JP4542738B2 - Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle - Google Patents

Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle Download PDF

Info

Publication number
JP4542738B2
JP4542738B2 JP2002042476A JP2002042476A JP4542738B2 JP 4542738 B2 JP4542738 B2 JP 4542738B2 JP 2002042476 A JP2002042476 A JP 2002042476A JP 2002042476 A JP2002042476 A JP 2002042476A JP 4542738 B2 JP4542738 B2 JP 4542738B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorbent
heat pump
vapor pressure
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002042476A
Other languages
Japanese (ja)
Other versions
JP2002372332A5 (en
JP2002372332A (en
Inventor
博行 垣内
隆彦 武脇
克 藤井
正典 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Denso Corp
Original Assignee
Mitsubishi Chemical Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Denso Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002042476A priority Critical patent/JP4542738B2/en
Publication of JP2002372332A publication Critical patent/JP2002372332A/en
Publication of JP2002372332A5 publication Critical patent/JP2002372332A5/ja
Application granted granted Critical
Publication of JP4542738B2 publication Critical patent/JP4542738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定の吸着材を用いた吸着ヒートポンプ及びその運転方法、ならびに該吸着ヒートポンプを用いた車両用空調装置に関する。更に、吸着ヒートポンプ用吸着材に関する。
【0002】
【従来の技術】
吸着ヒートポンプにおいては、吸着質、例えば水を吸着した吸着材を再生するために、吸着材を加熱して吸着質を脱着させ、乾燥した吸着材を吸着質の吸着に使用する温度まで冷却して再度吸着質の吸着に使用する。
比較的高温(120℃以上)の排熱、温熱を、吸着材の再生熱源として利用する吸収式ヒートポンプが既に実用化されている。しかし一般にコジェネレーション機器、燃料電池、自動車エンジンの冷却水や太陽熱などによって得られる熱は100℃以下と比較的低温であるため、現在実用化されている吸収式ヒートポンプの駆動熱源としては利用できず、100℃以下、更には60℃〜80℃の低温排熱の有効利用が求められていた。
【0003】
吸着ヒートポンプの動作原理は同じでも利用可能な熱源温度によって吸着材に求められる吸着特性が大きく異なる。例えば、高温側の熱源として用いられるガスエンジンコージェネレーションや固体高分子型燃料電池の排熱温度は60℃〜80℃であり、自動車エンジンの冷却水の温度は85℃〜90℃である。そして冷却側の熱源温度も装置の設置場所によって異なる。例えば自動車の場合はラジエターで得られる温度であり、ビルや住宅などでは水冷塔や河川水などの温度である。つまり、吸着ヒートポンプの操作温度範囲は、ビルなどに設置する場合には低温側が25℃〜35℃、高温側が60℃〜80℃、自動車などに設置する場合には低温側が30℃〜40℃、高温側が85℃〜90℃程度である。このように、排熱を有効利用するためには、低温側熱源と高温側熱源の温度差が小さくても駆動できる装置が望まれている。
【0004】
吸着材の周囲が比較的高い温度でも装置が充分に作動するためには、吸着質を低相対蒸気圧で吸着させる必要があり、また使用する吸着材を少量にして装置を小型化するためには吸着材の吸脱着量が多い必要がある。そして吸着質の脱着(吸着材の再生)に低温の熱源を利用するためには脱着温度が低い必要がある。すなわち吸着ヒートポンプに用いる吸着材として(1)吸着質を低い相対蒸気圧で吸着し(高温で吸着可能)、(2)吸脱着量が多く、(3)吸着質を高い相対蒸気圧で脱着(低温で脱着可能)する吸着材が望まれている。
【0005】
また、吸着ヒートポンプに用いる吸着材として、各種の吸着材の使用が検討されているが、諸種の問題点があり、その解決が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は吸着質を低相対蒸気圧域で吸脱着しうる吸着材を用いた、効率の良い吸着ヒートポンプ、これを用いた車両用空調装置、及びそれに用いられる吸着ヒートポンプ用吸着材の提供を目的としてなされたものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討した結果、吸着質の吸脱着を装置の駆動源とする吸着ヒートポンプに適した吸着材を見いだした。
すなわち本発明の要旨は、吸着質と、吸着質を吸脱着する吸着材を備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸発を行う蒸発部と、該吸脱着部に連結された吸着質の凝縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、該吸着材が、25℃で測定した水蒸気吸着等温線において相対蒸気圧0.05以上、0.30以下の範囲で相対蒸気圧が0.15変化したときに水の吸着量変化が0.18g/g以上の相対蒸気圧域を有し、かつ、骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトであり、該ゼオライトがCHA構造であることを特徴とする吸着ヒートポンプおよびこれを車両室内の空調に使用することを特徴とする車両用空調装置に存する。
【0009】
更に、他の要旨は、25℃で測定した水蒸気吸着等温線において、相対蒸気圧0.05以上、0.30以下の範囲で相対蒸気圧が0.15変化したときに水の吸着量変化が0.18g/g以上の相対蒸気圧域を有し、該吸着材が骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトであり、該ゼオライトがCHA構造であることを特徴とする吸着ヒートポンプ用吸着材に存する
【0010】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。
吸着ヒートポンプの操作蒸気圧範囲は、高温熱源温度Thigh、低温熱源温度Tlow1、低温熱源温度Tlow2および冷熱生成温度Tcoolから求められる脱着側相対蒸気圧φ1と吸着側相対蒸気圧φ2によって決定される。
【0011】
φ1とφ2は次式
脱着側相対蒸気圧φ1=平衡蒸気圧(Tlow1)/平衡蒸気圧(Thigh)吸着側相対蒸気圧φ2=平衡蒸気圧(Tcool)/平衡蒸気圧(Tlow2)により、算出でき、φ1とφ2との間が操作可能な相対蒸気圧範囲である。
ここで、高温熱源温度Thighは吸着材から吸着質を脱着して吸着材を再生する際に加熱する熱媒の温度を、低温熱源温度Tlow1は凝縮部の吸着質の温度を、低温熱源温度Tlow2は再生後の吸着材を吸着に共する際に冷却する熱媒の温度を、冷熱生成温度Tcoolは蒸発部の吸着質の温度すなわち生成した冷熱の温度を意味する。平衡蒸気圧は吸着質の平衡蒸気圧曲線を用いて、温度から求めることができる。
【0012】
以下、吸着質が水である場合の操作蒸気圧範囲を例示する。高温熱源温度80℃、低温熱源温度30℃の場合、操作蒸気圧範囲はφ1〜φ2=0.09〜0.29である。同様に高温熱源温度が60℃の場合、操作相対水蒸気圧範囲はφ1〜φ2=0.21〜0.29である。また、自動車エンジンの排熱を利用して吸着ヒートポンプを駆動する場合については特開2000−140625号に詳細に記載されている。この報告を基に推算すると、高温熱源温度約90℃、低温熱源温度30℃である。この場合、操作相対水蒸気圧範囲はφ1〜φ2=0.06〜0.29である。
【0013】
以上より、ガスエンジンコージェネレーション、固体高分子型燃料電池または自動車エンジンの排熱を利用して吸着ヒートポンプを駆動する場合、操作相対水蒸気圧範囲はφ1〜φ2=0.05〜0.30、さらに限定すればφ1〜φ2=0.06〜0.29となると考えられる。つまり、この操作湿度範囲の中で吸着量の変化が大きい材料が好ましい。したがって通常は相対蒸気圧0.05〜0.30の範囲において、好ましくは0.06〜0.29の範囲において吸着量が大きく変化する材料が好ましい。
【0014】
例えば吸着ヒートポンプにより、3.0kW(=10,800kJ/hr)の冷房能力を得る場合について想定する。ここで、3.0kWは一般的な自動車のエアコンに使用されるエアコンの冷房能力である。吸着ヒートポンプの容量は、種々の車両のエンジンルーム調査から少なくとも15リットル以下であることが望ましいと考えられる。
【0015】
次に、15リットル以下の容量の中に充填可能な吸着剤重量を求める。
エンジンルームに載せるべき部品としては吸着塔本体、蒸発器、凝縮器および制御バルブ類がある。これらを概略一体に形成したアッセンブリを15リットル以下の容量にする必要がある。我々の検討では、蒸発器と凝縮器とバルブ類の体格はおよそ4.5リットルで形成できると考えられる。従って吸着塔本体の容量はおよそ10.5リットル以下である。吸着塔内における吸着剤の充填率および吸着剤のかさ密度は、通常、それぞれ約30%、約0.6kg/リットルであるので、充填可能な吸着剤重量(W)は10.5×30%×0.6=1.89kg程度である。
【0016】
次に吸着剤に求められる特性について説明する。
吸着式ヒートポンプでの冷房能力Rは次式Aで表される。
R=(W・ΔQ・ηC・ΔH/τ)・ηh (式A)
ここでWは吸着塔1台(片側)に充填される吸着剤重量、ΔQは吸着時と脱離時の条件における平衡吸着量振幅で前記吸着量差(Q2−Q1)、ηCは平衡吸着振幅ΔQに対する切り替え時間内の実際の吸着振幅の割合を示す吸着振幅効率、ΔHは水の蒸発潜熱、τは吸着工程と脱離工程との切り替え時間、ηhは吸着剤や熱交換器が温水温度と冷却水温度との間を温度変化することによるヒートマス損失を考慮したヒートマス効率、を示す。
【0017】
Rは前述のように3kW、Wは1.89kg/2=0.95kgである。また我々の過去の検討から、τはおよそ60secが適当であり、ΔH、ηC、ηhの値はそれぞれおよそ2500kJ/kg、0.6、0.85であることが得られているので(式A)からΔQを求めると、
ΔQ = R/W/ηC/ΔH・τ/ηh=3.0/0.95/0.6/2500・60/0.85 = 0.149kg/kg
となる。すなわち自動車用吸着式ヒートポンプに用いる吸着剤としては、
ΔQは0.15g/g以上、0.18g/g以上が好ましく、0.20g/g以上が更に好ましい。
【0018】
吸着ヒートポンプは、吸着材が吸着質を吸脱着する能力を駆動源として利用している。吸着ヒートポンプにおいては吸着質である吸着質として、水、エタノールおよびアセトンなどが使用できるが、中でも安全性、価格、蒸発潜熱の大きさから、水が最も好ましい。吸着質は蒸気として吸着材に吸着されるが、吸着材は、狭い相対蒸気圧範囲で吸着量の変化が大きい材料が好ましい。狭い相対蒸気圧範囲で吸着量の変化が大きいと、同じ条件で同等の吸着量を得るために必要な吸着材の量を減らし、冷却熱源と加熱熱源の温度差が小さくても吸着ヒートポンプを駆動できるからである。
【0019】
