヒートポンプは、吸着材が吸着質を吸
脱着する能力を駆動源として利用している。吸着ヒート
ポンプにおいては吸着質である吸着質として、水、エタ
ノールおよびアセトンなどが使用できるが、中でも安全
性、価格、蒸発潜熱の大きさから、水が最も好ましい。
吸着質は蒸気として吸着材に吸着されるが、吸着材は、
狭い相対蒸気圧範囲で吸着量の変化が大きい材料が好ま
しい。狭い相対蒸気圧範囲で吸着量の変化が大きいと、
同じ条件で同等の吸着量を得るために必要な吸着材の量
を減らし、冷却熱源と加熱熱源の温度差が小さくても吸
着ヒートポンプを駆動できるからである。
An adsorption heat pump utilizes the ability of an adsorbent to adsorb and desorb adsorbates as a driving source. In the adsorption heat pump, water, ethanol, acetone, and the like can be used as the adsorbate, but among them, water is most preferable in view of safety, cost, and the magnitude of latent heat of vaporization.
The adsorbate is adsorbed on the adsorbent as vapor,
A material having a large change in the amount of adsorption in a narrow relative vapor pressure range is preferable. If the change in adsorption amount is large in a narrow relative vapor pressure range,
This is because the amount of adsorbent necessary to obtain the same amount of adsorption under the same conditions can be reduced, and the adsorption heat pump can be driven even if the temperature difference between the cooling heat source and the heating heat source is small.

【0019】本発明の特徴の一つである吸着材は骨格構
造にアルミニウムとリンとヘテロ原子とを含むゼオライ
トである。ここでいうゼオライトは天然のゼオライトで
も人工のゼオライトでもよく、例えば人工のゼオライト
ではInternational ZeoliteAssociation (IZA)の規
定によるアルミノシリケート類、アルミノフォスフェー
ト類などが含まれる。
The adsorbent, which is one of the features of the present invention, is a zeolite containing aluminum, phosphorus and a hetero atom in a skeleton structure. The zeolite mentioned here may be a natural zeolite or an artificial zeolite. Examples of the artificial zeolite include aluminosilicates and aluminophosphates specified by International Zeolite Association (IZA).

【0020】ここで、アルミノフォスフェート類の中で
もヘテロ原子を含まないアルミノフォスフェート(Al
PO4−5)は疎水的な吸着特性を示すため本発明の吸
着材としては適当でない。本発明の吸着材として好適に
使用するためには親水性の付与のためにアルミニウム、
リンの一部をケイ素、リチウム、マグネシウム、チタ
ン、ジルコニウム、バナジウム、クロム、マンガン、
鉄、コバルト、ニッケル、パラジウム、銅、亜鉛、ガリ
ウム、ゲルマニウム、砒素、スズ、カルシウム、または
硼素等に置換する必要がある。
Here, among the aluminophosphates, aluminophosphate (Al) which does not contain a hetero atom is used.
PO 4 -5) is not suitable as an adsorbent of the present invention to indicate a hydrophobic adsorption properties. Aluminum for imparting hydrophilicity to be suitably used as the adsorbent of the present invention,
Part of phosphorus is silicon, lithium, magnesium, titanium, zirconium, vanadium, chromium, manganese,
It is necessary to substitute iron, cobalt, nickel, palladium, copper, zinc, gallium, germanium, arsenic, tin, calcium, boron, or the like.

【0021】この中でも、ケイ素、マグネシウム、チタ
ン、ジルコニウム、鉄、コバルト、亜鉛、ガリウム、ま
たは硼素に置換したゼオライトが好ましく、さらにはケ
イ素に置換したゼオライトが最も好ましく、これは通称
SAPOと称されている。これらヘテロ原子は骨格内の
アルミニウム、リンと二種類以上置換されていても良
い。
Among them, zeolite substituted with silicon, magnesium, titanium, zirconium, iron, cobalt, zinc, gallium or boron is preferable, and zeolite substituted with silicon is most preferable, which is commonly called SAPO. I have. These hetero atoms may be substituted with two or more kinds of aluminum and phosphorus in the skeleton.

【0022】本発明で吸着材として用いるゼオライトと
しては、骨格構造にアルミニウムとリンとヘテロ原子を
含むゼオライトであって、下記式(1)、(2)および
(3)で表される原子の存在割合を有するものが好まし
い。 0.001≦x≦0.3 ・・・(1) (式中、xは骨格構造のアルミニウムとリンとヘテロ原
子の合計に対するヘテロ原子のモル比を示す) 0.3≦y≦0.6 ・・・(2) (式中、yは骨格構造のアルミニウムとリンとヘテロ原
子の合計に対するアルミニウムのモル比を示す) 0.3≦z≦0.6 ・・・(3) (式中、zは骨格構造のアルミニウムとリンとヘテロ原
子の合計に対するリンのモル比を示す)そして、上記原
子の存在割合のなかで、ヘテロ原子の存在割合が、下記
式(4) 0.003≦x≦0.25 ・・・(4) (式中、xは上記と同義である)で表されるものが好ま
しく、下記式(5) 0.005≦x≦0.2 ・・・(5) (式中、xは上記と同義である)で表されるものが更に
好ましい。
The zeolite used as the adsorbent in the present invention is a zeolite containing aluminum, phosphorus and a hetero atom in a skeleton structure, and the presence of atoms represented by the following formulas (1), (2) and (3): Those having a ratio are preferred. 0.001 ≦ x ≦ 0.3 (1) (where x represents the molar ratio of hetero atoms to the total of aluminum, phosphorus and hetero atoms in the skeletal structure) 0.3 ≦ y ≦ 0.6 (2) (where y represents the molar ratio of aluminum to the sum of aluminum, phosphorus and heteroatoms in the skeletal structure) 0.3 ≦ z ≦ 0.6 (3) z represents the molar ratio of phosphorus to the total of aluminum, phosphorus, and hetero atoms in the skeletal structure), and among the above-mentioned atomic abundances, the hetero atom abundance is represented by the following formula (4): 0.003 ≦ x ≦ 0.25 (4) (where x is as defined above) is preferable, and the following formula (5) 0.005 ≦ x ≦ 0.2 (5) (5) Wherein x is as defined above).

【0023】また、本発明で吸着材として用いるゼオラ
イトは、そのフレームワーク密度が10.0T/1,0
00Å3以上16.0T/1,000Å3以下であるのが
好ましく、更に好ましくは10.0T/1,000Å3
以上15.0/1,000Å3以下の範囲のゼオライト
である。ここでフレームワーク密度とは、ゼオライトの
1,000Å3あたりの酸素以外の骨格を構成する元素
の数を意味し、この値はゼオライトの構造により決まる
ものである。
The zeolite used as an adsorbent in the present invention has a framework density of 10.0 T / 1,0.
Is preferably 00Å 3 or more 16.0T / 1,000Å 3 or less, more preferably 10.0T / 1,000Å 3
Than is 15.0 / 1,000 Å 3 or less in the range of zeolites. Here, the framework density means the number of elements constituting the skeleton other than oxygen 1,000Å per 3 zeolites, this value is one determined by the structure of the zeolite.

【0024】このようなゼオライトの構造としては、I
ZAが定めるコードで示すと、AFG、MER、LI
O、LOS、PHI、BOG、ERI、OFF、PA
U、EAB、AFT、LEV、LTN、AEI、AF
R、AFX、GIS、KFI、CHA、GME、TH
O、MEI、VFI、AFS、LTA、FAU、RH
O、DFO、EMT、AFY、*BEA等があり、好ま
しくはAEI、GIS、KFI、CHA、GME、VF
I、AFS、LTA、FAU、RHO、EMT、AF
Y、*BEAが挙げられる。
The structure of such a zeolite is I
AFG, MER, LI
O, LOS, PHI, BOG, ERI, OFF, PA
U, EAB, AFT, LEV, LTN, AEI, AF
R, AFX, GIS, KFI, CHA, GME, TH
O, MEI, VFI, AFS, LTA, FAU, RH
O, DFO, EMT, AFY, * BEA, etc., preferably AEI, GIS, KFI, CHA, GME, VF
I, AFS, LTA, FAU, RHO, EMT, AF
Y, * BEA.

