JPS60161325A - Apparatus for producing ammonium sulfate from coke oven gas - Google Patents

Apparatus for producing ammonium sulfate from coke oven gas

Info

Publication number
JPS60161325A
JPS60161325A JP59014024A JP1402484A JPS60161325A JP S60161325 A JPS60161325 A JP S60161325A JP 59014024 A JP59014024 A JP 59014024A JP 1402484 A JP1402484 A JP 1402484A JP S60161325 A JPS60161325 A JP S60161325A
Authority
JP
Japan
Prior art keywords
ammonium sulfate
mother liquor
heater
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59014024A
Other languages
Japanese (ja)
Other versions
JPH0247406B2 (en
Inventor
Masahiko Kato
加藤 征彦
Tetsuo Furukawa
哲郎 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59014024A priority Critical patent/JPS60161325A/en
Publication of JPS60161325A publication Critical patent/JPS60161325A/en
Publication of JPH0247406B2 publication Critical patent/JPH0247406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To reduce operating cost by utilizing cooling water effectively at high temp. which has been heat-exchanged in a primary cooler. CONSTITUTION:An apparatus for producing ammonium sulfate is constituted of a primary cooler 2 for cooling waste gas by exchanging heat between waste gas 3 discharged from a coke oven 1 and cooling water 4, an absorption tower 5 for absorbing ammonia from the cooled waste gas to generate mother liquor of ammonium sulfate 6, a first heater 9 for heating the generated mother liquor of ammonium sulfate 6, a first evaporating kettle 10 for concentrating the heated mother liquor 6, a second heater 11 for heating the concentrated mother liquor 6, and a second evaporating kettle 13 for concentrating the heated concentrated mother liquor 6 and generating crystalline ammonium sulfate. Heat exchangers 20, 21 for exchanging heat between a part of the mother liquor 6 generated in the absorption tower 5 and Li bromide 28 are installed by connecting in parallel to the first heater 9. The cooling water 4 at high temp. which has exchanged heat in the primary cooler 2 is utilized for a heat source for generating steam to be absorbed by the Li bromide 28.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコークス炉ガスから硫安を製造する装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for producing ammonium sulfate from coke oven gas.

従来例の構成とその問題点 第1図に従来例を示す。図において、(1)はコークス
炉、(2)はコークス炉(1)から出た排ガス(3)を
冷却水(4)と熱交換させて冷却するプライマリ−クー
ラ、(5)はプライマリ−クーラ(2)により冷却され
た排ガス(3)からアンモニアを吸収して硫安母液(6
)を生成する吸収塔で、内部には予め硫酸(7)が入れ
られている。(8)は吸収塔(5)で生成された硫安母
液(6)を貯溜するタンク、(9)はタンク(8)から
引き出された硫安母液(6)を加熱する第1加熱器、O
Qは第1加熱器(9ンで加熱された硫安母液(6)を濃
縮する例えば圧力が160〜200to’rrの第1蒸
発缶で、該第1蒸発缶01で濃縮された硫安母液(6)
の一部は再び前記第1加熱器(9)に戻す構成とされて
いる。αVは第1蒸発缶C1[>で濃縮さ、れた硫安母
液(6)を加熱する第2加熱器で、この第2加熱器αυ
の熱源には前記第1蒸発缶0Qのスチーム@が用いられ
ている。Q3は第2加熱器αυで加熱された硫安母液(
6)を濃縮して結晶状硫安04)を生成する第2蒸発缶
で、該第2蒸発缶0;ヤからオーバーフローした硫安母
液(6)はオーバーフロータンク0Qに貯溜された後、
第1蒸発缶0Qと第1加熱器(9)門の硫安母液(6)
循環ライン中に戻す構成とされている。また、第2蒸発
缶03の上層硫安母液(6)は再び第2加熱器αVに戻
す構成とされている。なお、uQは高温の冷却水(4)
を導かれる冷却塔、(171は各ポンプを示す。
Structure of a conventional example and its problems FIG. 1 shows a conventional example. In the figure, (1) is a coke oven, (2) is a primary cooler that cools the exhaust gas (3) from the coke oven (1) by exchanging heat with cooling water (4), and (5) is a primary cooler. Ammonia is absorbed from the exhaust gas (3) cooled by (2) and ammonium sulfate mother liquor (6
) is an absorption tower that produces sulfuric acid (7) in advance. (8) is a tank that stores the ammonium sulfate mother liquor (6) produced in the absorption tower (5), (9) is a first heater that heats the ammonium sulfate mother liquor (6) drawn out from the tank (8), and O
Q is a first evaporator with a pressure of 160 to 200 to'rr for concentrating the ammonium sulfate mother liquor (6) heated in the first heater (9 tons); )
A part of the heating element is returned to the first heater (9) again. αV is a second heater that heats the ammonium sulfate mother liquor (6) concentrated in the first evaporator C1 [>, and this second heater αυ
The steam from the first evaporator 0Q is used as the heat source. Q3 is the ammonium sulfate mother liquor (
6) to produce crystalline ammonium sulfate 04), ammonium sulfate mother liquor (6) overflowing from the second evaporator 0; is stored in an overflow tank 0Q, and then
Ammonium sulfate mother liquor (6) in the first evaporator 0Q and the first heater (9) gate
It is configured to be returned to the circulation line. Further, the upper ammonium sulfate mother liquor (6) of the second evaporator 03 is returned to the second heater αV again. Note that uQ is high temperature cooling water (4)
cooling tower (171 indicates each pump).