本発明の特徴の一つである吸着材は骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトである。ここでいうゼオライトは天然のゼオライトでも人工のゼオライトでもよく、例えば人工のゼオライトではInternational Zeolite Association (IZA)の規定によるアルミノシリケート類、アルミノフォスフェート類などが含まれる。
【0020】
ここで、アルミノフォスフェート類の中でもヘテロ原子を含まないアルミノフォスフェート(AlPO4−5)は疎水的な吸着特性を示すため本発明の吸着材としては適当でない。本発明の吸着材として好適に使用するためには親水性の付与のためにアルミニウム、リンの一部をケイ素、リチウム、マグネシウム、チタン、ジルコニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、パラジウム、銅、亜鉛、ガリウム、ゲルマニウム、砒素、スズ、カルシウム、または硼素等に置換する必要がある。
【0021】
この中でも、ケイ素、マグネシウム、チタン、ジルコニウム、鉄、コバルト、亜鉛、ガリウム、または硼素に置換したゼオライトが好ましく、さらにはケイ素に置換したゼオライトが最も好ましく、これは通称SAPOと称されている。これらヘテロ原子は骨格内のアルミニウム、リンと二種類以上置換されていても良い。
【0022】
本発明で吸着材として用いるゼオライトとしては、骨格構造にアルミニウムとリンとヘテロ原子を含むゼオライトであって、下記式(1)、(2)および(3)で表される原子の存在割合を有するものが好ましい。
0.001≦x≦0.3 ・・・(1)
(式中、xは骨格構造のアルミニウムとリンとヘテロ原子の合計に対するヘテロ原子のモル比を示す)
0.3≦y≦0.6 ・・・(2)
(式中、yは骨格構造のアルミニウムとリンとヘテロ原子の合計に対するアルミニウムのモル比を示す)
0.3≦z≦0.6 ・・・(3)
(式中、zは骨格構造のアルミニウムとリンとヘテロ原子の合計に対するリンのモル比を示す)
そして、上記原子の存在割合のなかで、ヘテロ原子の存在割合が、下記式(4)0.003≦x≦0.25 ・・・(4)
(式中、xは上記と同義である)
で表されるものが好ましく、下記式(5)
0.005≦x≦0.2 ・・・(5)
(式中、xは上記と同義である)
で表されるものが更に好ましい。
【0023】
また、本発明で吸着材として用いるゼオライトは、そのフレームワーク密度が10.0T/1,000Å3以上16.0T/1,000Å3以下であるのが好ましく、更に好ましくは10.0T/1,000Å3以上15.0/1,000Å3以下の範囲のゼオライトである。ここでフレームワーク密度とは、ゼオライトの1,000Å3あたりの酸素以外の骨格を構成する元素の数を意味し、この値はゼオライトの構造により決まるものである。
【0024】
このようなゼオライトの構造としては、IZAが定めるコードで示すと、AFG、MER、LIO、LOS、PHI、BOG、ERI、OFF、PAU、EAB、AFT、LEV、LTN、AEI、AFR、AFX、GIS、KFI、CHA、GME、THO、MEI、VFI、AFS、LTA、FAU、RHO、DFO、EMT、AFY、*BEA等があり、好ましくはAEI、GIS、KFI、CHA、GME、VFI、AFS、LTA、FAU、RHO、EMT、AFY、*BEAが挙げられる。
【0025】
フレームワーク密度は細孔容量と相関があり、一般的に、より小さいフレームワーク密度のゼオライトがより大きい細孔容量を有し、したがって吸着容量が大きくなる。また、現在合成されていないゼオライトも、合成された場合にフレームワーク密度がこの領域内にあれば、本発明においての吸着材として好適に使用できると予想される。
例えば、CHA構造のアルミノフォスフェートの場合はケイ素などの原子を骨格内に入れた、SAPO−34として知られるシリコアルミノフォスフェートを用いる事により所望な吸着性能を持たせる事ができる。なおSAPO−34の合成方法は、米国特許第4440871号公報等に記載されている。
【0026】
吸着材の細孔径は、吸着特性と強度の点から、好ましくは、3Å以上10Å程度である。
また、ゼオライトがアルミノシリケートの場合は、骨格内のケイ素、アルミニウムの一部(アルミニウムの場合は全部もあり得る)が他の原子、例えば、マグネシウム、チタン、ジルコニウム、バナジウム、クロム、マンガン、鉄、コバルト、亜鉛、ガリウム、スズ、硼素等に置換していてもよい。アルミノシリケートの場合にケイ素とアルミニウム(アルミニウム+ヘテロ原子)のモル比が小さすぎると先に示した13Xの場合のように、あまりにも低い湿度領域で急激に吸着されてしまい、また大きすぎる場合は疎水的すぎて水をあまり吸着しなくなる。
そのため本発明で用いるゼオライトは、ケイ素/アルミニウムのモル比が通常4以上20以下であって、4.5以上18以下が好ましく、5以上16以下がさらに好ましい。
【0027】
これらのゼオライトは交換可能なカチオン種を持つものを含むが、その場合のカチオン種としては、プロトン、Li、Naなどのアルカリ元素、Mg、Caなどのアルカリ土類元素、La、Ce等の希土類元素、Fe、Co、Ni等の遷移金属等があげられ、プロトン、アルカリ元素、アルカリ土類元素、希土類元素が好ましい。さらにはプロトン、Li、Na、K、Mg、Caがより好ましい。これらのゼオライトは単独で用いても、複数組み合わせても、他のシリカやアルミナ、活性炭、粘土等と組み合わせ用いてもよい。
【0028】
本発明で用いる特に好ましい吸着材の一例として、CHA構造のアルミノフォスフェートであって、ゼオライトの骨格構造にケイ素などの原子を入れた、SAPO−34(フレームワーク密度=14.6T/1,000Å3)として知られるシリコアルミノフォスフェートが挙げられる。
更に、本発明で用いる吸着材は、25℃で測定した水蒸気吸着等温線において相対蒸気圧0.05以上0.30以下の範囲で相対蒸気圧が0.15変化したときに水の吸着量変化が0.18g/g以上、好ましくは0.2g/g以上の相対蒸気圧領域を有する吸着材、好ましくは0.05以上0.20以下の範囲で水の吸着量変化が0.18g/g以上、好ましくは0.2g/g以上の吸着材である。
本発明においては、相対蒸気圧0.05以上、0.30以下で相対蒸気圧が0.15変化したときの水の吸着量差が0.18g/g以上であるゼオライトを用いる。ゼオライトは結晶であるため吸着に寄与する細孔容積がフレームワーク密度に依存してきまる。フレームワーク密度が最も小さいゼオライトの一例である13X(フレームワーク密度12.7T/1000 3 )の最大吸着量は約0.30g/gである。よって、本発明が規定する相対蒸気圧の下限0.05における吸着量が0.15g/gより多いと、吸着量差0.18g/gを得ることは不可能である。
よって、水蒸気吸着等温線において相対蒸気圧0.05での吸着量が0.15g/g以下、0.12g/g以下が好ましく、0.05g/g以下が更に好ましい。
吸着等温線測定装置(ベルソーブ18:日本ベル(株))により測定したSAPO−34(UOP LLC製)の25℃における水蒸気の吸着等温線を図1に示す。吸着等温線の測定は、空気高温槽温度50℃、吸着温度25℃、初期導入圧力3.0torr、導入圧力設定点数0、飽和蒸気圧23.76mmHg、平衡時間500秒で行った。図1から相対蒸気圧0.07〜0.10において急激に水蒸気を吸着しており、相対蒸気圧範囲0.05〜0.20の吸着量変化量は0.25g/gであることがわかる。この様な特性を有するSAPO−34は、本発明で用いる吸着材のうち、最も好ましいものの一つである。
上述のように、本発明で用いる吸着材は、従来のシリカゲルやゼオライトと比較して同じ相対蒸気圧範囲において吸着量がより多く変化するため、ほぼ同じ重量の吸着材を用いてより多くの除湿効果を発生できる。
【0029】
本発明の特徴の1つは上記特性を有する吸着材を、吸着ヒートポンプの、吸着質の吸脱着部の吸着材として使用することである。即ち、狭い範囲の相対蒸気圧変化で大きな吸着量変化を得られることから、吸着材の充填量が限られる吸着ヒートポンプ、例えば車両用空調装置等に適している。
以下、上記した吸着材を用いる本発明の吸着ヒートポンプの作用について、図4に記載した機器構成の吸着ヒートポンプにより具体的に説明するが、本発明の吸着ヒートポンプはこれに限定されるものではない。
【0030】
本発明の吸着ヒートポンプの一例の概念図を図4に示す。図4に示す吸着ヒートポンプは、吸着質を吸脱着可能な吸着材と、吸着材が充填され吸着質の吸脱着により発生した熱を熱媒に伝達する吸脱着部である吸着塔1および2と、吸着質の蒸発により得られた冷熱を外部へ取り出す蒸発器4と、吸着質の凝縮により得られた温熱を外部へ放出する凝縮器5から構成されている。なお、吸着ヒートポンプを操作する場合には運転に必要な吸脱着量を得られるように環境温度における吸着等温線から操作条件を求め、通常は装置を運転する上で最大の吸脱着量を得られるように決定する。
図4に示すごとく、吸着材が充填された吸着塔1及び2は、吸着質配管30により相互に接続され、該吸着質配管30には制御バルブ31〜34を設ける。ここで、吸着質は吸着質配管内で吸着質の蒸気または吸着質の液体及び蒸気との混合物として存在する。
【0031】
吸着質配管30には蒸発器4及び凝縮器5が接続されている。吸着塔1及び2は蒸発器4、凝縮器5の間に並列に接続されており、凝縮器5と蒸発器4の間には凝縮器にて凝縮された吸着質を蒸発器4に戻すための戻し配管3を設ける。なお、符号41は蒸発器4からの冷房出力となる冷水の入口、符号51は凝縮器5に対する冷却水の入口である。符号42及び52はそれぞれ冷水及び冷却水の出口である。また、冷水配管41及び42には、室内空間(空調空間)と熱交換するための室内機300と、冷水を循環するポンプ301が接続されている。
また、吸着塔1には熱媒配管11が、吸着塔2には熱媒配管21がそれぞれ接続され、該熱媒配管11及び21には、それぞれ切り替えバルブ115及び116並びに215及び216が設けてある。また、熱媒配管11及び21はそれぞれ吸着塔1及び2内の吸着材を加熱または冷却するための加熱源または冷却源となる熱媒を流す。熱媒は、特に限定されず、吸着塔内の吸着材を有効に加熱・冷却できればよい。
温水は切り替えバルブ115、116、215、及び216の開閉により、入口113及び/又は213より導入され、各吸着塔1及び/又は2を通過し、出口114及び/又は214より導出される。冷却水も同様の切り替えバルブ115、116、215、及び216の開閉により、入口111及び/又は211より導入され、各吸着器1及び/又は2を通過し、出口112及び/又は212より導出される。また、熱媒配管11及び/又は21には、図示しないが外気と熱交換可能に配設された室外機、温水を発生する熱源、熱媒を循環するポンプが接続されている。熱源としては特に限定されず、例えば自動車エンジン、ガスエンジンやガスタービンなどのコジェネレーション機器および燃料電池などが挙げられ、また、自動車用として用いる時には、自動車エンジン、自動車用燃料電池が好ましい熱源の例として挙げられる。
図4を用いて吸着式ヒートポンプの運転方法について説明する。第1行程では制御バルブ31及び34を閉鎖、制御バルブ32及び33を解放し、吸着塔1において再生工程を、吸着塔2において吸着工程を行う。また、切り替えバルブ115、116、215、及び216を操作し、熱媒パイプ11には温水を、熱媒パイプ21には冷却水を流通させる。
吸着塔2を冷却する際には冷却塔等の熱交換器によって外気、河川水等と熱交換して冷やされた冷却水を熱媒パイプ21を通して導入し、通常30〜40℃程度に冷却される。また、制御バルブ32の開操作により蒸発器4内の水は蒸発し、水蒸気となって吸着塔2に流れ込み、吸着材に吸着される。蒸発温度での飽和蒸気圧と吸着材温度(一般的には20〜50℃、好ましくは20〜45℃、更に好ましくは30〜40℃)に対応した吸着平衡圧との差により水蒸気移動が行われ、蒸発器4においては蒸発の気化熱に対応した冷熱、即ち冷房出力が得られる。吸着塔の冷却水の温度と蒸発器で生成する冷水温度との関係から吸着側相対蒸気圧φ2(ここでφ2は蒸発器で生成する冷水温度における吸着質の平衡蒸気圧を、吸着塔の冷却水の温度における吸着質の平衡蒸気圧で除すことにより求める)が決定されるが、φ2は本発明で規定した吸着材が最大に水蒸気を吸着する相対蒸気圧より大きくなるよう運転することが好ましい。φ2が本発明で規定した吸着材が最大に水蒸気を吸着する相対蒸気圧より小さい場合には、吸着材の吸着能を有効に利用できず、運転効率が悪くなるからである。φ2は環境温度等により適宜設定することができるが、φ2における吸着量が通常0.20以上、好ましくは0.29以上、より好ましくは0.30以上となる温度条件で吸着ヒートポンプを運転する。