【0025】フレームワーク密度は細孔容量と相関があ
り、一般的に、より小さいフレームワーク密度のゼオラ
イトがより大きい細孔容量を有し、したがって吸着容量
が大きくなる。また、現在合成されていないゼオライト
も、合成された場合にフレームワーク密度がこの領域内
にあれば、本発明においての吸着材として好適に使用で
きると予想される。例えば、CHA構造のアルミノフォ
スフェートの場合はケイ素などの原子を骨格内に入れ
た、SAPO−34として知られるシリコアルミノフォ
スフェートを用いる事により所望な吸着性能を持たせる
事ができる。なおSAPO−34の合成方法は、米国特
許第4440871号公報等に記載されている。
[0025] The framework density correlates with the pore volume, and generally the lower framework density zeolite has the higher pore volume and therefore the higher adsorption capacity. It is also expected that zeolites that have not been synthesized at present can be suitably used as an adsorbent in the present invention if the framework density is within this range when synthesized. For example, in the case of an aluminophosphate having a CHA structure, a desired adsorption performance can be obtained by using a silicoaluminophosphate known as SAPO-34 in which atoms such as silicon are contained in a skeleton. The method for synthesizing SAPO-34 is described in U.S. Pat. No. 4,440,871 and the like.

【0026】吸着材の細孔径は、吸着特性と強度の点か
ら、好ましくは、3Å以上10Å程度である。また、ゼ
オライトがアルミノシリケートの場合は、骨格内のケイ
素、アルミニウムの一部(アルミニウムの場合は全部も
あり得る)が他の原子、例えば、マグネシウム、チタ
ン、ジルコニウム、バナジウム、クロム、マンガン、
鉄、コバルト、亜鉛、ガリウム、スズ、硼素等に置換し
ていてもよい。アルミノシリケートの場合にケイ素とア
ルミニウム(アルミニウム+ヘテロ原子)のモル比が小
さすぎると先に示した13Xの場合のように、あまりに
も低い湿度領域で急激に吸着されてしまい、また大きす
ぎる場合は疎水的すぎて水をあまり吸着しなくなる。そ
のため本発明で用いるゼオライトは、ケイ素/アルミニ
ウムのモル比が通常4以上20以下であって、4.5以
上18以下が好ましく、5以上16以下がさらに好まし
い。
The diameter of the pores of the adsorbent is preferably about 3 ° to about 10 ° in view of the adsorption characteristics and strength. Further, when the zeolite is aluminosilicate, silicon in the skeleton, part of aluminum (although in the case of aluminum, there may be all), other atoms, for example, magnesium, titanium, zirconium, vanadium, chromium, manganese,
It may be substituted with iron, cobalt, zinc, gallium, tin, boron and the like. In the case of aluminosilicate, if the molar ratio of silicon to aluminum (aluminum + heteroatom) is too small, as in the case of 13X described above, the compound is rapidly adsorbed in a too low humidity range, and if it is too large, It is too hydrophobic and does not adsorb much water. Therefore, the zeolite used in the present invention generally has a silicon / aluminum molar ratio of 4 or more and 20 or less, preferably 4.5 or more and 18 or less, and more preferably 5 or more and 16 or less.

【0027】これらのゼオライトは交換可能なカチオン
種を持つものを含むが、その場合のカチオン種として
は、プロトン、Li、Naなどのアルカリ元素、Mg、
Caなどのアルカリ土類元素、La、Ce等の希土類元
素、Fe、Co、Ni等の遷移金属等があげられ、プロ
トン、アルカリ元素、アルカリ土類元素、希土類元素が
好ましい。さらにはプロトン、Li、Na、K、Mg、
Caがより好ましい。これらのゼオライトは単独で用い
ても、複数組み合わせても、他のシリカやアルミナ、活
性炭、粘土等と組み合わせ用いてもよい。
These zeolites include those having exchangeable cation species. In this case, the cation species include protons, alkali elements such as Li and Na, Mg, and the like.
Examples thereof include alkaline earth elements such as Ca, rare earth elements such as La and Ce, and transition metals such as Fe, Co, and Ni. Protons, alkali elements, alkaline earth elements, and rare earth elements are preferable. Further, proton, Li, Na, K, Mg,
Ca is more preferred. These zeolites may be used alone, in combination, or in combination with other silica, alumina, activated carbon, clay, or the like.

【0028】本発明で用いる特に好ましい吸着材の一例
として、CHA構造のアルミノフォスフェートであって、
ゼオライトの骨格構造にケイ素などの原子を入れた、S
APO−34(フレームワーク密度=14.6T/1,
000Å3)として知られるシリコアルミノフォスフェ
ートが挙げられる。更に、本発明で用いる吸着材は、2
5℃で測定した水蒸気吸着等温線において相対蒸気圧
0.05以上0.30以下の範囲で相対蒸気圧が0.1
5変化したときに水の吸着量変化が0.18g/g以
上、好ましくは0.2g/g以上の相対蒸気圧領域を有
する吸着材、好ましくは0.05以上0.20以下の範
囲で水の吸着量変化が0.18g/g以上、好ましくは
0.2g/g以上の吸着材である。相対蒸気圧0.05
以上、0.30以下で相対蒸気圧が0.15変化したと
きの水の吸着量差が0.18g/g以上である有望な材
料はゼオライトである。ゼオライトは結晶であるため吸
着に寄与する細孔容積がフレームワーク密度に依存して
きまる。フレームワーク密度が最も小さいゼオライトの
一例である13X(フレームワーク密度12.7T/1
000Å)の最大吸着量は約0.30g/gである。よ
って、本発明が規定する相対蒸気圧の下限0.05にお
ける吸着量が0.15g/gより多いと、吸着量差0.
18g/gを得ることは不可能である。よって、水蒸気
吸着等温線において相対蒸気圧0.05での吸着量が
0.15g/g以下、0.12g/g以下が好ましく、
0.05g/g以下が更に好ましい。吸着等温線測定装
置(ベルソーブ18:日本ベル(株))により測定した
SAPO−34(UOP LLC製)の25℃における
水蒸気の吸着等温線を図1に示す。吸着等温線の測定
は、空気高温槽温度50℃、吸着温度25℃、初期導入
圧力3.0torr、導入圧力設定点数0、飽和蒸気圧
23.76mmHg、平衡時間500秒で行った。図1
から相対蒸気圧0.07〜0.10において急激に水蒸
気を吸着しており、相対蒸気圧範囲0.05〜0.20
の吸着量変化量は0.25g/gであることがわかる。
この様な特性を有するSAPO−34は、本発明で用い
る吸着材のうち、最も好ましいものの一つである。上述
のように、本発明で用いる吸着材は、従来のシリカゲル
やゼオライトと比較して同じ相対蒸気圧範囲において吸
着量がより多く変化するため、ほぼ同じ重量の吸着材を
用いてより多くの除湿効果を発生できる。
An example of a particularly preferred adsorbent used in the present invention is an aluminophosphate having a CHA structure,
S, which contains atoms such as silicon in the framework structure of zeolite,
APO-34 (framework density = 14.6T / 1,
Silico-alumino-phosphate, which is known as 000Å 3), and the like. Further, the adsorbent used in the present invention is 2
In the water vapor adsorption isotherm measured at 5 ° C., the relative vapor pressure is 0.1 in the range of 0.05 to 0.30.
5 The adsorbent has a relative vapor pressure range of 0.18 g / g or more, preferably 0.2 g / g or more when the amount of water adsorbed changes, preferably water in the range of 0.05 to 0.20. Is an adsorbent having a change in adsorption amount of 0.18 g / g or more, preferably 0.2 g / g or more. Relative vapor pressure 0.05
As described above, zeolite is a promising material having a water adsorption difference of 0.18 g / g or more when the relative vapor pressure changes by 0.15 or less at 0.30 or less. Since zeolite is a crystal, the pore volume that contributes to adsorption depends on the framework density. 13X which is an example of the zeolite having the lowest framework density (framework density of 12.7 T / 1
000 吸着) is about 0.30 g / g. Therefore, when the adsorption amount at the lower limit of 0.05 of the relative vapor pressure specified by the present invention is more than 0.15 g / g, the adsorption amount difference is 0.1.
It is impossible to obtain 18 g / g. Therefore, the adsorption amount at a relative vapor pressure of 0.05 in the water vapor adsorption isotherm is preferably 0.15 g / g or less, and 0.12 g / g or less,
0.05 g / g or less is more preferable. FIG. 1 shows an adsorption isotherm of water vapor at 25 ° C. of SAPO-34 (manufactured by UOP LLC) measured by an adsorption isotherm measuring apparatus (Belsorb 18: Bell Japan Co., Ltd.). The measurement of the adsorption isotherm was performed at an air high temperature tank temperature of 50 ° C., an adsorption temperature of 25 ° C., an initial introduction pressure of 3.0 torr, an introduction pressure set point of 0, a saturated vapor pressure of 23.76 mmHg, and an equilibration time of 500 seconds. FIG.
Water vapor is rapidly adsorbed at a relative vapor pressure of 0.07 to 0.10, and a relative vapor pressure range of 0.05 to 0.20
It can be seen that the change in the amount of adsorption was 0.25 g / g.
SAPO-34 having such properties is one of the most preferable adsorbents used in the present invention. As described above, the adsorbent used in the present invention has a larger amount of adsorption change in the same relative vapor pressure range as compared with conventional silica gel or zeolite, so that more dehumidification is performed using almost the same weight of adsorbent. Can produce effects.

