JPS61186792A - Heat storage device - Google Patents

Heat storage device

Info

Publication number
JPS61186792A
JPS61186792A JP60028591A JP2859185A JPS61186792A JP S61186792 A JPS61186792 A JP S61186792A JP 60028591 A JP60028591 A JP 60028591A JP 2859185 A JP2859185 A JP 2859185A JP S61186792 A JPS61186792 A JP S61186792A
Authority
JP
Japan
Prior art keywords
reaction
pressure
coolant
valve
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60028591A
Other languages
Japanese (ja)
Inventor
Takeshi Doi
全 土井
Masaki Ikeuchi
正毅 池内
Gorou Yamanaka
山中 晤郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60028591A priority Critical patent/JPS61186792A/en
Publication of JPS61186792A publication Critical patent/JPS61186792A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To make it possible to carry out stable coolness dissipating and regenerative operations using a single reaction vessel by discharging vapor generated from the vessel to ambient air at a steady pressure through a coolant vapor discharge pipe. CONSTITUTION:Firstly, upon the coolness dissipating operation, these reaction substances 2 represented by A and B exist. The pressure within the vessel A3 is in a state of a point 2 representing a pressure P2 balanced with an ambient temperature T2. When with the starting of the coolness dissipating operation a switching valve I 12 is opened, the pressure within the vessel A3 is set to be P1 by a steady pressure valve 15. The vapor 13 of a coolant B is discharged to the outside through a coolant vapor discharge pipe 14. In this case, when return water 4 used in space cooling and the lie flows at a heat exchange part 5, A and B of the reaction substances 2 are heated, and a reaction as shown from the right to the left of a reaction formular, A+B A.B+DELTAH, proceeds. Thus,the vapor 13 of the coolant B is generated. Further, in the regenerative operation, the switching valve II 17 of a coolant feed pipe 16 is opened, and a liquefied coolant B flows into a tank A3. Then, a reaction from the left to the right of the above reaction formula occurs. The regenerative operation is continued until the reaction substance A2 in the tank A3 is regenerated to A.B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化学変化や物理変化などを利用する蓄熱装
置の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the configuration of a heat storage device that utilizes chemical changes, physical changes, and the like.

〔従来の技術〕[Conventional technology]

第4図は、例えば「エネルギー・資源JVo1.4゜N
o4(’8B ) 、 P、 60に示された従来の蓄
熱装置を示す図であり、図において(1)は化学反応す
る物質(2)(例えば硫化ナトリウム;Na、8)の充
てんされた槽A(3)や、冷却あるいは加熱用熱媒体(
4)(例えば水)の流れる熱交換部ム(5)から構成さ
れる容器Aであり、(6)は化学反応に供される物質(
7)(例えば水:H,0)の充てんされた槽B(8)や
、冷却あるいは加熱用熱媒体(9)(例えば水)の流れ
る熱交換部B QGから構成される容器Bである。これ
ら容器A(1)と容器B(6)は配管(ロ)で接続され
ていて、この配管(ロ)の途中には反応を停止させるた
めの開閉弁口が設置されている。また(2)は冷媒の蒸
気を示す。第6図は、金側にとっている水(以下H,0
で示す)と硫化ナトリウム5水塩(以下Na、S・5H
,Oで示?、)の温度−圧力平衡線図であり、縦軸が対
数圧力(mP)、横軸が温度の逆数(1/T)を示して
いる。
Figure 4 shows, for example, “Energy/Resources JVo1.4°N
o4 ('8B), P, 60, in which (1) is a tank filled with a chemically reactive substance (2) (e.g., sodium sulfide; Na, 8). A(3), cooling or heating heat medium (
4) (for example, water) flows through a heat exchanger (5), and (6) is a container A containing a substance (for example, water) to be subjected to a chemical reaction.
7) (for example, water: H, 0) and a heat exchange section BQG through which a cooling or heating heat medium (9) (for example, water) flows. These containers A (1) and B (6) are connected by a pipe (b), and an on-off valve port for stopping the reaction is installed in the middle of this pipe (b). Further, (2) indicates the vapor of the refrigerant. Figure 6 shows the water kept on the gold side (hereinafter H, 0
) and sodium sulfide pentahydrate (hereinafter referred to as Na, S・5H
, indicated by O? , ), in which the vertical axis shows logarithmic pressure (mP) and the horizontal axis shows the reciprocal of temperature (1/T).