再生工程にある吸着塔1は通常40〜100℃、好ましくは50〜98℃、更に好ましくは60〜95℃の温水により加熱され、前記温度範囲に対応した平衡蒸気圧になり、凝縮器5の凝縮温度30〜40℃(これは凝縮器を冷却している冷却水の温度に等しい)での飽和蒸気圧で凝縮される。吸着塔1から凝縮器5へ水蒸気が移動し、凝縮されて水となる。水は戻し配管3により蒸発器4へ戻される。凝縮器の冷却水の温度と温水の温度との関係から脱着側相対蒸気圧φ1(ここでφ1は凝縮器の冷却水の温度における吸着質の平衡蒸気圧を、温水の温度における吸着質の平衡蒸気圧で除すことにより求める)が決定されるが、φ1は吸着材が急激に水蒸気を吸着する相対蒸気圧より小さくなるよう運転することが好ましい。もし、φ1が吸着材がが急激に水蒸気を吸着する相対蒸気圧より大きいと、吸着材の優れた吸着量が有効に利用できないからである。φ1は環境温度等により適宜設定することができるが、φ1における吸着量が通常0.06以下、好ましくは0.05以下となる温度条件で吸着ヒートポンプを運転する。なお、φ1における吸着質の吸着量とφ2における吸着質の吸着量との差が、通常0.18g/g以上、好ましくは0.20g/g以上、さらに好ましくは0.25g/g以上となるように運転する。以上が第1行程である。
次の第2行程では、吸着塔1が吸着工程、吸着塔2が再生工程となるように、制御バルブ31〜34及び切り替えバルブ115、116、215、及び216を切り替えることで、同様に蒸発器4から冷熱、即ち冷房出力を得ることができる。以上の第1及び第2行程を順次切り替えることで吸着ヒートポンプの連続運転を行う。
なお、ここでは2基の吸着塔を設置した場合の運転方法を説明したが、吸着材が吸着した吸着質の脱着を適宜おこなうことにより、いずれかの吸着塔が吸着質を吸着できる状態を維持できれば吸着塔は何基設置してもよい。
【0032】
【発明の効果】
吸着ヒートポンプ用の吸着材としては、一般的にシリカゲルと低シリカアルミナ比のゼオライトが用いられてきた。しかし、従来吸着ヒートポンプに利用されてきた吸着材は、比較的低温の熱源を吸着ヒートポンプの駆動源として利用するには吸脱着能力が不十分であった。
例えば、吸着ヒートポンプ用のゼオライトの代表例として13Xの水蒸気吸着等温線を考えると、相対蒸気圧0.05以下で急激に吸着され、0.05より高い相対蒸気圧域ではゼオライトの水蒸気吸着量は変化しない。吸着剤を再生する際には、周囲の気体の相対湿度を低下させて一度吸着した水分を脱着して除くが、ゼオライト13Xに吸着された水を脱着するには相対蒸気圧を下げる必要があるため、150℃〜200℃の熱源が必要であると言われている。一般にゼオライトは水の吸着能力に優れるが、一度吸着すると吸着質が脱着しづらく、再生に高温の熱源が必要という欠点がある。
また最近では界面活性剤のミセル構造を鋳型として合成したメソポーラスモレキュラーシーブ(FSM−10など)(特開平9−178292号)や通称AlPO4と称される多孔質リン酸アルミニウム系モレキュラーシーブ(特開平11−197439号)などのゼオライトも検討されている。メソポーラスモレキュラーシーブ(FSM−10)は相対蒸気圧0.20と0.35の範囲で吸着量差は0.25g/gと大きく、有望な素材である(特開平9−178292号:図14のグラフ4;FSM−10)。しかし、本発明の吸着ヒートポンプの運転操作の一例である相対蒸気圧0.05〜0.30の範囲では吸着量が小さい。その中でも吸着量変化が大きいのは相対蒸気圧0.15〜0.30の範囲であるが、この時の吸着量差は0.08g/gであり、吸着ヒートポンプの性能は劣らざるを得ない。また、繰り返し使用すると構造が崩れ、吸着材としての機能が低下することが指摘されており、耐久性が課題となっている。
例えば、図3に示す多孔質リン酸アルミニウム系モレキュラーシーブのAFI型(フレームワーク密度=17.5T/1,000Å3)ゼオライトであるALPO−5の吸着等温線(Colloid Polym Sci 277, p83〜88(1999), Fig.1(吸着温度30℃)より引用)の吸着等温線によると、ALPO−5は相対蒸気圧0.25〜0.40の範囲で吸着量が急激に上昇し、相対蒸気圧0.05〜0.3の範囲で吸脱着させることは可能であるが、相対蒸気圧0.15〜0.30の範囲での吸着量変化は0.14g/gであった。
吸着ヒートポンプに適した吸着材として知られているシリカゲルA型(富士シリシア化学(株))を吸着等温線測定装置(ベルソーブ18:日本ベル(株))により測定した、吸着温度25℃の水蒸気の吸着等温線を図2に示す。なお、この測定は図1のSAPO−34と同じ条件で行った。図2のシリカゲルA型の吸着等温線によると、シリカゲルA型は、相対水蒸気圧0〜0.7の範囲で相対水蒸気圧とほぼ比例した吸着量が得られる。しかし、メソポーラスモレキュラーシーブや多孔質リン酸アルミニウム系モレキュラーシーブと同じ相対蒸気圧0.15〜0.30の範囲ではA型シリカゲルは0.08g/gしか吸着量が変化しない。シリカゲルを吸着材として使用した吸着ヒートポンプが商品化されているが、この吸着量差が小さいことが原因で装置が大きくならざるを得ない。
本発明の、相対蒸気圧0.05以上、0.30以下の範囲で大きな吸脱着量変化を示す吸着材を利用した吸着ヒートポンプは、吸着材の吸脱着による水分吸着量の差が大きく、低温度で吸着材の再生(脱着)が可能になるため、従来に比べて低温の熱源を利用して、効率よく吸着ヒートポンプを駆動することができる。
すなわち、本発明の吸着材によれば、100℃以下の比較的低温の熱源で駆動する吸着ヒートポンプを提供できる。
【図面の簡単な説明】
【図1】SAPO−34の水蒸気吸着等温線である。
【図2】シリカゲルA型の水蒸気吸着等温線である。
【図3】ALPO−5の水蒸気吸着等温線である。
【図4】吸着ヒートポンプの概念図である。
【符号の説明】
1 吸着塔
2 吸着塔
3 吸着質配管
4 蒸発器
5 凝縮器
11 熱媒配管
111冷却水入口
112冷却水出口
113温水入口
114温水出口
115切り替えバルブ
116切り替えバルブ
21 熱媒配管
211冷却水入口
212冷却水出口
213温水入口
214温水出口
215切り替えバルブ
216切り替えバルブ
30 吸着質配管
31 制御バルブ
32 制御バルブ
33 制御バルブ
34 制御バルブ
300室内機
301ポンプ
41 冷水配管(入口)
42 冷水配管(出口)
51 冷却水配管(入口)
52 冷却水配管(出口)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorption heat pump using a specific adsorbent, an operation method thereof, and a vehicle air conditioner using the adsorption heat pump. Furthermore, it is related with the adsorption material for adsorption heat pumps.
[0002]
[Prior art]
In an adsorption heat pump, in order to regenerate an adsorbate, for example, an adsorbent that has adsorbed water, the adsorbent is heated to desorb the adsorbate, and the dried adsorbent is cooled to a temperature used for adsorbate adsorption. Used again for adsorbate adsorption.
Absorption heat pumps that utilize exhaust heat and heat at relatively high temperatures (120 ° C. or higher) as a heat source for regeneration of the adsorbent have already been put into practical use. However, the heat generated by cogeneration equipment, fuel cells, automobile engine cooling water, solar heat, etc. is relatively low at 100 ° C. or less, so it cannot be used as a driving heat source for absorption heat pumps currently in practical use. Therefore, effective utilization of low-temperature exhaust heat of 100 ° C. or lower, and further 60 ° C. to 80 ° C. has been demanded.
[0003]
Although the operation principle of the adsorption heat pump is the same, the adsorption characteristics required for the adsorbent differ greatly depending on the available heat source temperature. For example, the exhaust heat temperature of gas engine cogeneration used as a heat source on the high temperature side and the polymer electrolyte fuel cell is 60 ° C. to 80 ° C., and the temperature of the cooling water of the automobile engine is 85 ° C. to 90 ° C. The heat source temperature on the cooling side also varies depending on the installation location of the apparatus. For example, in the case of an automobile, the temperature is obtained by a radiator, and in a building or a house, the temperature is such as a water cooling tower or river water. That is, the operating temperature range of the adsorption heat pump is 25 ° C to 35 ° C on the low temperature side when installed in a building or the like, 60 ° C to 80 ° C on the high temperature side, 30 ° C to 40 ° C on the low temperature side when installed on an automobile, etc. The high temperature side is about 85 ° C to 90 ° C. Thus, in order to effectively use the exhaust heat, an apparatus that can be driven even if the temperature difference between the low temperature side heat source and the high temperature side heat source is small is desired.