【0029】本発明の特徴の1つは上記特性を有する吸
着材を、吸着ヒートポンプの、吸着質の吸脱着部の吸着
材として使用することである。即ち、狭い範囲の相対蒸
気圧変化で大きな吸着量変化を得られることから、吸着
材の充填量が限られる吸着ヒートポンプ、例えば車両用
空調装置等に適している。以下、上記した吸着材を用い
る本発明の吸着ヒートポンプの作用について、図4に記
載した機器構成の吸着ヒートポンプにより具体的に説明
するが、本発明の吸着ヒートポンプはこれに限定される
ものではない。
One of the features of the present invention is that the adsorbent having the above characteristics is used as an adsorbent in an adsorption / desorption portion of an adsorbate of an adsorption heat pump. That is, since a large change in the amount of adsorption can be obtained by a change in the relative vapor pressure in a narrow range, it is suitable for an adsorption heat pump having a limited amount of adsorbent, such as a vehicle air conditioner. Hereinafter, the operation of the adsorption heat pump of the present invention using the above-described adsorbent will be specifically described with reference to the adsorption heat pump having the device configuration shown in FIG. 4, but the adsorption heat pump of the present invention is not limited thereto.

【0030】本発明の吸着ヒートポンプの一例の概念図
を図4に示す。図4に示す吸着ヒートポンプは、吸着質
を吸脱着可能な吸着材と、吸着材が充填され吸着質の吸
脱着により発生した熱を熱媒に伝達する吸脱着部である
吸着塔1および2と、吸着質の蒸発により得られた冷熱
を外部へ取り出す蒸発器4と、吸着質の凝縮により得ら
れた温熱を外部へ放出する凝縮器5から構成されてい
る。なお、吸着ヒートポンプを操作する場合には運転に
必要な吸脱着量を得られるように環境温度における吸着
等温線から操作条件を求め、通常は装置を運転する上で
最大の吸脱着量を得られるように決定する。図4に示す
ごとく、吸着材が充填された吸着塔1及び2は、吸着質
配管30により相互に接続され、該吸着質配管30には
制御バルブ31〜34を設ける。ここで、吸着質は吸着
質配管内で吸着質の蒸気または吸着質の液体及び蒸気と
の混合物として存在する。
FIG. 4 shows a conceptual diagram of an example of the adsorption heat pump of the present invention. The adsorption heat pump shown in FIG. 4 includes an adsorbent capable of adsorbing and desorbing an adsorbate, and adsorption towers 1 and 2 serving as adsorption and desorption units that are filled with the adsorbent and transfer heat generated by adsorption and desorption of the adsorbate to a heat medium. An evaporator 4 for taking out the cold heat obtained by the evaporation of the adsorbate and a condenser 5 for releasing the heat obtained by the condensation of the adsorbate to the outside. When operating the adsorption heat pump, the operating conditions are determined from the adsorption isotherm at the ambient temperature so that the amount of adsorption and desorption required for the operation can be obtained, and usually the maximum amount of adsorption and desorption can be obtained in operating the apparatus. To be determined. As shown in FIG. 4, the adsorption towers 1 and 2 filled with the adsorbent are connected to each other by an adsorbate pipe 30, and the adsorbate pipe 30 is provided with control valves 31 to 34. Here, the adsorbate exists as adsorbate vapor or a mixture of adsorbate liquid and vapor in the adsorbate pipe.