次に動作について説明する。N、、8とN、0の反応は
(1)式で表わされ、反応が左から右に進むとき発熱(
熱量ΔH)する。
Next, the operation will be explained. The reaction between N,,8 and N,0 is expressed by equation (1), and as the reaction progresses from left to right, heat is generated (
Heat amount ΔH).

Na、8 + 5 ■20 #Na28 ・5H20+
ΔH−・−・−・・Q)今1冷熱を放出(以下放冷と呼
ぶ)したり、反応物質を再生する例について述べる。放
冷時には、開閉弁口は開となっており容器A(1)の反
応物質(2)ハNa=8.容器B(6)の反応に供され
る物質(7) 1.t HtOの液状態にあり、これら
の各状態は第6図では、それぞれ点■および点■で示さ
れる。容器B(6)では、槽B(8)内のII、0が、
水(9)(例えば温度12℃)により加熱され第6図に
示す点■の温度Tt(例えば5℃)で蒸発し、Hloの
蒸気@となって配管(6)、開閉弁(2)を通り容器A
(1)の槽A(3〕に行く。この時、水(9)は冷却さ
れて冷水(例えば7℃)となり冷房などに利用される。
Na, 8 + 5 ■20 #Na28 ・5H20+
ΔH-・-・-・・Q) Now, an example of releasing cold energy (hereinafter referred to as cooling) and regenerating a reactant will be described. During cooling, the opening/closing valve is open and reactant (2) in container A (1) Na=8. Substance (7) to be subjected to reaction in container B (6) 1. t HtO liquid state, and these states are respectively indicated by points ■ and ■ in FIG. In container B (6), II and 0 in tank B (8) are
It is heated by water (9) (e.g., temperature 12°C) and evaporates at the temperature Tt (e.g., 5°C) at point ■ shown in Fig. 6, becoming Hlo steam @ and causing piping (6) and on-off valve (2). Street container A
It goes to tank A (3) in (1). At this time, the water (9) is cooled and becomes cold water (for example, 7° C.), which is used for air conditioning.

槽A(3)に入った1EItOの蒸気(財)は、Nat
Sと反応し、点■で示される温度T、 (例えば50℃
)で(1)式の左から右への反応が生じ発熱する。この
時の発熱は、冷却水(4)により取り去られる。このよ
うにして、容器A(1)中のNa、i9がNa、S・5
H1Oに変化するか、容器B(6)中の−Oの液が全て
なくなるまで、もしくは所定の能力が得られなくなるま
で放冷運転が実施され、容器B(6)から冷水(9)が
得られる。
The 1EItO steam (goods) that entered tank A (3) is Nat
Reacts with S, and the temperature T, indicated by point
), a reaction from the left to the right in equation (1) occurs and heat is generated. The heat generated at this time is removed by cooling water (4). In this way, Na, i9 in container A (1) is changed to Na, S・5
The cooling operation is carried out until the -O liquid in container B (6) is completely exhausted, or until the specified capacity cannot be obtained, and cold water (9) is obtained from container B (6). It will be done.

次に反応物質の再生・運転時の動作について述べる。こ
の時も開閉弁(2)は開となっており、容器A Q)内
の槽A(3)には放冷運転後の反応の終ったNa2S 
・5H,0が、容器B(6)内の槽B (8) ニハH
!0ノ蒸気(至)のみがある。この時、容器A (1)
には加熱用の熱源水(4)が1容器B(6)には冷却用
の冷却水(9)が流れるO容器A(1)では1加熱用熱
源水(4)により槽A(3)内のNatS・5H1Oが
加熱されて、第5図点■に示される温度T6.圧力PH
で(1)式の右から左への反応が進行し、HlOの蒸気
−が発生して反応物質(2)はNa、8べ再生される。
Next, the operation during regeneration and operation of the reactant will be described. At this time as well, the on-off valve (2) is open, and the tank A (3) in the container A (Q) contains the Na2S that has completed the reaction after the cooling operation.
・5H,0 is tank B (8) NihaH in container B (6)
! There is only 0 steam (to). At this time, container A (1)
In container B (6), cooling water (9) for cooling flows into tank A (3). The NatS·5H1O inside is heated to a temperature T6. pressure PH
The reaction proceeds from right to left in equation (1), H1O vapor is generated, and the reactant (2) is regenerated into Na, 8V.