このような構成で、従来の硫安製造装置は次のような動
作を行っていた。先ず、コークス炉(1)を出た排ガス
(3)はプライマリ−クーラ(2)を通された後、吸収
塔(5)に導かれる。プライマリークニラ(2)を通す
のは、排ガス(3)中のタール、ナフタリン等を析出さ
せるためで、プライマリ−クーラ(2)に入る前の排ガ
ス(3)温度は80℃、プライマリ−クーラ(2)を出
た排ガス(3)温度は20℃程度である。一方、プライ
マリ−クーラ(2)に用いられた冷却水(4)の温度は
60〜70℃程度となる。吸収塔(5)で生成された硫
安母液(6)は、タンク(8)に一旦貯溜されるが、こ
こでの硫安母液(6)の温度は85〜42℃程度である
With such a configuration, the conventional ammonium sulfate production apparatus operated as follows. First, the exhaust gas (3) leaving the coke oven (1) is passed through a primary cooler (2) and then led to an absorption tower (5). The purpose of passing through the primary cooler (2) is to precipitate tar, naphthalene, etc. in the exhaust gas (3), and the temperature of the exhaust gas (3) before entering the primary cooler (2) is 80°C. The temperature of the exhaust gas (3) exiting from 2) is about 20°C. On the other hand, the temperature of the cooling water (4) used in the primary cooler (2) is about 60 to 70°C. The ammonium sulfate mother liquor (6) produced in the absorption tower (5) is temporarily stored in a tank (8), and the temperature of the ammonium sulfate mother liquor (6) here is about 85 to 42°C.

タンク(8)に貯溜された硫安母液(6)は、次に第1
蒸発缶01と第1加熱器(9)間の硫安母液(6)循環
ライン中に導かれ、第1加熱器(9)で加熱される。こ
れにより、硫安母液(6)は70”C前後の温度になっ
て第1蒸発缶OQに導かれる。第1蒸発缶<it)で濃
縮された硫安母液(6)の温度は65〜69℃程度とな
る。次に、濃縮された硫声母液(6)は第2蒸発缶a→
と第2加熱器θυ間の硫安母液(6)循環ライン中に導
かれ、第2加熱器0υで加熱された後、第2蒸発缶a葎
に導かれる。第2蒸発缶(131で濃縮された硫安母液
(6)の温度は51〜54℃となり、ここで第2蒸発缶
03の底に結晶状硫安a→が生成されることになる。結
晶状硫安04)はスラリーポンプαηで経外に取出され
た後、脱水、乾燥される。
The ammonium sulfate mother liquor (6) stored in the tank (8) is then
The ammonium sulfate mother liquor (6) is introduced into the circulation line between the evaporator 01 and the first heater (9) and heated by the first heater (9). As a result, the ammonium sulfate mother liquor (6) reaches a temperature of around 70"C and is led to the first evaporator OQ. The temperature of the ammonium sulfate mother liquor (6) concentrated in the first evaporator is 65 to 69 °C. Next, the concentrated sulfur mother liquor (6) is transferred to the second evaporator a →
The ammonium sulfate mother liquor (6) is introduced into the circulation line between the and the second heater θυ, heated by the second heater 0υ, and then introduced to the second evaporator a. The temperature of the ammonium sulfate mother liquor (6) concentrated in the second evaporator (131) becomes 51 to 54°C, and crystalline ammonium sulfate a→ is generated at the bottom of the second evaporator 03.Crystalline ammonium sulfate 04) is taken out to the outside by a slurry pump αη, and then dehydrated and dried.