【0031】吸着質配管30には蒸発器4及び凝縮器5
が接続されている。吸着塔1及び2は蒸発器4、凝縮器
5の間に並列に接続されており、凝縮器5と蒸発器4の
間には凝縮器にて凝縮された吸着質を蒸発器4に戻すた
めの戻し配管3を設ける。なお、符号41は蒸発器4か
らの冷房出力となる冷水の入口、符号51は凝縮器5に
対する冷却水の入口である。符号42及び52はそれぞ
れ冷水及び冷却水の出口である。また、冷水配管41及
び42には、室内空間(空調空間)と熱交換するための
室内機300と、冷水を循環するポンプ301が接続さ
れている。また、吸着塔1には熱媒配管11が、吸着塔
2には熱媒配管21がそれぞれ接続され、該熱媒配管1
1及び21には、それぞれ切り替えバルブ115及び1
16並びに215及び216が設けてある。また、熱媒
配管11及び21はそれぞれ吸着塔1及び2内の吸着材
を加熱または冷却するための加熱源または冷却源となる
熱媒を流す。熱媒は、特に限定されず、吸着塔内の吸着
材を有効に加熱・冷却できればよい。温水は切り替えバ
ルブ115、116、215、及び216の開閉によ
り、入口113及び/又は213より導入され、各吸着
塔1及び/又は2を通過し、出口114及び/又は21
4より導出される。冷却水も同様の切り替えバルブ11
5、116、215、及び216の開閉により、入口1
11及び/又は211より導入され、各吸着器1及び/
又は2を通過し、出口112及び/又は212より導出
される。また、熱媒配管11及び/又は21には、図示
しないが外気と熱交換可能に配設された室外機、温水を
発生する熱源、熱媒を循環するポンプが接続されてい
る。熱源としては特に限定されず、例えば自動車エンジ
ン、ガスエンジンやガスタービンなどのコジェネレーシ
ョン機器および燃料電池などが挙げられ、また、自動車
用として用いる時には、自動車エンジン、自動車用燃料
電池が好ましい熱源の例として挙げられる。図4を用い
て吸着式ヒートポンプの運転方法について説明する。第
1行程では制御バルブ31及び34を閉鎖、制御バルブ
32及び33を解放し、吸着塔1において再生工程を、
吸着塔2において吸着工程を行う。また、切り替えバル
ブ115、116、215、及び216を操作し、熱媒
パイプ11には温水を、熱媒パイプ21には冷却水を流
通させる。吸着塔2を冷却する際には冷却塔等の熱交換
器によって外気、河川水等と熱交換して冷やされた冷却
水を熱媒パイプ21を通して導入し、通常30〜40℃
程度に冷却される。また、制御バルブ32の開操作によ
り蒸発器4内の水は蒸発し、水蒸気となって吸着塔2に
流れ込み、吸着材に吸着される。蒸発温度での飽和蒸気
圧と吸着材温度(一般的には20〜50℃、好ましくは
20〜45℃、更に好ましくは30〜40℃)に対応し
た吸着平衡圧との差により水蒸気移動が行われ、蒸発器
4においては蒸発の気化熱に対応した冷熱、即ち冷房出
力が得られる。吸着塔の冷却水の温度と蒸発器で生成す
る冷水温度との関係から吸着側相対蒸気圧φ2(ここで
φ2は蒸発器で生成する冷水温度における吸着質の平衡
蒸気圧を、吸着塔の冷却水の温度における吸着質の平衡
蒸気圧で除すことにより求める)が決定されるが、φ2
は本発明で規定した吸着材が最大に水蒸気を吸着する相
対蒸気圧より大きくなるよう運転することが好ましい。
φ2が本発明で規定した吸着材が最大に水蒸気を吸着す
る相対蒸気圧より小さい場合には、吸着材の吸着能を有
効に利用できず、運転効率が悪くなるからである。φ2
は環境温度等により適宜設定することができるが、φ2
における吸着量が通常0.20以上、好ましくは0.2
9以上、より好ましくは0.30以上となる温度条件で
吸着ヒートポンプを運転する。再生工程にある吸着塔1
は通常40〜100℃、好ましくは50〜98℃、更に
好ましくは60〜95℃の温水により加熱され、前記温
度範囲に対応した平衡蒸気圧になり、凝縮器5の凝縮温
度30〜40℃(これは凝縮器を冷却している冷却水の
温度に等しい)での飽和蒸気圧で凝縮される。吸着塔1
から凝縮器5へ水蒸気が移動し、凝縮されて水となる。
水は戻し配管3により蒸発器4へ戻される。凝縮器の冷
却水の温度と温水の温度との関係から脱着側相対蒸気圧
φ1(ここでφ1は凝縮器の冷却水の温度における吸着
質の平衡蒸気圧を、温水の温度における吸着質の平衡蒸
気圧で除すことにより求める)が決定されるが、φ1は
吸着材が急激に水蒸気を吸着する相対蒸気圧より小さく
なるよう運転することが好ましい。もし、φ1が吸着材
がが急激に水蒸気を吸着する相対蒸気圧より大きいと、
吸着材の優れた吸着量が有効に利用できないからであ
る。φ1は環境温度等により適宜設定することができる
が、φ1における吸着量が通常0.06以下、好ましく
は0.05以下となる温度条件で吸着ヒートポンプを運
転する。なお、φ1における吸着質の吸着量とφ2にお
ける吸着質の吸着量との差が、通常0.18g/g以
上、好ましくは0.20g/g以上、さらに好ましくは
0.25g/g以上となるように運転する。以上が第1
行程である。次の第2行程では、吸着塔1が吸着工程、
吸着塔2が再生工程となるように、制御バルブ31〜3
4及び切り替えバルブ115、116、215、及び2
16を切り替えることで、同様に蒸発器4から冷熱、即
ち冷房出力を得ることができる。以上の第1及び第2行
程を順次切り替えることで吸着ヒートポンプの連続運転
を行う。なお、ここでは2基の吸着塔を設置した場合の
運転方法を説明したが、吸着材が吸着した吸着質の脱着
を適宜おこなうことにより、いずれかの吸着塔が吸着質
を吸着できる状態を維持できれば吸着塔は何基設置して
もよい。
The evaporator 4 and the condenser 5
Is connected. The adsorption towers 1 and 2 are connected in parallel between the evaporator 4 and the condenser 5, and between the condenser 5 and the evaporator 4, the adsorbate condensed in the condenser is returned to the evaporator 4. Is provided. In addition, reference numeral 41 denotes an inlet of the chilled water for cooling output from the evaporator 4, and reference numeral 51 denotes an inlet of the chilled water to the condenser 5. Reference numerals 42 and 52 denote cold water and a cooling water outlet, respectively. Further, an indoor unit 300 for exchanging heat with an indoor space (air-conditioned space) and a pump 301 for circulating cold water are connected to the cold water pipes 41 and 42. A heat medium pipe 11 is connected to the adsorption tower 1, and a heat medium pipe 21 is connected to the adsorption tower 2, respectively.
Switching valves 115 and 1 are provided at 1 and 21, respectively.
16 and 215 and 216 are provided. Further, the heat medium pipes 11 and 21 flow a heat medium serving as a heating source or a cooling source for heating or cooling the adsorbent in the adsorption towers 1 and 2, respectively. The heating medium is not particularly limited as long as the heating medium can effectively heat and cool the adsorbent in the adsorption tower. Hot water is introduced from inlets 113 and / or 213 by opening and closing switching valves 115, 116, 215, and 216, passes through each adsorption tower 1 and / or 2, and exits 114 and / or 21
4 is derived. The same switching valve 11 is used for cooling water.
5, 116, 215, and 216 open and close,
11 and / or 211, and each adsorber 1 and / or
Or 2 and is derived from outlets 112 and / or 212. Further, an unillustrated outdoor unit, a heat source for generating hot water, and a pump for circulating the heat medium are connected to the heat medium pipes 11 and / or 21 so as to be able to exchange heat with the outside air. The heat source is not particularly limited, and includes, for example, an automobile engine, a cogeneration device such as a gas engine or a gas turbine, and a fuel cell. When used for an automobile, an automobile engine and an automobile fuel cell are preferable examples of the heat source. It is listed as. An operation method of the adsorption heat pump will be described with reference to FIG. In the first step, the control valves 31 and 34 are closed, the control valves 32 and 33 are released, and the regeneration step in the adsorption tower 1 is performed.
The adsorption step is performed in the adsorption tower 2. In addition, the switching valves 115, 116, 215, and 216 are operated so that hot water flows through the heat medium pipe 11 and cooling water flows through the heat medium pipe 21. When the adsorption tower 2 is cooled, cooling water that has been cooled by exchanging heat with outside air, river water, or the like by a heat exchanger such as a cooling tower is introduced through the heat medium pipe 21, and is usually 30 to 40 ° C.
Cool to a degree. In addition, the water in the evaporator 4 evaporates by opening the control valve 32, flows into the adsorption tower 2 as steam, and is adsorbed by the adsorbent. Water vapor transfer is performed by the difference between the saturated vapor pressure at the evaporation temperature and the adsorption equilibrium pressure corresponding to the adsorbent temperature (generally 20 to 50 ° C, preferably 20 to 45 ° C, more preferably 30 to 40 ° C). In the evaporator 4, cold heat corresponding to the heat of vaporization of evaporation, that is, a cooling output is obtained. From the relationship between the temperature of the cooling water in the adsorption tower and the temperature of the cold water generated in the evaporator, the relative vapor pressure on the adsorption side φ2 (where φ2 is the equilibrium vapor pressure of the adsorbate at the temperature of the cold water generated in the evaporator, Divided by the equilibrium vapor pressure of the adsorbate at the temperature of the water).
Is preferably operated so that the adsorbent specified in the present invention is higher than the relative vapor pressure at which water vapor is adsorbed to the maximum.
If φ2 is smaller than the relative vapor pressure at which the adsorbent specified in the present invention adsorbs water vapor at the maximum, the adsorbing ability of the adsorbent cannot be used effectively, and the operation efficiency deteriorates. φ2
Can be appropriately set depending on the environmental temperature and the like.
Is usually 0.20 or more, preferably 0.2
The adsorption heat pump is operated under a temperature condition of 9 or more, more preferably 0.30 or more. Adsorption tower 1 in the regeneration process
Is heated with warm water of usually 40 to 100 ° C., preferably 50 to 98 ° C., more preferably 60 to 95 ° C., and reaches an equilibrium vapor pressure corresponding to the above temperature range, and the condensation temperature of the condenser 5 is 30 to 40 ° C. (Equal to the temperature of the cooling water cooling the condenser). Adsorption tower 1
The water vapor moves to the condenser 5 and is condensed into water.
The water is returned to the evaporator 4 by the return pipe 3. From the relationship between the temperature of the cooling water of the condenser and the temperature of the hot water, the relative vapor pressure on the desorption side φ1 (where φ1 is the equilibrium vapor pressure of the adsorbate at the temperature of the cooling water of the condenser and the equilibrium of the adsorbate at the temperature of the hot water) Determined by dividing by the vapor pressure), it is preferable to operate φ1 so as to be smaller than the relative vapor pressure at which the adsorbent rapidly adsorbs water vapor. If φ1 is larger than the relative vapor pressure at which the adsorbent rapidly adsorbs water vapor,
This is because the excellent adsorption amount of the adsorbent cannot be used effectively. φ1 can be appropriately set depending on the environmental temperature and the like, but the adsorption heat pump is operated under a temperature condition in which the adsorption amount at φ1 is usually 0.06 or less, preferably 0.05 or less. The difference between the amount of adsorbate adsorbed at φ1 and the amount of adsorbate adsorbed at φ2 is usually 0.18 g / g or more, preferably 0.20 g / g or more, and more preferably 0.25 g / g or more. Drive like so. The above is the first
It is a process. In the next second step, the adsorption tower 1 performs the adsorption step,
Control valves 31 to 3 so that the adsorption tower 2 is in the regeneration step.
4 and switching valves 115, 116, 215, and 2
By switching 16, cool heat, that is, cooling output can be obtained from the evaporator 4. The continuous operation of the adsorption heat pump is performed by sequentially switching the above first and second steps. Here, the operation method in the case where two adsorption towers are installed has been described. However, by appropriately desorbing the adsorbate adsorbed by the adsorbent, a state in which one of the adsorption towers can adsorb the adsorbate is maintained. If possible, any number of adsorption towers may be installed.