[0004]
In order for the device to operate sufficiently even at a relatively high temperature around the adsorbent, it is necessary to adsorb the adsorbate at a low relative vapor pressure, and to reduce the size of the device by using a small amount of adsorbent. Needs a large amount of adsorption / desorption of the adsorbent. In order to use a low-temperature heat source for adsorbate desorption (regeneration of adsorbent), the desorption temperature needs to be low. That is, as an adsorbent used in an adsorption heat pump, (1) adsorbate is adsorbed at a low relative vapor pressure (can be adsorbed at a high temperature), (2) adsorbed and desorbed in a large amount, and (3) adsorbate is adsorbed at a high relative vapor pressure ( Adsorbents that can be desorbed at low temperatures are desired.
[0005]
Further, the use of various adsorbents as the adsorbent used in the adsorption heat pump has been studied, but there are various problems, and the solution is desired.
[0006]
[Problems to be solved by the invention]
  The present invention is an efficient adsorption heat pump using an adsorbent capable of adsorbing and desorbing adsorbate in a low relative vapor pressure range., Vehicle air conditioner using the same, andAdsorption for adsorption heat pumpMaterialIt was made for the purpose of provision.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies to solve the above problems, the present inventors have found an adsorbent suitable for an adsorption heat pump that uses adsorption / desorption of adsorbate as a drive source of the apparatus.
  That is, the gist of the present invention is that an adsorbate, an adsorption / desorption portion having an adsorbent for adsorbing and desorbing the adsorbate, an evaporation portion for evaporating the adsorbate connected to the adsorption / desorption portion, and the adsorption / desorption portion In an adsorption heat pump comprising a condensing unit that condenses the adsorbate that is connected, the adsorbent is relative to the water vapor adsorption isotherm measured at 25 ° C. within a relative vapor pressure range of 0.05 to 0.30. A zeolite having a relative vapor pressure range in which the amount of water adsorbed when the vapor pressure changes by 0.15 is 0.18 g / g or more, and the framework structure includes aluminum, phosphorus, and heteroatoms.The zeolite has a CHA structureAn adsorption heat pump characterized byVehicular air conditioner characterized by using this for air conditioning in a vehicle compartmentExist.
[0009]
  Furthermore, another gist is that, in the water vapor adsorption isotherm measured at 25 ° C., when the relative vapor pressure changes 0.15 in the range of relative vapor pressure 0.05 or more and 0.30 or less, the amount of adsorption of water changes. It has a relative vapor pressure range of 0.18 g / g or more, and the adsorbent is a zeolite containing aluminum, phosphorus and heteroatoms in the skeleton structure.The zeolite has a CHA structureIn the adsorbent for adsorption heat pump.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The operating vapor pressure range of the adsorption heat pump is determined by the desorption side relative vapor pressure φ1 and the adsorption side relative vapor pressure φ2 obtained from the high temperature heat source temperature High, the low temperature heat source temperature Tlow1, the low temperature heat source temperature Tlow2, and the cold heat generation temperature Tcool.
[0011]
φ1 and φ2 are the following formulas
Desorption side relative vapor pressure φ1 = equilibrium vapor pressure (Tlow1) / equilibrium vapor pressure (High) adsorption side relative vapor pressure φ2 = equilibrium vapor pressure (Tcool) / equilibrium vapor pressure (Tlow2) The relative vapor pressure range is between.
Here, the high temperature heat source temperature High is the temperature of the heat medium heated when desorbing the adsorbate from the adsorbent to regenerate the adsorbent, the low temperature heat source temperature Tlow1 is the temperature of the adsorbate in the condensing part, and the low temperature heat source temperature Tlow2. Means the temperature of the heat medium to be cooled when the adsorbent after regeneration is used for adsorption, and the cold generation temperature Tcool means the temperature of the adsorbate in the evaporation section, that is, the temperature of the generated cold. The equilibrium vapor pressure can be determined from the temperature using the equilibrium vapor pressure curve of the adsorbate.
[0012]
Hereinafter, the operating vapor pressure range when the adsorbate is water will be exemplified. When the high temperature heat source temperature is 80 ° C. and the low temperature heat source temperature is 30 ° C., the operating vapor pressure range is φ1 to φ2 = 0.09 to 0.29. Similarly, when the high-temperature heat source temperature is 60 ° C., the operation relative water vapor pressure range is φ1 to φ2 = 0.21 to 0.29. The case of driving the adsorption heat pump using the exhaust heat of the automobile engine is described in detail in Japanese Patent Application Laid-Open No. 2000-140625. Based on this report, the high temperature heat source temperature is about 90 ° C. and the low temperature heat source temperature is 30 ° C. In this case, the operation relative water vapor pressure range is φ1 to φ2 = 0.06 to 0.29.