この蒸気0は、開閉弁斡、配管(ロ)を通り、容器B(
6)内の槽B(8)に流入するが、との槽B(8)は熱
交換部B Q[)を流れる冷却水(9)により冷却され
ているため、第5図点■に示される温度T3で凝縮・液
化しHρの流体となる。このようにして、容器ム(1)
の檜ム(3)内Na、S −5HρがNa、Sに再生さ
れるまで再生運転が続けられ、この運転が終了後、放冷
運転Cζ移行するまで開閉弁(2)は閉じられる。
This steam 0 passes through the on-off valve and piping (b), and then passes through the container B (
6), but since the tank B (8) is cooled by the cooling water (9) flowing through the heat exchange section BQ[), the At the temperature T3, it condenses and liquefies to become a fluid of Hρ. In this way, the container (1)
The regeneration operation is continued until the Na, S -5Hρ in the cypress (3) is regenerated to Na, S, and after this operation is completed, the on-off valve (2) is closed until the cooling operation Cζ is started.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の蓄熱装置は以上のよう1こ構成されているので、
少なくとも一対の反応容器の間で冷媒蒸気が往復して放
冷及び再生運転を行なう必要があり、構成が複雑で装置
が大型化するなどの問題点があった。
Since the conventional heat storage device is configured as described above,
It is necessary for the refrigerant vapor to travel back and forth between at least a pair of reaction vessels to perform cooling and regeneration operations, resulting in problems such as a complicated configuration and an increase in the size of the apparatus.

この発明は、上記のような問題点を解消するためになさ
れたもので、1個の反応容器で放冷および再生運転ので
きる蓄熱装置を得るととを目的としている。
This invention was made to solve the above-mentioned problems, and aims to provide a heat storage device that can perform cooling and regeneration operations using one reaction vessel.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る蓄熱装置は、反応物質を収納する容器、
この容器に設けられ定圧弁と開閉弁を有し、外気へ開放
した冷媒蒸気放出管、上記容器ξζ設けられ開閉弁を有
する冷媒供給管、および上記容器畳ζ設けられた熱交換
部を備えたものである。
The heat storage device according to the present invention includes a container for storing a reactant;
A refrigerant vapor discharge pipe provided in the container and having a constant pressure valve and an on-off valve and open to the outside air, a refrigerant supply pipe provided in the container ξζ and having an on-off valve, and a heat exchange section provided in the container ξ. It is something.

〔作用〕[Effect]

この発明における冷媒蒸気放出管は、容器より発生する
蒸気を外気へ定圧で放出し、冷媒供給管は上記容器に冷
媒を供給するので、1個の反応容器で安定して放冷およ
び再生運転を行なえる。
The refrigerant vapor release pipe in this invention releases the vapor generated from the container to the outside air at a constant pressure, and the refrigerant supply pipe supplies refrigerant to the container, so one reaction container can stably perform cooling and regeneration operations. I can do it.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第1
図において、(2)は反応物質(例えばこれを反応物質
ムとする)である。α尋は定圧弁(至)と開閉弁IQa
とを有する冷媒蒸気放出管であり、他の反応容器へ接続
せず外気へ解放している。Q・は開閉弁l(ロ)を有し
冷媒(例えばこれを冷媒Bとする)を反応容器(1)へ
供給する冷媒供給管であり、大気圧の状態にある液冷媒
と接続している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (2) is a reactant (for example, this is referred to as a reactant). α fathom is constant pressure valve (to) and on-off valve IQa
It is a refrigerant vapor release pipe with Q is a refrigerant supply pipe that has an on-off valve l (b) and supplies refrigerant (for example, refrigerant B) to the reaction vessel (1), and is connected to the liquid refrigerant at atmospheric pressure. .

第2図は反応物質A(2)と冷媒Bとの間の反応の温度
−圧力平衡線図であり、縦軸が対数圧力(k+gP)、
横軸が温度の逆数(1/′r)を示している。ここで反
応物質A(2)と冷媒Bとの反応は(2)式で表わされ
、反応が左から右に進むとき発熱(熱量Δ■)する。
Figure 2 is a temperature-pressure equilibrium diagram of the reaction between reactant A (2) and refrigerant B, where the vertical axis is logarithmic pressure (k + gP),
The horizontal axis indicates the reciprocal of temperature (1/'r). Here, the reaction between reactant A (2) and refrigerant B is expressed by equation (2), and as the reaction progresses from left to right, heat is generated (heat amount Δ■).