【0032】[0032]

【発明の効果】吸着ヒートポンプ用の吸着材としては、
一般的にシリカゲルと低シリカアルミナ比のゼオライト
が用いられてきた。しかし、従来吸着ヒートポンプに利
用されてきた吸着材は、比較的低温の熱源を吸着ヒート
ポンプの駆動源として利用するには吸脱着能力が不十分
であった。例えば、吸着ヒートポンプ用のゼオライトの
代表例として13Xの水蒸気吸着等温線を考えると、相
対蒸気圧0.05以下で急激に吸着され、0.05より
高い相対蒸気圧域ではゼオライトの水蒸気吸着量は変化
しない。吸着剤を再生する際には、周囲の気体の相対湿
度を低下させて一度吸着した水分を脱着して除くが、ゼ
オライト13Xに吸着された水を脱着するには相対蒸気
圧を下げる必要があるため、150℃〜200℃の熱源
が必要であると言われている。一般にゼオライトは水の
吸着能力に優れるが、一度吸着すると吸着質が脱着しづ
らく、再生に高温の熱源が必要という欠点がある。また
最近では界面活性剤のミセル構造を鋳型として合成した
メソポーラスモレキュラーシーブ(FSM−10など)
(特開平9−178292号)や通称AlPO4と称さ
れる多孔質リン酸アルミニウム系モレキュラーシーブ
(特開平11−197439号)などのゼオライトも検
討されている。メソポーラスモレキュラーシーブ(FS
M−10)は相対蒸気圧0.20と0.35の範囲で吸
着量差は0.25g/gと大きく、有望な素材である
(特開平9−178292号:図14のグラフ4;FS
M−10)。しかし、本発明の吸着ヒートポンプの運転
操作の一例である相対蒸気圧0.05〜0.30の範囲
では吸着量が小さい。その中でも吸着量変化が大きいの
は相対蒸気圧0.15〜0.30の範囲であるが、この
時の吸着量差は0.08g/gであり、吸着ヒートポン
プの性能は劣らざるを得ない。また、繰り返し使用する
と構造が崩れ、吸着材としての機能が低下することが指
摘されており、耐久性が課題となっている。例えば、図
3に示す多孔質リン酸アルミニウム系モレキュラーシー
ブのAFI型(フレームワーク密度=17.5T/1,
000Å3)ゼオライトであるALPO−5の吸着等温
線(Colloid Polym Sci 277, p
83〜88(1999), Fig.1(吸着温度30
℃)より引用)の吸着等温線によると、ALPO−5は
相対蒸気圧0.25〜0.40の範囲で吸着量が急激に
上昇し、相対蒸気圧0.05〜0.3の範囲で吸脱着さ
せることは可能であるが、相対蒸気圧0.15〜0.3
0の範囲での吸着量変化は0.14g/gであった。吸
着ヒートポンプに適した吸着材として知られているシリ
カゲルA型(富士シリシア化学(株))を吸着等温線測
定装置(ベルソーブ18:日本ベル(株))により測定
した、吸着温度25℃の水蒸気の吸着等温線を図2に示
す。なお、この測定は図1のSAPO−34と同じ条件
で行った。図2のシリカゲルA型の吸着等温線による
と、シリカゲルA型は、相対水蒸気圧0〜0.7の範囲
で相対水蒸気圧とほぼ比例した吸着量が得られる。しか
し、メソポーラスモレキュラーシーブや多孔質リン酸ア
ルミニウム系モレキュラーシーブと同じ相対蒸気圧0.
15〜0.30の範囲ではA型シリカゲルは0.08g
/gしか吸着量が変化しない。シリカゲルを吸着材とし
て使用した吸着ヒートポンプが商品化されているが、こ
の吸着量差が小さいことが原因で装置が大きくならざる
を得ない。本発明の、相対蒸気圧0.05以上、0.3
0以下の範囲で大きな吸脱着量変化を示す吸着材を利用
した吸着ヒートポンプは、吸着材の吸脱着による水分吸
着量の差が大きく、低温度で吸着材の再生(脱着)が可
能になるため、従来に比べて低温の熱源を利用して、効
率よく吸着ヒートポンプを駆動することができる。すな
わち、本発明の吸着材によれば、100℃以下の比較的
低温の熱源で駆動する吸着ヒートポンプを提供できる。
As the adsorbent for the adsorption heat pump,
Generally, zeolite with a silica gel to low silica alumina ratio has been used. However, the adsorbents conventionally used in adsorption heat pumps have insufficient adsorption / desorption capacity to use a relatively low-temperature heat source as a drive source for the adsorption heat pump. For example, considering a 13X water vapor adsorption isotherm as a typical example of a zeolite for an adsorption heat pump, the water vapor is rapidly adsorbed at a relative vapor pressure of 0.05 or less, and in a relative vapor pressure region higher than 0.05, the water vapor adsorption amount of the zeolite is It does not change. When regenerating the adsorbent, the relative humidity of the surrounding gas is reduced to desorb and remove the water once adsorbed, but it is necessary to lower the relative vapor pressure to desorb the water adsorbed on the zeolite 13X. Therefore, it is said that a heat source of 150 ° C. to 200 ° C. is required. In general, zeolite is excellent in water adsorption ability, but has a drawback that once adsorbed, the adsorbate is difficult to desorb and a high-temperature heat source is required for regeneration. Recently, mesoporous molecular sieves synthesized using the micelle structure of a surfactant as a template (such as FSM-10)
Zeolites such porous aluminum phosphate molecular sieves called (JP 9-178292) and known as AlPO 4 (Japanese Patent Laid-Open No. 11-197439) has been studied. Mesoporous molecular sieve (FS
M-10) is a promising material with a large difference in adsorption amount of 0.25 g / g in the range of relative vapor pressures of 0.20 and 0.35 (JP-A-9-178292: graph 4 in FIG. 14; FS).
M-10). However, the amount of adsorption is small in the range of the relative vapor pressure of 0.05 to 0.30, which is an example of the operation of the adsorption heat pump of the present invention. Among them, the change in the amount of adsorption is large in the range of the relative vapor pressure of 0.15 to 0.30, but the difference in the amount of adsorption at this time is 0.08 g / g, and the performance of the adsorption heat pump must be inferior. . In addition, it has been pointed out that repeated use causes the structure to collapse and the function as an adsorbent to be deteriorated, and durability is an issue. For example, an AFI type porous aluminum phosphate molecular sieve shown in FIG. 3 (framework density = 17.5 T / 1,
000Å 3) adsorption isotherm of ALPO-5 zeolite (Colloid Polym Sci 277, p
83-88 (1999), FIG. 1 (adsorption temperature 30
C)), the adsorption amount of ALPO-5 sharply increases in the range of relative vapor pressure of 0.25 to 0.40 and increases in the range of relative vapor pressure of 0.05 to 0.3. It is possible to adsorb and desorb, but the relative vapor pressure is 0.15 to 0.3
The change in the amount of adsorption in the range of 0 was 0.14 g / g. Silica gel type A (Fuji Silysia Chemical Ltd.), which is known as an adsorbent suitable for an adsorption heat pump, was measured with an adsorption isotherm measuring device (Belsorb 18: Bell Japan Co., Ltd.). The adsorption isotherm is shown in FIG. In addition, this measurement was performed on the same conditions as SAPO-34 of FIG. According to the adsorption isotherm of the silica gel type A in FIG. 2, the silica gel type A can obtain an adsorption amount almost proportional to the relative water vapor pressure in the range of the relative water vapor pressure of 0 to 0.7. However, the same relative vapor pressure as that of a mesoporous molecular sieve or a porous aluminum phosphate molecular sieve is used.
0.08 g of A-type silica gel in the range of 15 to 0.30
/ G only changes the adsorption amount. Adsorption heat pumps using silica gel as an adsorbent have been commercialized, but the small difference in the amount of adsorption has forced the equipment to be large. According to the present invention, the relative vapor pressure is 0.05 or more, 0.3
An adsorption heat pump using an adsorbent that shows a large change in the amount of adsorption and desorption in the range of 0 or less has a large difference in the amount of water adsorbed due to the adsorption and desorption of the adsorbent, and the adsorbent can be regenerated (desorbed) at a low temperature. In addition, the adsorption heat pump can be efficiently driven by using a heat source having a lower temperature than in the related art. That is, according to the adsorbent of the present invention, an adsorption heat pump driven by a relatively low-temperature heat source of 100 ° C. or lower can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SAPO−34の水蒸気吸着等温線である。FIG. 1 is a water vapor adsorption isotherm of SAPO-34.