[0013]
From the above, when the adsorption heat pump is driven using the exhaust heat of the gas engine cogeneration, the polymer electrolyte fuel cell or the automobile engine, the operation relative water vapor pressure range is φ1 to φ2 = 0.05 to 0.30. If limited, it is considered that φ1 to φ2 = 0.06 to 0.29. That is, a material having a large change in adsorption amount within this operating humidity range is preferable. Therefore, a material whose adsorption amount varies greatly in the range of relative vapor pressure of 0.05 to 0.30, preferably in the range of 0.06 to 0.29 is preferable.
[0014]
For example, it is assumed that a cooling capacity of 3.0 kW (= 10,800 kJ / hr) is obtained by an adsorption heat pump. Here, 3.0 kW is the cooling capacity of an air conditioner used for a general automobile air conditioner. It is considered that the capacity of the adsorption heat pump is desirably at least 15 liters or less based on engine room surveys of various vehicles.
[0015]
Next, the adsorbent weight that can be filled in a volume of 15 liters or less is determined.
The parts to be mounted in the engine room include an adsorption tower body, an evaporator, a condenser, and control valves. It is necessary to make the assembly in which these are integrally formed into a capacity of 15 liters or less. In our study, it is considered that the size of the evaporator, condenser and valves can be formed with about 4.5 liters. Therefore, the capacity of the adsorption tower body is approximately 10.5 liters or less. Since the adsorbent packing ratio and the adsorbent bulk density in the adsorption tower are usually about 30% and about 0.6 kg / liter, respectively, the adsorbent weight (W) that can be packed is 10.5 × 30% × 0.6. = 1.89kg.
[0016]
Next, characteristics required for the adsorbent will be described.
The cooling capacity R in the adsorption heat pump is expressed by the following formula A.
R = (W · ΔQ · ηC・ ΔH / τ) ・ ηh    (Formula A)
Here, W is the weight of the adsorbent packed in one adsorption tower (one side), ΔQ is the equilibrium adsorption amount amplitude in the conditions at the time of adsorption and desorption, and the difference in adsorption amount (Q2−Q1), ηCIs the adsorption amplitude efficiency indicating the ratio of the actual adsorption amplitude within the switching time with respect to the equilibrium adsorption amplitude ΔQ, ΔH is the latent heat of vaporization of water, τ is the switching time between the adsorption process and the desorption process, ηhIndicates the heat mass efficiency in consideration of heat mass loss due to the temperature change between the hot water temperature and the cooling water temperature by the adsorbent and the heat exchanger.
[0017]
As described above, R is 3 kW, and W is 1.89 kg / 2 = 0.95 kg. In addition, from our past studies, it is appropriate that τ is approximately 60 seconds, and ΔH, ηC, ΗhAre obtained to be approximately 2500 kJ / kg, 0.6, and 0.85, respectively, and when ΔQ is obtained from (Equation A),
ΔQ = R / W / ηC/ ΔH ・ τ / ηh= 3.0 / 0.95 / 0.6 / 2500 ・ 60 / 0.85 = 0.149kg / kg
It becomes. That is, as an adsorbent used in an adsorption heat pump for automobiles,
ΔQ is preferably 0.15 g / g or more, 0.18 g / g or more, and more preferably 0.20 g / g or more.
[0018]
Adsorption heat pumps use the ability of adsorbents to adsorb and desorb adsorbates as a drive source. In the adsorption heat pump, water, ethanol, acetone and the like can be used as the adsorbate which is an adsorbate. Among them, water is most preferable from the viewpoint of safety, price, and latent heat of evaporation. The adsorbate is adsorbed on the adsorbent as vapor, and the adsorbent is preferably a material having a large change in adsorption amount in a narrow relative vapor pressure range. When the change in adsorption amount is large in a narrow relative vapor pressure range, the amount of adsorbent required to obtain the same adsorption amount under the same conditions is reduced, and the adsorption heat pump is driven even if the temperature difference between the cooling heat source and the heating heat source is small. Because it can.
[0019]
The adsorbent which is one of the features of the present invention is a zeolite containing aluminum, phosphorus and heteroatoms in the skeleton structure. The zeolite here may be a natural zeolite or an artificial zeolite. For example, an artificial zeolite includes aluminosilicates, aluminophosphates and the like as defined by the International Zeolite Association (IZA).
[0020]
Here, among the aluminophosphates, aluminophosphate (AlPO) containing no heteroatom is used.Four-5) is not suitable as the adsorbent of the present invention because it exhibits hydrophobic adsorption characteristics. In order to use it suitably as the adsorbent of the present invention, a part of aluminum and phosphorus for imparting hydrophilicity, silicon, lithium, magnesium, titanium, zirconium, vanadium, chromium, manganese, iron, cobalt, nickel, palladium It is necessary to substitute with copper, zinc, gallium, germanium, arsenic, tin, calcium, boron or the like.
[0021]
Among these, zeolite substituted with silicon, magnesium, titanium, zirconium, iron, cobalt, zinc, gallium, or boron is preferable, and zeolite substituted with silicon is most preferable, which is commonly referred to as SAPO. These heteroatoms may be substituted with two or more of aluminum and phosphorus in the skeleton.
[0022]
The zeolite used as the adsorbent in the present invention is a zeolite containing aluminum, phosphorus and heteroatoms in the skeleton structure, and has an abundance ratio of atoms represented by the following formulas (1), (2) and (3) Those are preferred.
0.001 ≦ x ≦ 0.3 (1)
(Wherein x represents the molar ratio of heteroatoms to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ y ≦ 0.6 (2)
(Wherein y represents the molar ratio of aluminum to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ z ≦ 0.6 (3)
(Wherein z represents the molar ratio of phosphorus to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
And among the above-mentioned atom existence ratio, the hetero atom existence ratio is the following formula (4) 0.003 ≦ x ≦ 0.25 (4)
(Wherein x is as defined above)
Is preferably represented by the following formula (5):
0.005 ≦ x ≦ 0.2 (5)
(Wherein x is as defined above)
Is more preferable.
[0023]
In addition, the zeolite used as the adsorbent in the present invention has a framework density of 10.0 T / 1,000 kg.Three16.0T / 1,000ÅThreeOr less, more preferably 10.0T / 1,000T.Three15.0 / 1,000ÅThreeZeolite in the following range. Here, the framework density is 1,000 kg of zeolite.ThreeThis means the number of elements constituting the framework other than oxygen, and this value is determined by the structure of the zeolite.
[0024]
The structure of such a zeolite can be represented by a code defined by IZA, AFG, MER, LIO, LOS, PHI, BOG, ERI, OFF, PAU, EAB, AFT, LEV, LTN, AEI, AFR, AFX, GIS , KFI, CHA, GME, THO, MEI, VFI, AFS, LTA, FAU, RHO, DFO, EMT, AFY, * BEA, etc., preferably AEI, GIS, KFI, CHA, GME, VFI, AFS, LTA , FAU, RHO, EMT, AFY, * BEA.
[0025]
Framework density correlates with pore volume, and in general, lower framework density zeolites have greater pore volume and therefore higher adsorption capacity. Further, it is expected that zeolite that is not currently synthesized can be suitably used as an adsorbent in the present invention if the framework density is within this region when synthesized.
For example, in the case of an aluminophosphate having a CHA structure, a desired adsorption performance can be obtained by using a silicoaluminophosphate known as SAPO-34 in which atoms such as silicon are included in the skeleton. A method for synthesizing SAPO-34 is described in US Pat. No. 4,440,871 and the like.
[0026]
The pore diameter of the adsorbent is preferably about 3 to 10 mm from the viewpoint of adsorption characteristics and strength.
Further, when the zeolite is an aluminosilicate, silicon in the skeleton, a part of aluminum (may be all in the case of aluminum) is another atom such as magnesium, titanium, zirconium, vanadium, chromium, manganese, iron, It may be substituted with cobalt, zinc, gallium, tin, boron or the like. In the case of aluminosilicate, if the molar ratio of silicon and aluminum (aluminum + heteroatom) is too small, it will be adsorbed rapidly in a too low humidity region, as in the case of 13X, and if it is too large It is too hydrophobic to absorb water very much.
Therefore, the zeolite used in the present invention usually has a silicon / aluminum molar ratio of 4 or more and 20 or less, preferably 4.5 or more and 18 or less, and more preferably 5 or more and 16 or less.
[0027]
These zeolites include those having exchangeable cationic species. In this case, the cationic species include alkaline elements such as protons, Li and Na, alkaline earth elements such as Mg and Ca, and rare earths such as La and Ce. Examples thereof include transition metals such as elements, Fe, Co, and Ni, and protons, alkali elements, alkaline earth elements, and rare earth elements are preferable. Furthermore, proton, Li, Na, K, Mg, and Ca are more preferable. These zeolites may be used alone, in combination, or in combination with other silica, alumina, activated carbon, clay, or the like.
[0028]
  As an example of a particularly preferable adsorbent used in the present invention, an aluminophosphate having a CHA structure, in which atoms such as silicon are added to the framework structure of zeolite, SAPO-34 (framework density = 14.6T / 1,000Å).Three), Known as silicoaluminophosphate.