A+B4A−B  +Δ■ ・・・・・・・・・(2)
なお第2図中のPoは大気圧を示すものとする。
A+B4A-B +Δ■ ・・・・・・・・・(2)
Note that Po in FIG. 2 indicates atmospheric pressure.

次に動作について説明する。初期には開閉弁I四と開閉
弁Iaηは共に閉である。定圧弁(至)の圧力設定値を
大気圧Poより高い圧力P、 (例えば1000朋Hg
)に設定する。まず放冷運転の時、槽A(3)には反応
物質(2)としてA、Bがあり、槽A(3)内の圧力は
第2図に示すように周囲温度T!と平衡する圧力P、で
ある点■の状態にある。放冷運転開始と共に開閉弁I(
2)を開とすると定圧弁(至)により槽A(3)内の圧
力がPRとなるよう設定されているため冷媒Bの蒸気(
至)は冷媒蒸気放出管Q4より外部へ放出される。ここ
で熱交換部A(5)には冷房などに使用された戻りの水
(4)(例えば12℃)が流れると、反応物質(2)の
A−Bは加熱され第2図に示す温度T1で(2)式の右
から左への反応が進み、冷媒Bの蒸気(2)が発生する
。反応は吸熱であるので水(4)は冷却されて冷水(例
えば7℃)となり冷房などに利用される。発生した冷媒
Bの蒸気(2)は槽ム(3)内の圧力がPlとなるよう
設定された定圧弁(ト)、開閉弁IC1aを通つ・て容
器ム(1)の外へ放出される。したがって槽A(3)内
は圧力P、に保持される。放冷運転は熱交換部A(5)
から所定の放冷能力が得られなくなるまで続けられる。
Next, the operation will be explained. Initially, both the on-off valve I4 and the on-off valve Iaη are closed. Set the pressure setting value of the constant pressure valve (to) to a pressure P higher than atmospheric pressure Po (for example, 1000 Hg
). First, during cooling operation, reactants A and B are present in tank A (3) as reactants (2), and the pressure in tank A (3) is at ambient temperature T as shown in FIG. The state is at point ■ where the pressure P is in equilibrium with . At the start of the cooling operation, the on-off valve I (
When 2) is opened, the pressure in tank A (3) is set to PR by the constant pressure valve (to), so the vapor of refrigerant B (
) is discharged to the outside from the refrigerant vapor discharge pipe Q4. Here, when return water (4) (for example, 12°C) used for air conditioning flows into the heat exchange section A (5), the reactant (2) A-B is heated to the temperature shown in Figure 2. At T1, the reaction in equation (2) proceeds from right to left, and vapor (2) of refrigerant B is generated. Since the reaction is endothermic, the water (4) is cooled to become cold water (for example, 7°C), which is used for air conditioning. The generated vapor (2) of refrigerant B passes through a constant pressure valve (g) and an on-off valve IC1a, which are set so that the pressure inside the tank (3) becomes Pl, and is released to the outside of the container (1). Ru. Therefore, the pressure inside tank A(3) is maintained at P. For cooling operation, heat exchange section A (5)
This continues until the predetermined cooling capacity can no longer be obtained.

次に再生運転について述べる。槽A(3)には冷媒Bと
分離した反応物質ム(2)が入っている。また開閉弁I
Qaと開閉弁1αカは共に閉となっている。熱交換部A
(5)には例えば冷凍機などで冷却された水またはブラ
イン(4)(例えば0°0)が流れる。反応物質A(2
)はこの冷却媒体(4)により冷却されるため、槽ム(
3)内は第2図の■で示される温度T3.圧力P。
Next, we will discuss regeneration operation. Tank A (3) contains refrigerant B and the separated reactant M (2). Also, on-off valve I
Both Qa and the on-off valve 1α are closed. Heat exchange part A
In (5), water or brine (4) (for example, 0°0) cooled by, for example, a refrigerator flows. Reactant A (2
) is cooled by this cooling medium (4), so the tank (
3) is the temperature T3. shown by ■ in Figure 2. Pressure P.

の状態となり大気圧Poより低い圧力の状態にある。The pressure is lower than the atmospheric pressure Po.