【図2】シリカゲルA型の水蒸気吸着等温線である。FIG. 2 is a water vapor adsorption isotherm of silica gel type A.

【図3】ALPO−5の水蒸気吸着等温線である。FIG. 3 is a water vapor adsorption isotherm of ALPO-5.

【図4】吸着ヒートポンプの概念図である。FIG. 4 is a conceptual diagram of an adsorption heat pump.

【符号の説明】[Explanation of symbols]

1 吸着塔 2 吸着塔 3 吸着質配管 4 蒸発器 5 凝縮器 11 熱媒配管 111冷却水入口 112冷却水出口 113温水入口 114温水出口 115切り替えバルブ 116切り替えバルブ 21 熱媒配管 211冷却水入口 212冷却水出口 213温水入口 214温水出口 215切り替えバルブ 216切り替えバルブ 30 吸着質配管 31 制御バルブ 32 制御バルブ 33 制御バルブ 34 制御バルブ 300室内機 301ポンプ 41 冷水配管(入口) 42 冷水配管(出口) 51 冷却水配管(入口) 52 冷却水配管(出口) DESCRIPTION OF SYMBOLS 1 Adsorption tower 2 Adsorption tower 3 Adsorbate piping 4 Evaporator 5 Condenser 11 Heat medium piping 111 Cooling water inlet 112 Cooling water outlet 113 Hot water inlet 114 Hot water outlet 115 Switching valve 116 Switching valve 21 Heat medium piping 211 Cooling water inlet 212 Cooling Water outlet 213 hot water inlet 214 hot water outlet 215 switching valve 216 switching valve 30 adsorbate pipe 31 control valve 32 control valve 33 control valve 34 control valve 300 indoor unit 301 pump 41 cold water pipe (inlet) 42 cold water pipe (outlet) 51 cooling water Piping (inlet) 52 Cooling water piping (outlet)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武脇 隆彦 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 (72)発明者 藤井 克 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 (72)発明者 山崎 正典 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内 Fターム(参考) 3L093 NN04 4G066 AA61B BA36 BA38 CA43 EA20 FA37  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahiko Takewaki 1000, Kamoshidacho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Chemical Corporation (72) Inventor Katsushi Fujii 1000, Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation In-company (72) Inventor Masanori Yamazaki 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation F-term (reference) 3L093 NN04 4G066 AA61B BA36 BA38 CA43 EA20 FA37