しかしながら、このような従来の硫安製造装置によると
、プライマリ−クーラ(2)で熱交換を終えた高温の冷
却水(4)を単に冷却塔αQに導くだけで有効利用する
構成となっていないため、各蒸発缶で熱を必要とするに
もかかわらすせっか<60〜70℃程度まで高められた
冷却水(4)を無駄にするという欠点があった。
However, according to such conventional ammonium sulfate production equipment, the high-temperature cooling water (4) that has undergone heat exchange in the primary cooler (2) is not effectively utilized by simply guiding it to the cooling tower αQ. Although each evaporator requires heat, it has the disadvantage that the cooling water (4) heated to a temperature of <60 to 70° C. is wasted.

発明の目的 本発明は上記従来の欠点を解消するコークス炉ガスから
硫安を製造する装置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an apparatus for producing ammonium sulfate from coke oven gas, which eliminates the above-mentioned conventional drawbacks.

発明の構成 上記目的を達成するため、本発明のコークス炉ガスから
硫安を製造する装置は、コークス炉から出た排ガスを冷
却水と熱交換させて冷却するプラ・rマリ−クーラと、
該プライマリ−クーラにより冷却された排ガスからアン
モニアを吸収して硫安母液を生成する吸収塔と、該吸収
塔で生成された硫安母液を加熱する第1加熱器と、該第
1加熱器で加熱された硫安母液をm縮する第1蒸発缶と
、該第1蒸発缶で濃縮された硫安母液を加熱する第2加
熱器と、該第2加熱器で加熱された硫安母液を濃縮して
結晶状硫安を生成する第2蒸発缶とを有する硫安製造装
置において、前記第1加熱器と並列接続されて、前記吸
収塔で生成された硫安母液の一部を臭化リチウムと熱交
換させる熱交換器を設け、前記臭化リチウムに吸収させ
る水蒸気の発生用熱源として前記プライマリ−クーラで
熱交換を終えた高温の冷却水を用いる構成としたもので
あり、これにより、プライマリ−クーラで熱交換を終え
た高温の冷却水を有効利用することができるものである
Structure of the Invention In order to achieve the above object, the apparatus for producing ammonium sulfate from coke oven gas of the present invention includes a plastic cooler that cools the exhaust gas discharged from the coke oven by exchanging heat with cooling water;
an absorption tower that absorbs ammonia from the exhaust gas cooled by the primary cooler to produce ammonium sulfate mother liquor; a first heater that heats the ammonium sulfate mother liquor produced in the absorption tower; a first evaporator for condensing ammonium sulfate mother liquor; a second heater for heating the ammonium sulfate mother liquor concentrated in the first evaporator; and a second heater for heating the ammonium sulfate mother liquor concentrated in the first evaporator; A heat exchanger connected in parallel with the first heater and configured to heat exchange a part of the ammonium sulfate mother liquor generated in the absorption tower with lithium bromide in an ammonium sulfate production apparatus having a second evaporator that generates ammonium sulfate. , and the high-temperature cooling water that has undergone heat exchange in the primary cooler is used as a heat source for generating water vapor to be absorbed by the lithium bromide. This makes it possible to effectively utilize high-temperature cooling water.