  Furthermore, the adsorbent used in the present invention has a change in the amount of water adsorbed when the relative vapor pressure changes by 0.15 in the range of the relative vapor pressure of 0.05 to 0.30 on the water vapor adsorption isotherm measured at 25 ° C. Adsorbent having a relative vapor pressure region of 0.18 g / g or more, preferably 0.2 g / g or more, preferably a change in water adsorption amount of 0.18 g / g in the range of 0.05 to 0.20. As described above, the adsorbent is preferably 0.2 g / g or more.
  In the present invention,When the relative vapor pressure is 0.05 or more and 0.30 or less and the relative vapor pressure changes 0.15, the difference in water adsorption amount is 0.18 g / g or moreIsZeoliteUse. Since zeolite is a crystal, the pore volume contributing to adsorption depends on the framework density. 13X which is an example of zeolite with the smallest framework density (framework density 12.7T / 1000Å Three ) Is about 0.30 g / g. Therefore, if the adsorption amount at the lower limit 0.05 of the relative vapor pressure defined by the present invention is more than 0.15 g / g, it is impossible to obtain an adsorption amount difference of 0.18 g / g.
  Therefore, the adsorption amount at a relative vapor pressure of 0.05 in the water vapor adsorption isotherm is preferably 0.15 g / g or less, preferably 0.12 g / g or less, and more preferably 0.05 g / g or less.
  The adsorption isotherm of water vapor at 25 ° C. of SAPO-34 (manufactured by UOP LLC) measured by an adsorption isotherm measuring apparatus (Belsorb 18: Nippon Bell Co., Ltd.) is shown in FIG. The adsorption isotherm was measured at an air high temperature bath temperature of 50 ° C., an adsorption temperature of 25 ° C., an initial introduction pressure of 3.0 torr, an introduction pressure setting point of 0, a saturated vapor pressure of 23.76 mmHg, and an equilibrium time of 500 seconds. As can be seen from FIG. 1, water vapor is rapidly adsorbed at a relative vapor pressure of 0.07 to 0.10, and the amount of change in the adsorption amount in the relative vapor pressure range of 0.05 to 0.20 is 0.25 g / g. . SAPO-34 having such characteristics is one of the most preferable adsorbents used in the present invention.
  As described above, since the adsorbent used in the present invention changes more in the same relative vapor pressure range than the conventional silica gel and zeolite, more dehumidification is achieved by using an adsorbent having substantially the same weight. An effect can be generated.
[0029]
One of the features of the present invention is to use an adsorbent having the above characteristics as an adsorbent for an adsorbate adsorption / desorption portion of an adsorption heat pump. That is, since a large change in adsorption amount can be obtained with a relative vapor pressure change in a narrow range, it is suitable for an adsorption heat pump in which the amount of adsorbent filling is limited, for example, a vehicle air conditioner.
Hereinafter, the action of the adsorption heat pump of the present invention using the adsorbent described above will be specifically described with the adsorption heat pump having the apparatus configuration shown in FIG. 4, but the adsorption heat pump of the present invention is not limited to this.
[0030]
The conceptual diagram of an example of the adsorption heat pump of this invention is shown in FIG. The adsorption heat pump shown in FIG. 4 includes an adsorbent capable of adsorbing and desorbing adsorbate, and adsorption towers 1 and 2 serving as adsorption / desorption sections filled with the adsorbent and transmitting heat generated by adsorption and desorption of the adsorbate to a heat medium. The evaporator 4 takes out the cold heat obtained by the evaporation of the adsorbate and the condenser 5 discharges the hot heat obtained by the condensation of the adsorbate to the outside. When operating the adsorption heat pump, the operation conditions are obtained from the adsorption isotherm at the ambient temperature so that the adsorption / desorption amount necessary for the operation can be obtained, and the maximum adsorption / desorption amount is usually obtained when the apparatus is operated. To be determined.
As shown in FIG. 4, the adsorption towers 1 and 2 filled with the adsorbent are connected to each other by an adsorbate pipe 30, and the adsorbate pipe 30 is provided with control valves 31 to 34. Here, the adsorbate exists as an adsorbate vapor or a mixture of adsorbate liquid and vapor in the adsorbate pipe.
[0031]
The evaporator 4 and the condenser 5 are connected to the adsorbate pipe 30. The adsorption towers 1 and 2 are connected in parallel between the evaporator 4 and the condenser 5, and between the condenser 5 and the evaporator 4, the adsorbate condensed in the condenser is returned to the evaporator 4. The return pipe 3 is provided. Reference numeral 41 denotes an inlet of cold water that serves as a cooling output from the evaporator 4, and reference numeral 51 denotes an inlet of cooling water to the condenser 5. Reference numerals 42 and 52 denote outlets of cold water and cooling water, respectively. The cold water pipes 41 and 42 are connected to an indoor unit 300 for exchanging heat with the indoor space (air-conditioned space) and a pump 301 for circulating cold water.
A heat medium pipe 11 is connected to the adsorption tower 1, and a heat medium pipe 21 is connected to the adsorption tower 2. The heat medium pipes 11 and 21 are provided with switching valves 115 and 116, and 215 and 216, respectively. is there. The heat medium pipes 11 and 21 flow a heat medium serving as a heating source or a cooling source for heating or cooling the adsorbents in the adsorption towers 1 and 2, respectively. The heat medium is not particularly limited as long as the adsorbent in the adsorption tower can be effectively heated and cooled.
The hot water is introduced from the inlets 113 and / or 213 by opening and closing the switching valves 115, 116, 215, and 216, passes through the adsorption towers 1 and / or 2, and is led out from the outlets 114 and / or 214. The cooling water is also introduced from the inlets 111 and / or 211 by opening / closing similar switching valves 115, 116, 215, and 216, passes through the respective adsorbers 1 and / or 2, and is led out from the outlets 112 and / or 212. The Moreover, although not shown in figure, the outdoor unit arrange | positioned so that heat exchange with external air, the heat source which produces | generates warm water, and the pump which circulates a heat medium are connected to the heat medium piping 11 and / or 21. The heat source is not particularly limited, and examples thereof include automobile engines, cogeneration equipment such as gas engines and gas turbines, and fuel cells. When used for automobiles, automobile engines and automobile fuel cells are preferable examples of heat sources. As mentioned.
The operation method of the adsorption heat pump will be described with reference to FIG. In the first stroke, the control valves 31 and 34 are closed, the control valves 32 and 33 are released, and the regeneration process is performed in the adsorption tower 1 and the adsorption process is performed in the adsorption tower 2. Further, the switching valves 115, 116, 215, and 216 are operated, and hot water is circulated through the heat medium pipe 11 and cooling water is circulated through the heat medium pipe 21.
When the adsorption tower 2 is cooled, cooling water cooled by exchanging heat with the outside air, river water or the like by a heat exchanger such as a cooling tower is introduced through the heat medium pipe 21 and is usually cooled to about 30 to 40 ° C. The Moreover, the water in the evaporator 4 evaporates by opening operation of the control valve 32, flows into the adsorption tower 2 as water vapor, and is adsorbed by the adsorbent. Water vapor movement occurs due to the difference between the saturated vapor pressure at the evaporation temperature and the adsorption equilibrium pressure corresponding to the adsorbent temperature (generally 20 to 50 ° C., preferably 20 to 45 ° C., more preferably 30 to 40 ° C.). In the evaporator 4, cold heat corresponding to the heat of vaporization of evaporation, that is, cooling output is obtained. From the relationship between the temperature of the cooling water in the adsorption tower and the temperature of the cold water generated by the evaporator, the relative vapor pressure φ2 on the adsorption side (where φ2 is the equilibrium vapor pressure of the adsorbate at the cold water temperature generated by the evaporator, Calculated by dividing by the equilibrium vapor pressure of the adsorbate at the water temperature), but φ2 can be operated so that the adsorbent specified in the present invention is larger than the relative vapor pressure at which water vapor is adsorbed to the maximum. preferable. This is because when the adsorbent specified in the present invention is smaller than the relative vapor pressure at which water vapor is adsorbed at the maximum, the adsorbing capacity of the adsorbent cannot be used effectively and the operating efficiency is deteriorated. φ2 can be appropriately set according to the environmental temperature or the like, but the adsorption heat pump is operated under a temperature condition in which the adsorption amount at φ2 is usually 0.20 or more, preferably 0.29 or more, more preferably 0.30 or more.
The adsorption tower 1 in the regeneration step is usually heated with hot water of 40 to 100 ° C., preferably 50 to 98 ° C., more preferably 60 to 95 ° C., and has an equilibrium vapor pressure corresponding to the temperature range. It is condensed with a saturated vapor pressure at a condensation temperature of 30-40 ° C. (this is equal to the temperature of the cooling water cooling the condenser). Water vapor moves from the adsorption tower 1 to the condenser 5 and is condensed to become water. Water is returned to the evaporator 4 by the return pipe 3. From the relationship between the condenser cooling water temperature and the hot water temperature, the desorption side relative vapor pressure φ1 (where φ1 is the equilibrium vapor pressure of the adsorbate at the temperature of the condenser cooling water, and the equilibrium of the adsorbate at the temperature of the hot water) It is preferable to operate so that φ1 becomes smaller than the relative vapor pressure at which the adsorbent rapidly adsorbs water vapor. If φ1 is larger than the relative vapor pressure at which the adsorbent rapidly adsorbs water vapor, the excellent adsorption amount of the adsorbent cannot be used effectively. φ1 can be appropriately set depending on the environmental temperature or the like, but the adsorption heat pump is operated under a temperature condition in which the adsorption amount at φ1 is usually 0.06 or less, preferably 0.05 or less. The difference between the adsorbate adsorption amount at φ1 and the adsorbate adsorption amount at φ2 is usually 0.18 g / g or more, preferably 0.20 g / g or more, more preferably 0.25 g / g or more. To drive. The above is the first step.