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 吸着質と、吸着質を吸脱着する吸着材を
備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸
発を行う蒸発部と、該吸脱着部に連結された吸着質の凝
縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、
該吸着材が骨格構造にアルミニウムとリンとヘテロ原子
とを含むゼオライトであることを特徴とする吸着ヒート
ポンプ。
1. An adsorption / desorption unit including an adsorbate, an adsorbent for adsorbing and desorbing the adsorbate, an evaporating unit connected to the adsorption / desorption unit for evaporating the adsorbate, and connected to the adsorption / desorption unit. Heat pump comprising a condenser for condensing the adsorbate,
An adsorption heat pump, wherein the adsorbent is a zeolite having a skeleton structure containing aluminum, phosphorus, and a hetero atom.
【請求項2】 骨格構造にアルミニウムとリンとヘテロ
原子とを含むゼオライトが、下記式(1)、(2)およ
び(3) 0.001≦x≦0.3 ・・・(1) (式中、xは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するヘテロ原子のモル比を示す) 0.3≦y≦0.6 ・・・(2) (式中、yは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するアルミニウムのモル比を示す) 0.3≦z≦0.6 ・・・(3) (式中、zは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するリンのモル比を示す)で表される原
子の存在割合を有するものである請求項1に記載の吸着
ヒートポンプ。
2. A zeolite containing aluminum, phosphorus and a hetero atom in a skeletal structure is represented by the following formulas (1), (2) and (3): 0.001 ≦ x ≦ 0.3 (1) In the formula, x represents the molar ratio of hetero atoms to the total of aluminum, phosphorus, and hetero atoms in the skeletal structure. 0.3 ≦ y ≦ 0.6 (2) (in the formula, y is aluminum in the skeletal structure) 0.3 ≦ z ≦ 0.6 (3) (wherein z represents the total amount of aluminum, phosphorus and hetero atoms in the skeletal structure) The adsorption heat pump according to claim 1, wherein the adsorption heat pump has a proportion of atoms represented by the following formula:
【請求項3】 ヘテロ原子がケイ素である請求項1また
は2に記載の吸着ヒートポンプ。
3. The adsorption heat pump according to claim 1, wherein the heteroatom is silicon.
【請求項4】 吸着質と、吸着質を吸脱着する吸着材を
備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸
発を行う蒸発部と、該吸脱着部に連結された吸着質の凝
縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、
該吸着材が、25℃で測定した水蒸気吸着等温線におい
て相対蒸気圧0.05以上、0.30以下の範囲で相対
蒸気圧が0.15変化したときに水の吸着量変化が0.
18g/g以上の相対蒸気圧域を有する吸着材である、
吸着ヒートポンプ。
4. An adsorbate, an adsorption / desorption section having an adsorbent for adsorbing and desorbing the adsorbate, an evaporator connected to the adsorption / desorption section for evaporating the adsorbate, and connected to the adsorption / desorption section. Heat pump comprising a condenser for condensing the adsorbate,
When the relative vapor pressure of the adsorbent changes by 0.15 in the range of 0.05 to 0.30 in the water vapor adsorption isotherm measured at 25 ° C., the change in the amount of water adsorbed is 0.
An adsorbent having a relative vapor pressure range of 18 g / g or more,
Adsorption heat pump.
【請求項5】 該吸着材が、25℃で測定した水蒸気吸
着等温線において相対蒸気圧0.05での吸着量が0.
15g/g以下である請求項4に記載の吸着ヒートポン
プ。
5. The adsorption amount of the adsorbent at a relative vapor pressure of 0.05 in a water vapor adsorption isotherm measured at 25 ° C. is 0.
The adsorption heat pump according to claim 4, which has a weight of 15 g / g or less.
【請求項6】 該吸着材がゼオライトであって、そのフ
レームワーク密度が10.0T/1,000Å3以上、
16.0T/1,000Å3以下の範囲である請求項4
または5に記載の吸着ヒートポンプ。
6. The adsorption material is a zeolite, the framework density of 10.0T / 1,000Å 3 or more,
16.0T / claim 4 1,000 Å 3 or less of the range
Or the adsorption heat pump according to 5.
【請求項7】 該吸着材が骨格構造にアルミニウムとリ
ンとヘテロ原子とを含むゼオライトであることを特徴と
する請求項4〜6のいずれか1項に記載の吸着ヒートポ
ンプ。
7. The adsorption heat pump according to claim 4, wherein the adsorbent is a zeolite having a skeleton structure containing aluminum, phosphorus and a hetero atom.
【請求項8】 該ゼオライトが、下記式(1)、(2)
および(3) 0.001≦x≦0.3 ・・・(1) (式中、xは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するヘテロ原子のモル比を示す) 0.3≦y≦0.6 ・・・(2) (式中、yは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するアルミニウムのモル比を示す) 0.3≦z≦0.6 ・・・(3) (式中、zは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するリンのモル比を示す)で表される原
子の存在割合を有するものである請求項6又は7に記載
の吸着ヒートポンプ
8. The zeolite according to the following formula (1) or (2)
And (3) 0.001 ≦ x ≦ 0.3 (1) (in the formula, x represents a molar ratio of a hetero atom to the total of aluminum, phosphorus and hetero atoms in the skeletal structure) 0.3 ≦ y ≦ 0.6 (2) (in the formula, y represents a molar ratio of aluminum to the total of aluminum, phosphorus, and a hetero atom in the skeletal structure) 0.3 ≦ z ≦ 0.6 ( 3) The adsorption according to claim 6 or 7, wherein the compound has an abundance of atoms represented by (wherein z represents a molar ratio of phosphorus to the total of aluminum, phosphorus and heteroatoms in the skeleton structure). heat pump
【請求項9】ヘテロ原子がケイ素である請求項7または
8に記載の吸着ヒートポンプ。
9. The adsorption heat pump according to claim 7, wherein the heteroatom is silicon.
【請求項10】 請求項1〜9のいずれか1項に記載の
吸着ヒートポンプを車両室内の空調に使用することを特
徴とする車両用空調装置。
10. An air conditioner for a vehicle, wherein the adsorption heat pump according to any one of claims 1 to 9 is used for air conditioning in a vehicle cabin.
【請求項11】 吸着質と、吸着質を吸脱着する吸着材
を備えた吸脱着部と、該吸脱着部に連結された吸着質の
蒸発を行う蒸発部と、該吸脱着部に連結された吸着質の
凝縮を行う凝縮部とを備えた吸着ヒートポンプにおい
て、脱着側相対蒸気圧φ1における吸着量と、吸着側相
対蒸気圧φ2における吸着量との差が0.18g/g以
上となる条件で運転することを特徴とする吸着ヒートポ
ンプの運転方法
11. An adsorption / desorption section including an adsorbate, an adsorbent for adsorbing and desorbing the adsorbate, an evaporator connected to the adsorption / desorption section for evaporating the adsorbate, and connected to the adsorption / desorption section. Heat pump provided with a condensing part for condensing adsorbate, wherein the difference between the amount of adsorption at the desorption-side relative vapor pressure φ1 and the amount of adsorption at the adsorption-side relative vapor pressure φ2 is 0.18 g / g or more. Operating method of adsorption heat pump characterized in that it operates with
【請求項12】25℃で測定した水蒸気吸着等温線にお
いて、相対蒸気圧0.05以上、0.30以下の範囲で
相対蒸気圧が0.15変化したときに水の吸着量変化が
0.18g/g以上の相対蒸気圧域を有する吸着材から
なる吸着ヒートポンプ用吸着材。
12. In the water vapor adsorption isotherm measured at 25 ° C., when the relative vapor pressure changes by 0.15 in the range of 0.05 to 0.30, the change in the amount of water adsorbed is 0.1%. An adsorbent for an adsorption heat pump comprising an adsorbent having a relative vapor pressure range of 18 g / g or more.
【請求項13】 25℃で測定した水蒸気吸着等温線に
おいて相対蒸気圧0.05での吸着量が0.15g/g
以下である請求項12に記載の吸着ヒートポンプ用吸着
材。
13. The water vapor adsorption isotherm measured at 25 ° C. has an adsorption amount of 0.15 g / g at a relative vapor pressure of 0.05.
The adsorbent for an adsorption heat pump according to claim 12, which is:
【請求項14】 該吸着材がゼオライトであって、その
フレームワーク密度が10.0T/1,000Å3
上、16.0T/1,000Å3以下の範囲である請求
項12または13に記載の吸着ヒートポンプ用吸着材。
14. adsorbing material is a zeolite, the framework density of 10.0T / 1,000Å 3 or more, according to claim 12 or 13 in the range of 16.0T / 1,000Å 3 or less Adsorbent for adsorption heat pump.
【請求項15】 骨格構造にアルミニウムとリンとヘテ
ロ原子とを含むゼオライトであることを特徴とする請求
項12〜14のいずれか1項に記載の吸着ヒートポンプ
用吸着材。
15. The adsorbent for an adsorption heat pump according to claim 12, wherein the adsorbent is a zeolite containing aluminum, phosphorus, and a hetero atom in a skeleton structure.
【請求項16】該ゼオライトが、下記式(1)、(2)
および(3) 0.001≦x≦0.3 ・・・(1) (式中、xは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するヘテロ原子のモル比を示す) 0.3≦y≦0.6 ・・・(2) (式中、yは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するアルミニウムのモル比を示す) 0.3≦z≦0.6 ・・・(3) (式中、zは骨格構造のアルミニウムとリンとヘテロ原
子との合計に対するリンのモル比を示す)で表される原
子の存在割合を有するものである請求項14又は15に
記載の吸着ヒートポンプ用吸着材。
16. The zeolite according to the following formula (1) or (2)
And (3) 0.001 ≦ x ≦ 0.3 (1) (in the formula, x represents a molar ratio of a hetero atom to the total of aluminum, phosphorus and hetero atoms in the skeletal structure) 0.3 ≦ y ≦ 0.6 (2) (in the formula, y represents a molar ratio of aluminum to the total of aluminum, phosphorus, and a hetero atom in the skeletal structure) 0.3 ≦ z ≦ 0.6 ( 3) The adsorption according to claim 14 or 15, wherein the compound has an abundance of atoms represented by the formula (wherein, z represents a molar ratio of phosphorus to the total of aluminum, phosphorus and heteroatoms in the skeletal structure). Adsorbent for heat pump.
【請求項17】ヘテロ原子がケイ素である請求項15ま
たは16に記載の吸着ヒートポンプ用吸着材。
17. The adsorbent for an adsorption heat pump according to claim 15, wherein the hetero atom is silicon.
JP2002042476A 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle Expired - Lifetime JP4542738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042476A JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-45677 2001-02-21
JP2001045677 2001-02-21
JP2001-111902 2001-04-10
JP2001111902 2001-04-10
JP2002042476A JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008135924A Division JP2008267802A (en) 2001-02-21 2008-05-23 Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent

Publications (3)

Publication Number Publication Date
JP2002372332A true JP2002372332A (en) 2002-12-26
JP2002372332A5 JP2002372332A5 (en) 2005-06-23
JP4542738B2 JP4542738B2 (en) 2010-09-15