実施例と作用 以下、本発明の一実施例を図面に基づいて説明する。Examples and effects Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本硫安製造装置の要部を示し、図外の構成は第
1図に示したものと同一であるので説明を省略する。図
において、(18は第1加熱器(9)と並列接続して設
けられた吸収ヒートポンプで、相隣接する第1および第
2の熱交換器α俤(4)と、相隣接する第3および第4
の熱交換器(2υ(ホ)とから構成されている。勾は第
1および第2の熱交換器a紳呻隣接壁(ハ)中央部に設
けられた連通孔、■9は第8および第4の熱交痰器シυ
(ハ)の隣接壁翰中央部に設けられた連通孔である。(
ハ)は第4熱交換器(ハ)の底部から引き出されて第1
熱交換器θ1の上部に導かれる水、(2)は第2熱交8
器(4)の底部から引き出されて第3熱交換器Qυの上
部に導かれるとともに、第8熱交換器6Uの底部から引
き出されて第2熱交換器翰の上部に導かれる臭化リチウ
ム(LiB+−水溶液)である。そして吸収塔(5)で
生成された硫安母液(6)は、第1加熱器(9)に導か
れる一方、一部、吸収ヒートポンプa→の第2熱交換器
(4)に導かれ、該第2熱交換器翰で臭化リチウム(ホ
)によって加熱された後に第1蒸発缶a1に導かれる構
成と・さ”4’bでいる。
FIG. 2 shows the main parts of the present ammonium sulfate manufacturing apparatus, and the configurations not shown are the same as those shown in FIG. 1, so the explanation will be omitted. In the figure, (18 is an absorption heat pump provided in parallel connection with the first heater (9), the first and second heat exchangers (4) adjacent to each other, and the third and third heat exchangers (4) adjacent to each other). Fourth
It is composed of a heat exchanger (2υ (E)). The diameter is the communication hole provided in the center of the adjacent wall (C) between the first and second heat exchangers, and the number 9 is the communication hole between the eighth and Fourth heat exchanger sputum
This is a communication hole provided in the center of the adjacent wall (c). (
c) is pulled out from the bottom of the fourth heat exchanger (c) and
Water led to the upper part of the heat exchanger θ1, (2) is the second heat exchanger 8
Lithium bromide is drawn out from the bottom of the vessel (4) and guided to the top of the third heat exchanger Qυ, and is also drawn out from the bottom of the eighth heat exchanger 6U and guided to the top of the second heat exchanger ( LiB+-aqueous solution). The ammonium sulfate mother liquor (6) generated in the absorption tower (5) is led to the first heater (9), while a part of it is led to the second heat exchanger (4) of the absorption heat pump a→. It has a configuration in which it is heated by lithium bromide (e) in the second heat exchanger and then guided to the first evaporator a1.

また、プライマリ−クーラ(2)で熱交換を終えた高温
の冷却水(4)は、一部、第1熱交換器01)を経て第
3熱交換器Qvに導かれ、これら第1.第3の熱交換器
(11(=!I)でその高熱を提供した後、冷却塔0Q
に導かれる構成とされている。(イ)は経外から別個導
かれた冷却水で、第4熱交換器(ホ)において冷媒蒸気
を冷却、凝縮させるものである。
Further, a portion of the high temperature cooling water (4) that has completed heat exchange in the primary cooler (2) is guided to the third heat exchanger Qv via the first heat exchanger 01). After providing its high heat in the third heat exchanger (11 (=!I), cooling tower 0Q
It is said that the structure is guided by. (A) is cooling water separately introduced from outside, which cools and condenses the refrigerant vapor in the fourth heat exchanger (E).

以下、上記構成における作用について説明する。The effects of the above configuration will be explained below.

先ず、プライマリ−クーラ(2)に例えばi 450 
”/’hで通された冷却水(4)は、コークス炉(1)
の排ガス(3)と熱交換して65℃程度の高温の冷却水
(4)となり、一部は吸収ヒートポンプ(至)の第1熱
交換器叫に膚かれ、残りは冷却塔O→へと導かれる。第
1熱交換器09)においては、この冷却水(4)が水蒸
気に)の発生用熱媒として働き、発生した約60℃の水
蒸気(ト)は連通孔(イ)から第2熱交換器翰内に入り
込む。そうすると、第2熱交換器(1)内の例えば48
重量%の臭化リチウム(ハ)がこの水蒸気(ト)を吸収
し、40重星%に薄められるとともに73〜76℃程度
の温度レベルで吸収熱を発生することになる。そこで、
第2熱交換器(4)に導かれた吸収塔(5)からの硫安
母液(6) (40℃程度)は、この吸収熱によって6
9℃程度まで加熱され、第1蒸発缶θQへと導かれる。
First, install an i 450 in the primary cooler (2).
The cooling water (4) passed through the coke oven (1)
It exchanges heat with the exhaust gas (3) and becomes high-temperature cooling water (4) of about 65℃, some of which is exposed to the noise of the first heat exchanger of the absorption heat pump (towards), and the rest is sent to the cooling tower O→ be guided. In the first heat exchanger 09), this cooling water (4) acts as a heat medium for generating water vapor), and the generated water vapor (g) at about 60°C is passed through the communication hole (a) to the second heat exchanger. Enter the cage. Then, for example, 48
Lithium bromide (c) of % by weight absorbs this water vapor (g) and is diluted to 40% by weight, and generates absorption heat at a temperature level of about 73 to 76°C. Therefore,
The ammonium sulfate mother liquor (6) (approximately 40°C) from the absorption tower (5) led to the second heat exchanger (4) is heated to 6
It is heated to about 9° C. and guided to the first evaporator θQ.