ここで、冷媒供給管Qlの開閉弁I(財)が開になると
冷媒供給管部は大気圧Poの状態にある液冷媒と接続し
ているので液状の冷媒Bは槽A(3)に流入し、(2)
式の左から右への反応が生じる。反応は発熱であるが、
槽A(3)内は水またはブラインなどの冷却媒体(4)
で冷却されているため温度T8、圧力P、のもとで反応
が進行する。槽A(3)内の反応物質入(2)がA−B
に再生されるまで再生運転は続けられ、運転終了後、次
の運転まで開閉弁I(ロ)は閉じられる。
Here, when the on-off valve I of the refrigerant supply pipe Ql is opened, the refrigerant supply pipe is connected to the liquid refrigerant at atmospheric pressure Po, so the liquid refrigerant B flows into the tank A (3). (2)
Reactions occur from left to right in the equation. The reaction is exothermic, but
Inside tank A (3) is a cooling medium (4) such as water or brine.
The reaction proceeds at a temperature T8 and a pressure P since the reactor is cooled at a temperature T8 and a pressure P. Reactant content (2) in tank A (3) is A-B
The regeneration operation continues until the regeneration is completed, and after the operation ends, the on-off valve I (b) is closed until the next operation.

なお、上記実施例では再生運転時に槽A(3)内の圧力
が大気圧Poよりも低い圧力の状態となる運転であった
が、このかわりに第2図において圧力P4で示される加
圧された液態冷媒Bを供給し、大気圧以上の圧力の状態
で再生運転してもよい。この時の再生運転における温度
は温度T4と高いため1冷却水(4)としては冷凍機な
どで冷却された水中ブライン等を使用する必要は無く、
クーリングタワーなどにより冷却された冷却水(4)を
用いてよい。
In the above embodiment, the pressure in the tank A (3) was lower than the atmospheric pressure Po during the regeneration operation. The regenerating operation may also be performed by supplying the liquid refrigerant B and maintaining the pressure above atmospheric pressure. Since the temperature in the regeneration operation at this time is as high as temperature T4, there is no need to use underwater brine cooled by a refrigerator or the like as the first cooling water (4).
Cooling water (4) cooled by a cooling tower or the like may be used.

また第8図に示すごとく、冷媒蒸気放出管Q4と冷媒供
給管α・とはその一部を共用してもよい。
Further, as shown in FIG. 8, a part of the refrigerant vapor discharge pipe Q4 and the refrigerant supply pipe α may be shared.

また、開閉弁IQ3と定圧弁(ト)の位置は逆であって
もよい。
Moreover, the positions of the on-off valve IQ3 and the constant pressure valve (g) may be reversed.

以上の例では再生運転時に液状の冷媒Bを檜A内に供給
する例を述べたが液状であることに限定されることなく
ガス状の冷媒B1あるいは固型状の冷媒Bを供給するの
であってもよいことは言うまでもない。
In the above example, the liquid refrigerant B is supplied into the cypress A during the regeneration operation, but the refrigerant B1 is not limited to liquid and gaseous refrigerant B1 or solid refrigerant B can be supplied. Needless to say, it's fine.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、反応物質を収納する
容器、この容器に設けられ定圧弁と開閉弁を有する冷媒
蒸気放出管、上記容器に設けられ開閉弁を有し、外気へ
開放した冷媒供給管、および上記容器に設けられた熱交
換部を備えたので11個の反応容器で放冷および再生運
転ができる効果がある。
As described above, according to the present invention, there is provided a container for storing a reactant, a refrigerant vapor discharge pipe provided in the container and having a constant pressure valve and an on-off valve, and a refrigerant vapor discharge pipe provided in the container and having an on-off valve and opened to the outside air. Since the refrigerant supply pipe and the heat exchange section provided in the containers are provided, there is an effect that cooling and regeneration operation can be performed using 11 reaction containers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による蓄熱装置を示す構成
断面図、第2図は反応物質入と冷媒Bとの反応の温度−
圧力の平衡状態を示す特性図、第8図はこの発明の他の
実施例による蓄熱装置を示す構成断面図、第4図は従来
の蓄熱装置を示す構成断面図、第5図は反応物質Na、
8とHloの温度−圧力の平衡状態を示す特性図である
。 図において、(1) 、 (6)は容器、(2)は反応
物質、(5)。 αOは熱交換部、(7)は反応に供される冷媒、(6)
は配管、(至)は冷媒蒸気、(2)は冷媒蒸気放出管、
(至)は定圧弁、α・は冷媒供給管、(ロ)、αηは開
閉弁である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a cross-sectional view showing the structure of a heat storage device according to an embodiment of the present invention, and FIG.
A characteristic diagram showing a pressure equilibrium state, FIG. 8 is a cross-sectional view of a heat storage device according to another embodiment of the present invention, FIG. 4 is a cross-sectional view of a conventional heat storage device, and FIG. 5 is a cross-sectional view of a heat storage device according to another embodiment of the present invention. ,
8 is a characteristic diagram showing the temperature-pressure equilibrium state of Hlo and Hlo. In the figure, (1) and (6) are containers, (2) is a reactant, and (5). αO is the heat exchange part, (7) is the refrigerant used in the reaction, (6)
is piping, (to) is refrigerant vapor, (2) is refrigerant vapor discharge pipe,
(To) is a constant pressure valve, α・ is a refrigerant supply pipe, (B) and αη are on-off valves. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)反応物質を収納する容器、この容器に設けられ定
圧弁と開閉弁を有し、外気へ開放した冷媒蒸気放出管、
上記容器に設けられ開閉弁を有する冷媒供給管、および
上記容器に設けられた熱交換部を備えた蓄熱装置。
(1) A container for storing a reactant; a refrigerant vapor discharge pipe provided in the container and having a constant pressure valve and an on-off valve and open to the outside air;
A heat storage device comprising: a refrigerant supply pipe provided in the container and having an on-off valve; and a heat exchange section provided in the container.
(2)冷媒蒸気放出管と冷媒供給管はその一部を共用す
る特許請求の範囲第1項記載の蓄熱装置。
(2) The heat storage device according to claim 1, wherein the refrigerant vapor discharge pipe and the refrigerant supply pipe share a part.
JP60028591A 1985-02-15 1985-02-15 Heat storage device Pending JPS61186792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60028591A JPS61186792A (en) 1985-02-15 1985-02-15 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60028591A JPS61186792A (en) 1985-02-15 1985-02-15 Heat storage device