Family

ID=27346058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042476A Expired - Lifetime JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP4542738B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090458A1 (en) * 2003-04-01 2004-10-21 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for moisture regulating conditioner, adsorption heat pump and moisture regulating conditioner
JP2004333039A (en) * 2003-05-08 2004-11-25 Chubu Electric Power Co Inc Operating method of absorption refrigerating machine
JP2005205331A (en) * 2004-01-23 2005-08-04 Mitsubishi Chemicals Corp Adsorptive material for adsorptive heat pump, and adsorptive heat pump
JP2005230738A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Adsorbing material for adsorption heat pump, adsorbing material for moisture-controllable air conditioner, adsorption heat pump and moisture-controllable air conditioner
EP1652817A1 (en) * 2003-06-20 2006-05-03 Mitsubishi Chemical Corporation Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
JP2007051112A (en) * 2005-08-19 2007-03-01 Mitsubishi Chemicals Corp Porous coordination polymer and application of the same
JP2007083236A (en) * 2002-08-20 2007-04-05 Mitsubishi Chemicals Corp Adsorbent material for air humidity conditioner and air humidity conditioner and its operating method
JP2007144417A (en) * 2005-11-04 2007-06-14 Mitsubishi Chemicals Corp Adsorbing element and air humidity conditioner using the same
JP2009257686A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat-storage system
JP2016161242A (en) * 2015-03-03 2016-09-05 株式会社豊田中央研究所 Heat pump and cold heat generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267802A (en) * 2001-02-21 2008-11-06 Mitsubishi Chemicals Corp Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935018A (en) * 1982-07-26 1984-02-25 ユニオン・カ−バイド・コ−ポレ−シヨン Crystalline silicoaluminophosphate
JPS5949289A (en) * 1982-08-16 1984-03-21 モビル・オイル・コ−ポレ−シヨン Improved catalytic decomposition
JPH0658644A (en) * 1992-08-05 1994-03-04 Fuji Shirishia Kagaku Kk Heat exchanging metallic pipe and adsorption type heat pump
JPH06180159A (en) * 1992-12-09 1994-06-28 Tokyo Gas Co Ltd Adsorption freezer
JPH07501043A (en) * 1992-06-30 1995-02-02 シェブロン リサーチ アンド テクノロジー カンパニー Zeolite production using low silica/alumina zeolite as aluminum source
JPH09227249A (en) * 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc High density porous body and its production
JPH1163720A (en) * 1997-08-08 1999-03-05 Yazaki Corp Coupled refrigerant and adsorbing agent and adsorbing type cold heat generating device using this coupled refrigerant and adsorbing agent
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Recovering method of low-temperature waste heat generated by iron making process
JP2000140625A (en) * 1998-09-07 2000-05-23 Denso Corp Adsorbent and air conditioner for vehicle using the adsorbent
JP2001239156A (en) * 2000-03-01 2001-09-04 Yamaguchi Technology Licensing Organization Ltd Adsorbent for heat pump and heat pump using adsorbent

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935018A (en) * 1982-07-26 1984-02-25 ユニオン・カ−バイド・コ−ポレ−シヨン Crystalline silicoaluminophosphate
JPS5949289A (en) * 1982-08-16 1984-03-21 モビル・オイル・コ−ポレ−シヨン Improved catalytic decomposition
JPH07501043A (en) * 1992-06-30 1995-02-02 シェブロン リサーチ アンド テクノロジー カンパニー Zeolite production using low silica/alumina zeolite as aluminum source
JPH0658644A (en) * 1992-08-05 1994-03-04 Fuji Shirishia Kagaku Kk Heat exchanging metallic pipe and adsorption type heat pump
JPH06180159A (en) * 1992-12-09 1994-06-28 Tokyo Gas Co Ltd Adsorption freezer
JPH09227249A (en) * 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc High density porous body and its production
JPH1163720A (en) * 1997-08-08 1999-03-05 Yazaki Corp Coupled refrigerant and adsorbing agent and adsorbing type cold heat generating device using this coupled refrigerant and adsorbing agent
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Recovering method of low-temperature waste heat generated by iron making process
JP2000140625A (en) * 1998-09-07 2000-05-23 Denso Corp Adsorbent and air conditioner for vehicle using the adsorbent
JP2001239156A (en) * 2000-03-01 2001-09-04 Yamaguchi Technology Licensing Organization Ltd Adsorbent for heat pump and heat pump using adsorbent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SRIDHAR KOMARNENI, "HIGH PERFORMANCE NANOCOMPOSITE DESICCATION MATERIALS TOPICAL REPORT (MARCH 1990-JUNE 1992)", JPN4007011674, July 1992 (1992-07-01), US, pages 18 - 20, ISSN: 0000866096 *
W.M.MEIDER, "ATLAS OF ZEOLITE STRUCTURE OF TYPES", vol. 4th edition, JPN4007011675, 1996, GB, pages 104, ISSN: 0000866097 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083236A (en) * 2002-08-20 2007-04-05 Mitsubishi Chemicals Corp Adsorbent material for air humidity conditioner and air humidity conditioner and its operating method
JP4661772B2 (en) * 2002-08-20 2011-03-30 三菱化学株式会社 Humidity conditioning air-conditioning adsorbent, humidity conditioning air conditioner and operation method thereof
WO2004090458A1 (en) * 2003-04-01 2004-10-21 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for moisture regulating conditioner, adsorption heat pump and moisture regulating conditioner
US7422993B2 (en) 2003-04-01 2008-09-09 Mitsubishi Chemical Corporation Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
JP2004333039A (en) * 2003-05-08 2004-11-25 Chubu Electric Power Co Inc Operating method of absorption refrigerating machine
JP4565539B2 (en) * 2003-05-08 2010-10-20 中部電力株式会社 Operation method of adsorption refrigerator
EP1652817A1 (en) * 2003-06-20 2006-05-03 Mitsubishi Chemical Corporation Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
EP1652817A4 (en) * 2003-06-20 2014-01-08 Mitsubishi Plastics Inc Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
JP4654580B2 (en) * 2004-01-23 2011-03-23 三菱化学株式会社 Operation method of adsorption heat pump
JP2005205331A (en) * 2004-01-23 2005-08-04 Mitsubishi Chemicals Corp Adsorptive material for adsorptive heat pump, and adsorptive heat pump
JP2005230738A (en) * 2004-02-20 2005-09-02 Mitsubishi Chemicals Corp Adsorbing material for adsorption heat pump, adsorbing material for moisture-controllable air conditioner, adsorption heat pump and moisture-controllable air conditioner
JP4654582B2 (en) * 2004-02-20 2011-03-23 三菱化学株式会社 Adsorption heat pump operation method, adsorption heat pump, humidity control air conditioner operation method, and humidity control air conditioner
JP2007051112A (en) * 2005-08-19 2007-03-01 Mitsubishi Chemicals Corp Porous coordination polymer and application of the same
JP2007144417A (en) * 2005-11-04 2007-06-14 Mitsubishi Chemicals Corp Adsorbing element and air humidity conditioner using the same
JP2009257686A (en) * 2008-04-18 2009-11-05 Toyota Central R&D Labs Inc Chemical heat-storage system
JP2016161242A (en) * 2015-03-03 2016-09-05 株式会社豊田中央研究所 Heat pump and cold heat generation method
US10309694B2 (en) 2015-03-03 2019-06-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump and cooling power generation method

Also Published As

Publication number Publication date
JP4542738B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US7497089B2 (en) Adsorption heat pump and use of adsorbent as adsorbent for adsorption heat pump
US7422993B2 (en) Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
US7037360B2 (en) Adsorbent for heat utilization system, adsorbent for regenerator system, regenerator system comprising the adsorbent, ferroaluminophosphate and method for production thereof
JP4669914B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
Freni et al. Characterization of zeolite-based coatings for adsorption heat pumps
JP4542738B2 (en) Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle
JP4896110B2 (en) Zeolite and adsorbent
JP3979327B2 (en) Adsorbent for adsorption heat pump, adsorption heat pump, and operation method of adsorption heat pump
US9387457B2 (en) Water vapor adsorbent for adsorption heat pump, method for producing water vapor adsorbent, and adsorption heat pump including water vapor adsorbent
CN100416182C (en) Adsorption heat pump and use of adsorbent as adsorbent for adsoprtion heat pump
JP4654580B2 (en) Operation method of adsorption heat pump
JP4112298B2 (en) Adsorption heat pump
JP4249437B2 (en) Adsorption heat pump, adsorption heat pump operation method, and vehicle air conditioner using adsorption heat pump
JP5261875B2 (en) Aluminophosphate zeolite adsorbent comprising oxygen 6-membered ring, production method thereof and use thereof
JP4710023B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
JP2002372332A5 (en)
JP2008267802A (en) Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent
JP4654582B2 (en) Adsorption heat pump operation method, adsorption heat pump, humidity control air conditioner operation method, and humidity control air conditioner
JP2007181795A (en) Aluminophosphate-based zeolite adsorbent having pore of one-dimensional structure and its use
Inagaki et al. Kakiuchi et al.
JP2005098647A (en) Adsorption type cooler
JP2744713B2 (en) Adsorption cooling device
JPH05133638A (en) Adsorption type cooling apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080715

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4542738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term