第1熱交換器θ0を出た冷却水(4)は62℃程度とな
って第3熱交換器ψυに入り、前記第2熱交換器(ホ)
で薄められた臭化リチウム(ハ)を再生する働きをなす
。すなわち、第2熱交換器(イ)の底部から引き出され
た希臭化リチウム(ホ)は第8熱交換器Qυの上部に導
かれ、高温の冷却水(4)との熱交換〆により約0.0
6%aabsの水蒸気(至)を発生して43重量%の濃
臭化リチウムに)となる。第8熱交換器Q0を出た冷却
水(4)は59℃程度となって冷却塔θQへと導かれる
。一方、第3熱交換器Qυで発生した水蒸気(至)は連
通孔(ハ)から第4熱交換器(イ)内に入り、該第4熱
交換器(2)を通る冷却水い)との熱交換で冷却される
。これにより、水蒸気(1)は水(イ)となり第4熱交
換器(イ)底部から引き出されて第1熱交換器0りの上
部に導かれる。なお、冷却水(ホ)は例えば1780 
/hで第4熱交換器(イ)を通され、第4熱交換器翰に
入る前の温度が81°C1出た時の温度が33.5℃程
度となる。
The cooling water (4) leaving the first heat exchanger θ0 reaches a temperature of about 62°C and enters the third heat exchanger ψυ, and then enters the second heat exchanger (E).
It works to regenerate lithium bromide (c) diluted with That is, the diluted lithium bromide (E) drawn out from the bottom of the second heat exchanger (A) is led to the upper part of the eighth heat exchanger Qυ, and is reduced by approximately 0.0
It generates 6% aabs of water vapor (to 43% by weight of concentrated lithium bromide). The cooling water (4) leaving the eighth heat exchanger Q0 reaches a temperature of about 59° C. and is led to the cooling tower θQ. On the other hand, the water vapor generated in the third heat exchanger Qυ enters the fourth heat exchanger (A) through the communication hole (C), and the cooling water flows through the fourth heat exchanger (2). It is cooled by heat exchange. As a result, water vapor (1) turns into water (a) and is drawn out from the bottom of the fourth heat exchanger (a) and guided to the top of the first heat exchanger (a). In addition, the cooling water (E) is, for example, 1780
/h, and the temperature before entering the fourth heat exchanger (A) is 81°C1, and the temperature is about 33.5°C.

第3図はこれらの温度と圧力の関係を示したものである
。図中、(イ)点が第1熱交換器(1、(0)点が第2
熱交換器(ホ)、(ハ)点が第3熱交換器Q])、に)
点が第4熱交換器に)に対応する。
FIG. 3 shows the relationship between these temperatures and pressures. In the figure, point (A) is the first heat exchanger (1, point (0) is the second heat exchanger
Heat exchanger (E), (C) point is the third heat exchanger Q]),)
The point corresponds to the fourth heat exchanger).

なお、第2熱交換器に)における臭化リチウム(ハ)の
吸収にlる発熱量(QA)は次式で与えられる。
Note that the calorific value (QA) for absorption of lithium bromide (c) in the second heat exchanger is given by the following equation.

QA=Hse−1−WJi ・HJi −(Wii +
1) ・Hl。
QA=Hse-1-WJi ・HJi -(Wii +
1) ・Hl.

ここでHse :第1熱交換器(IIで発生した水蒸気
■のエンクルピー W/i:第2熱交換器(ホ)に供給される臭化リチウム
に)の量 Hli:第2熱交換器(ホ)に供給される臭化リチウム
に)のエンタルピー Hf!o:第2熱交換器(イ)から出る臭化リチウムに
)のエンタルピー このように、本発明の硫安製造装置は、プライマリ−ク
ーラ(2)で熱交換を終えた&Lの冷却水(4)を有効
利用するものであるが、蒸気消費量だけをとってみると
、例えば8.4//Hの硫安製造装置の場合、蒸気単価
4.0001″/T、運転時間8,000 とすると、
((s□oMCal/’I’硫安X8.4”硫安/H)
/6ooMca1/T・蒸気JX4,000円/T・蒸
気X 8,000H=224.’000千円の年間利得
となる。
Here, Hse: Amount of water vapor in the first heat exchanger (W/i of water vapor generated in ) enthalpy of lithium bromide supplied to ) Hf! o: Enthalpy of lithium bromide (to lithium bromide discharged from the second heat exchanger However, if we consider only the steam consumption amount, for example, in the case of an 8.4//H ammonium sulfate manufacturing equipment, the steam unit price is 4.0001"/T, and the operating time is 8,000.
((s□oMCal/'I'ammonium sulfate X8.4" ammonium sulfate/H)
/6ooMca1/T・Steam JX 4,000 yen/T・Steam X 8,000H=224. The annual gain will be 1,000,000 yen.