Publications (1)

Publication Number Publication Date
JPS61186792A true JPS61186792A (en) 1986-08-20

Family

ID=12252835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60028591A Pending JPS61186792A (en) 1985-02-15 1985-02-15 Heat storage device

Country Status (1)

Country Link
JP (1) JPS61186792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072290A1 (en) * 2007-12-04 2009-06-11 Panasonic Corporation Regenerating system, and regenerating method
WO2018051951A1 (en) * 2016-09-13 2018-03-22 住友重機械工業株式会社 Heat storage device, heat dissipation system, and usage method for heat dissipation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072290A1 (en) * 2007-12-04 2009-06-11 Panasonic Corporation Regenerating system, and regenerating method
WO2018051951A1 (en) * 2016-09-13 2018-03-22 住友重機械工業株式会社 Heat storage device, heat dissipation system, and usage method for heat dissipation system
JP2018044699A (en) * 2016-09-13 2018-03-22 住友重機械工業株式会社 Accumulator, heat radiation system, and method of application therefor

Similar Documents

Publication Publication Date Title
US4205531A (en) Method in the cooling of a space and apparatus for carrying out said method
US4439994A (en) Three phase absorption systems and methods for refrigeration and heat pump cycles
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
WO1991017392A1 (en) Methods and apparatuses for providing cool thermal storage and/or water purification
US5448892A (en) Methods and apparatuses for providing cool thermal storage and/or water purification
JPS61186792A (en) Heat storage device
JPH076708B2 (en) Chemical heat storage system
JPS61202089A (en) Condensing and vaporizing device
JPS61197993A (en) Heat accumulating device
JPS58127047A (en) Heat regenerative type hot water supply system
JPS61186791A (en) Heat storage device
JPS6048467A (en) Method of driving heat pump device
JP7490341B2 (en) Chemical heat storage device and method for storing heat in chemical heat storage material
JPS5925159B2 (en) Heat release and storage method
JPH056118B2 (en)
JPS5983897A (en) Hydrogen-gas purifying and storing apparatus
JPS59157485A (en) Heat storage material transporting method
JP2022109819A (en) Chemical heat storage device and heat storage method for chemical heat storage material
JPH02207836A (en) Method and device for filling heat accumulating medium in heat accumulating reactor
JPH05288425A (en) Chemical heat-accumulative type heat pump
JPH0355749B2 (en)
JPH05264117A (en) Chemical heat pump
US2030242A (en) Carbon dioxide ice cooling system
JPH03282190A (en) Heat accumulating device
JPH08233477A (en) Two-phase heat exchanger at controlled temperature