In the next second step, the evaporators are similarly switched by switching the control valves 31 to 34 and the switching valves 115, 116, 215, and 216 so that the adsorption tower 1 is an adsorption process and the adsorption tower 2 is a regeneration process. From 4, it is possible to obtain cold heat, that is, cooling output. The adsorption heat pump is continuously operated by sequentially switching the first and second strokes.
Here, the operation method in the case where two adsorption towers are installed has been described. However, the adsorbate adsorbed by the adsorbent is appropriately desorbed to maintain a state in which any of the adsorption towers can adsorb the adsorbate. If possible, any number of adsorption towers may be installed.
[0032]
【The invention's effect】
As adsorbents for adsorption heat pumps, silica gel and zeolite with a low silica alumina ratio have been generally used. However, adsorbents that have been used in conventional adsorption heat pumps have insufficient adsorption / desorption capability to use a relatively low-temperature heat source as a drive source for the adsorption heat pump.
For example, considering a 13X water vapor adsorption isotherm as a representative example of a zeolite for an adsorption heat pump, the water vapor adsorption amount of zeolite is rapidly adsorbed at a relative vapor pressure of 0.05 or less, and in a relative vapor pressure region higher than 0.05, It does not change. When the adsorbent is regenerated, the relative humidity of the surrounding gas is reduced to remove the moisture once adsorbed, but the relative vapor pressure needs to be lowered to desorb the water adsorbed on the zeolite 13X. Therefore, it is said that a heat source of 150 ° C. to 200 ° C. is necessary. In general, zeolite is excellent in water adsorption ability, but once adsorbed, adsorbate is difficult to desorb and has a disadvantage that a high-temperature heat source is required for regeneration.
Recently, mesoporous molecular sieves (FSM-10, etc.) (Japanese Patent Laid-Open No. 9-178292) synthesized with a micelle structure of a surfactant as a template, commonly called AlPOFourZeolite such as a porous aluminum phosphate molecular sieve (Japanese Patent Laid-Open No. 11-197439) referred to as “Semiconductor” has been studied. Mesoporous molecular sieve (FSM-10) is a promising material with a relative vapor pressure in the range of 0.20 and 0.35 and a large adsorption amount difference of 0.25 g / g (Japanese Patent Laid-Open No. 9-178292: FIG. 14). Graph 4; FSM-10). However, the amount of adsorption is small in the range of relative vapor pressure of 0.05 to 0.30, which is an example of the operation of the adsorption heat pump of the present invention. Among them, the change in adsorption amount is large in the range of relative vapor pressure 0.15 to 0.30, but the difference in adsorption amount at this time is 0.08 g / g, and the performance of the adsorption heat pump must be inferior. . In addition, it has been pointed out that the structure collapses and the function as an adsorbent decreases when used repeatedly, and durability is an issue.
For example, AFI type of porous aluminum phosphate molecular sieve shown in FIG. 3 (framework density = 17.5T / 1,000 mm)Three) According to the adsorption isotherm of ALPO-5 which is a zeolite (quoted from Colloid Poly Sci 277, p83-88 (1999), Fig. 1 (adsorption temperature 30 ° C.)), ALPO-5 has a relative vapor pressure. The amount of adsorption increases rapidly in the range of 0.25 to 0.40 and can be adsorbed and desorbed in the range of relative vapor pressure 0.05 to 0.3. The adsorption amount change in the range of 30 was 0.14 g / g.
A silica gel type A (Fuji Silysia Chemical Co., Ltd.), known as an adsorbent suitable for an adsorption heat pump, was measured with an adsorption isotherm (Belsorb 18: Nippon Bell Co., Ltd.). The adsorption isotherm is shown in FIG. This measurement was performed under the same conditions as SAPO-34 in FIG. According to the adsorption isotherm of the silica gel A type in FIG. 2, the silica gel A type can obtain an adsorption amount substantially proportional to the relative water vapor pressure in the range of the relative water vapor pressure of 0 to 0.7. However, in the same relative vapor pressure range of 0.15 to 0.30 as that of mesoporous molecular sieve and porous aluminum phosphate molecular sieve, the amount of adsorption of A-type silica gel is only 0.08 g / g. Adsorption heat pumps using silica gel as an adsorbent have been commercialized, but the apparatus must be large due to the small difference in adsorption amount.
The adsorption heat pump using the adsorbent exhibiting a large change in adsorption / desorption amount in the range of relative vapor pressure of 0.05 or more and 0.30 or less of the present invention has a large difference in moisture adsorption amount due to adsorption / desorption of the adsorbent, and is low. Since the adsorbent can be regenerated (desorbed) at a temperature, the adsorption heat pump can be driven efficiently by using a heat source having a temperature lower than that in the prior art.
That is, according to the adsorbent of the present invention, an adsorption heat pump that is driven by a relatively low-temperature heat source of 100 ° C. or less can be provided.
[Brief description of the drawings]
FIG. 1 is a water vapor adsorption isotherm of SAPO-34.
FIG. 2 is a water vapor adsorption isotherm of silica gel A type.
FIG. 3 is a water vapor adsorption isotherm of ALPO-5.
FIG. 4 is a conceptual diagram of an adsorption heat pump.
[Explanation of symbols]
1 Adsorption tower
2 Adsorption tower
3 Adsorbate piping
4 Evaporator
5 Condenser
11 Heating medium piping
111 Cooling water inlet
112 Cooling water outlet
113 Hot water inlet
114 hot water outlet
115 switching valve
116 switching valve
21 Heating medium piping
211 cooling water inlet
212 Cooling water outlet
213 hot water inlet
214 hot water outlet
215 switching valve
216 switching valve
30 Adsorbate piping
31 Control valve
32 Control valve
33 Control valve
34 Control valve
300 indoor units
301 pump
41 Cold water piping (inlet)
42 Cold water piping (exit)
51 Cooling water piping (inlet)
52 Cooling water piping (exit)

Claims (11)

吸着質と、吸着質を吸脱着する吸着材を備えた吸脱着部と、該吸脱着部に連結された吸着質の蒸発を行う蒸発部と、該吸脱着部に連結された吸着質の凝縮を行う凝縮部とを備えた吸着ヒートポンプにおいて、該吸着材が、25℃で測定した水蒸気吸着等温線において相対蒸気圧0.05以上、0.30以下の範囲で相対蒸気圧が0.15変化したときに水の吸着量変化が0.18g/g以上の相対蒸気圧域を有し、かつ、骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトであり、該ゼオライトがCHA構造であることを特徴とする吸着ヒートポンプ。An adsorbent, an adsorption / desorption part having an adsorbent for adsorbing / desorbing the adsorbate, an evaporation part for evaporating the adsorbate connected to the adsorption / desorption part, and a condensation of the adsorbate connected to the adsorption / desorption part In the adsorption heat pump equipped with a condensing part that performs the above, the adsorbent has a relative vapor pressure change of 0.15 in the range of the relative vapor pressure of 0.05 to 0.30 in the water vapor adsorption isotherm measured at 25 ° C. adsorption amount change of water has a 0.18 g / g or more relative vapor pressure range, and Ri zeolite der containing aluminum and phosphorus and heteroatoms in the backbone structure, the zeolite is a CHA structure when Adsorption heat pump characterized by that. 骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトが、下記式(1)、(2)および(3)
0.001≦x≦0.3 ・・・(1)(式中、xは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するヘテロ原子のモル比を示す)
0.3≦y≦0.6 ・・・(2)(式中、yは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するアルミニウムのモル比を示す)
0.3≦z≦0.6 ・・・(3)(式中、zは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するリンのモル比を示す)
で表される原子の存在割合を有するものである請求項1に記載の吸着ヒートポンプ。
Zeolite containing aluminum, phosphorus and heteroatoms in the skeleton structure has the following formulas (1), (2) and (3):
0.001 ≦ x ≦ 0.3 (1) (wherein x represents the molar ratio of heteroatoms to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ y ≦ 0.6 (2) (wherein y represents the molar ratio of aluminum to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ z ≦ 0.6 (3) (wherein z represents the molar ratio of phosphorus to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
The adsorption heat pump according to claim 1, having an abundance ratio of atoms represented by:
ヘテロ原子がケイ素である請求項1または2に記載の吸着ヒートポンプ。  The adsorption heat pump according to claim 1 or 2, wherein the heteroatom is silicon. 該吸着材が、25℃で測定した水蒸気吸着等温線において相対蒸気圧0.05での吸着量が0.15g/g以下である請求項1〜3のいずれか1項に記載の吸着ヒートポンプ。  The adsorption heat pump according to any one of claims 1 to 3, wherein the adsorbent has an adsorption amount of 0.15 g / g or less at a relative vapor pressure of 0.05 on a water vapor adsorption isotherm measured at 25 ° C. 該ゼオライトのフレームワーク密度が10.0T/1,000Å3以上、16.0T/1,000Å3以下の範囲である請求項1〜4のいずれか1項に記載の吸着ヒートポンプ。The adsorption heat pump according to any one of claims 1 to 4, wherein a framework density of the zeolite is in a range of 10.0 T / 1,000 to 3 or more and 16.0 T / 1,000 to 3 or less. 請求項1〜のいずれか1項に記載の吸着ヒートポンプを車両室内の空調に使用することを特徴とする車両用空調装置。An air conditioning apparatus for a vehicle, wherein the adsorption heat pump according to any one of claims 1 to 5 is used for air conditioning in a vehicle compartment. 25℃で測定した水蒸気吸着等温線において、相対蒸気圧0.05以上、0.30以下の範囲で相対蒸気圧が0.15変化したときに水の吸着量変化が0.18g/g以上の相対蒸気圧域を有する吸着材を有し、該吸着材が骨格構造にアルミニウムとリンとヘテロ原子とを含むゼオライトであり、該ゼオライトがCHA構造であることを特徴とする吸着ヒートポンプ用吸着材。In the water vapor adsorption isotherm measured at 25 ° C., when the relative vapor pressure changes by 0.15 in the range of relative vapor pressure of 0.05 or more and 0.30 or less, the change in the adsorption amount of water is 0.18 g / g or more. has an adsorbent having a relative vapor pressure range, Ri zeolite der adsorbing material containing aluminum and phosphorus and heteroatoms in the backbone structure, the adsorbent for adsorbing heat pump, wherein said zeolite is CHA structure . 25℃で測定した水蒸気吸着等温線において相対蒸気圧0.05での吸着量が0.15g/g以下である請求項に記載の吸着ヒートポンプ用吸着材。The adsorbent for an adsorption heat pump according to claim 7 , wherein an adsorption amount at a relative vapor pressure of 0.05 is 0.15 g / g or less in a water vapor adsorption isotherm measured at 25 ° C. 該ゼオライトのフレームワーク密度が10.0T/1,000Å3以上、16.0T/1,000Å3以下の範囲である請求項またはに記載の吸着ヒートポンプ用吸着材。The adsorbent for an adsorption heat pump according to claim 7 or 8 , wherein a framework density of the zeolite is in a range of 10.0 T / 1,000 to 3 or more and 16.0 T / 1,000 to 3 or less. 該ゼオライトが、下記式(1)、(2)および(3)
0.001≦x≦0.3 ・・・(1)(式中、xは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するヘテロ原子のモル比を示す)
0.3≦y≦0.6 ・・・(2)(式中、yは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するアルミニウムのモル比を示す)
0.3≦z≦0.6 ・・・(3)(式中、zは骨格構造のアルミニウムとリンとヘテロ原子との合計に対するリンのモル比を示す)
で表される原子の存在割合を有するものである請求項7〜9のいずれか1項に記載の吸着ヒートポンプ用吸着材。
The zeolite has the following formulas (1), (2) and (3)
0.001 ≦ x ≦ 0.3 (1) (wherein x represents the molar ratio of heteroatoms to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ y ≦ 0.6 (2) (wherein y represents the molar ratio of aluminum to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
0.3 ≦ z ≦ 0.6 (3) (wherein z represents the molar ratio of phosphorus to the total of aluminum, phosphorus and heteroatoms in the skeleton structure)
The adsorbent for adsorption heat pump according to any one of claims 7 to 9, which has an abundance ratio of atoms represented by:
ヘテロ原子がケイ素である請求項7〜10のいずれか1項に記載の吸着ヒートポンプ用吸着材。The adsorbent for an adsorption heat pump according to any one of claims 7 to 10 , wherein the hetero atom is silicon.
JP2002042476A 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle Expired - Lifetime JP4542738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042476A JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-45677 2001-02-21
JP2001045677 2001-02-21
JP2001111902 2001-04-10
JP2001-111902 2001-04-10
JP2002042476A JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008135924A Division JP2008267802A (en) 2001-02-21 2008-05-23 Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent

Publications (3)

Publication Number Publication Date
JP2002372332A JP2002372332A (en) 2002-12-26
JP2002372332A5 JP2002372332A5 (en) 2005-06-23
JP4542738B2 true JP4542738B2 (en) 2010-09-15

Family

ID=27346058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042476A Expired - Lifetime JP4542738B2 (en) 2001-02-21 2002-02-20 Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP4542738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267802A (en) * 2001-02-21 2008-11-06 Mitsubishi Chemicals Corp Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661772B2 (en) * 2002-08-20 2011-03-30 三菱化学株式会社 Humidity conditioning air-conditioning adsorbent, humidity conditioning air conditioner and operation method thereof
CN100501299C (en) 2003-04-01 2009-06-17 三菱化学株式会社 Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
JP4565539B2 (en) * 2003-05-08 2010-10-20 中部電力株式会社 Operation method of adsorption refrigerator
WO2004113227A1 (en) * 2003-06-20 2004-12-29 Mitsubishi Chemical Corporation Zeolite, method for production thereof, adsorbent comprising said zeolite, heat utilization system, adsorption heat pump, heating and cooling storage system and humidity controlling air-conditioning apparatus
JP4654580B2 (en) * 2004-01-23 2011-03-23 三菱化学株式会社 Operation method of adsorption heat pump
JP4654582B2 (en) * 2004-02-20 2011-03-23 三菱化学株式会社 Adsorption heat pump operation method, adsorption heat pump, humidity control air conditioner operation method, and humidity control air conditioner
JP2007051112A (en) * 2005-08-19 2007-03-01 Mitsubishi Chemicals Corp Porous coordination polymer and application of the same
JP5061581B2 (en) * 2005-11-04 2012-10-31 三菱化学株式会社 Adsorption element and humidity control air conditioner using the same
JP5231076B2 (en) * 2008-04-18 2013-07-10 株式会社豊田中央研究所 Chemical heat storage system
JP6200911B2 (en) * 2015-03-03 2017-09-20 株式会社豊田中央研究所 HEAT PUMP AND CRYSTAL GENERATION METHOD

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416765A (en) * 1981-09-14 1983-11-22 Mobil Oil Corporation Catalytic cracking
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US5340563A (en) * 1992-06-30 1994-08-23 Chevron Research And Technology Company Preparation of zeolites using low silica/alumina zeolites as a source of aluminum
JP3440250B2 (en) * 1992-08-05 2003-08-25 富士シリシア化学株式会社 Heat exchange metal tube and adsorption heat pump
JPH06180159A (en) * 1992-12-09 1994-06-28 Tokyo Gas Co Ltd Adsorption freezer
JP3610665B2 (en) * 1996-02-28 2005-01-19 株式会社豊田中央研究所 High density porous body and method for producing the same
JPH1163720A (en) * 1997-08-08 1999-03-05 Yazaki Corp Coupled refrigerant and adsorbing agent and adsorbing type cold heat generating device using this coupled refrigerant and adsorbing agent
JPH11223411A (en) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc Adsorption heat pump
JPH11223417A (en) * 1998-02-04 1999-08-17 Sumitomo Metal Ind Ltd Recovering method of low-temperature waste heat generated by iron making process
JP2000140625A (en) * 1998-09-07 2000-05-23 Denso Corp Adsorbent and air conditioner for vehicle using the adsorbent
JP3974738B2 (en) * 2000-03-01 2007-09-12 有限会社山口ティー・エル・オー Adsorbent for heat pump and heat pump using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267802A (en) * 2001-02-21 2008-11-06 Mitsubishi Chemicals Corp Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent

Also Published As

Publication number Publication date
JP2002372332A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
US8333079B2 (en) Adsorption heat pump and use of adsorbent as adsorbent for adsorption heat pump
US7422993B2 (en) Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner
US7037360B2 (en) Adsorbent for heat utilization system, adsorbent for regenerator system, regenerator system comprising the adsorbent, ferroaluminophosphate and method for production thereof
JP4669914B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
Freni et al. Characterization of zeolite-based coatings for adsorption heat pumps
JP4542738B2 (en) Adsorption heat pump, adsorption material for adsorption heat pump, and air conditioner for vehicle
JP5161340B2 (en) Adsorbent for adsorption heat pump and adsorption heat pump using the same
JP4896110B2 (en) Zeolite and adsorbent
JP3979327B2 (en) Adsorbent for adsorption heat pump, adsorption heat pump, and operation method of adsorption heat pump
CN100416182C (en) Adsorption heat pump and use of adsorbent as adsorbent for adsoprtion heat pump
US9387457B2 (en) Water vapor adsorbent for adsorption heat pump, method for producing water vapor adsorbent, and adsorption heat pump including water vapor adsorbent
JP4654580B2 (en) Operation method of adsorption heat pump
JP4112298B2 (en) Adsorption heat pump
JP4249437B2 (en) Adsorption heat pump, adsorption heat pump operation method, and vehicle air conditioner using adsorption heat pump
JP4710023B2 (en) Adsorption heat pump, vehicle air conditioner, dehumidifying air conditioner, and method of using adsorbent
JP2008267802A (en) Adsorption heat pump, air conditioner for vehicle, adsorption heat pump operating method, adsorbent for adsorption heat pump, and application method of adsorbent
JP4661772B2 (en) Humidity conditioning air-conditioning adsorbent, humidity conditioning air conditioner and operation method thereof
JP4654582B2 (en) Adsorption heat pump operation method, adsorption heat pump, humidity control air conditioner operation method, and humidity control air conditioner
JP4354755B2 (en) Adsorbent for adsorption heat pump and adsorption heat pump using the same
JP2007181795A (en) Aluminophosphate-based zeolite adsorbent having pore of one-dimensional structure and its use
Inagaki et al. Kakiuchi et al.

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080715

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4542738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term