発明の効果 以上本発明によれば、プライマリ−クーラで熱交換を終
えた高温の冷却水を有効利用することができる。したが
って、冷却水を導入される冷却塔の負荷を回収された熱
量分だけ軽くすることが叉きるのは勿論、稼動費用の側
限を図ることができる。
Effects of the Invention According to the present invention, high-temperature cooling water that has undergone heat exchange in the primary cooler can be effectively utilized. Therefore, it is possible not only to reduce the load on the cooling tower into which the cooling water is introduced by the amount of heat recovered, but also to limit operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコークス炉ガスから硫安を製芥する装置
の全体工程図、第2図および第8図はオ発明の一実施例
を示し、第2図は本発明に係るコークス炉ガスから硫安
を製造する装置の要部工利図、第3図は温度と圧力の関
係をあられす図でΔる。 (1) コークス炉、(2)・プライマリ−クーラ、に
排ガス、(4) 冷却水、(5)吸収塔、り6)・硫安
F液、(旬−・・第1加熱器、Q(ν 第1蒸発缶、(
月9−第3加熱器、0劃・第2蒸発缶、0勺 結晶状硫
安、08)吸収ヒートポンプ、(7)臭化リチウム、■
 水其気 代理人 森本義弘 ン ト 炙
Fig. 1 is an overall process diagram of a conventional apparatus for recycling ammonium sulfate from coke oven gas, Figs. 2 and 8 show an embodiment of the present invention, and Fig. Figure 3 is a schematic diagram of the main parts of the equipment for producing ammonium sulfate, and is a diagram showing the relationship between temperature and pressure. (1) Coke oven, (2) Primary cooler, exhaust gas, (4) Cooling water, (5) Absorption tower, 6) Ammonium sulfate F liquid, (1) First heater, Q (ν First evaporator, (
9th month - 3rd heater, 0th stage, 2nd evaporator, 0th stage Crystalline ammonium sulfate, 08) Absorption heat pump, (7) Lithium bromide, ■
Mizuaki Agent Yoshihiro Morimoto Tobuki

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉から出た排ガスを冷却水と熱交換させて
冷却するプライマリ−クーラと、該プライマリ−クーラ
により冷却された排ガスからアンモニアを吸収して硫安
fJ液を生成する吸収塔と、該吸収塔で生成された硫安
母液を加熱する第1加熱器と、該第1加熱器で加熱され
た硫安母液を濃縮する第1蒸発缶と、該第1蒸発缶で濃
縮された硫安母液を加熱する第2加熱器と、該第2加熱
器で加熱された硫安母液を濃縮して結晶状硫安を生成す
る第2蒸発缶とを有する硫安製造装置において、前記第
1加熱器と並りU接続されて、前記吸収塔で生成された
硫安母液の一部を臭化リチウムと熱交換させ7る熱交換
器を設け、前記臭化リチウムに吸収させる水蒸気の発生
用熱源として前記ブライマリー−クーラで熱交換を終え
た高温の冷却水を用いることを特徴とするコークス炉ガ
スから硫安を製造する装置。
1. A primary cooler that cools exhaust gas emitted from a coke oven by exchanging heat with cooling water, an absorption tower that absorbs ammonia from the exhaust gas cooled by the primary cooler and generates ammonium sulfate fJ liquid, and the absorption tower a first heater for heating the ammonium sulfate mother liquor produced in the first heater; a first evaporator for concentrating the ammonium sulfate mother liquor heated by the first heater; and a first heater for heating the ammonium sulfate mother liquor concentrated in the first evaporator. In an ammonium sulfate production apparatus having a second heater and a second evaporator for concentrating the ammonium sulfate mother liquor heated by the second heater to produce crystalline ammonium sulfate, the apparatus is U-connected in parallel with the first heater. , a heat exchanger is provided to heat-exchange a part of the ammonium sulfate mother liquor produced in the absorption tower with lithium bromide, and the heat exchanger is used as a heat source for generating water vapor to be absorbed by the lithium bromide. An apparatus for producing ammonium sulfate from coke oven gas, characterized by using high-temperature cooling water that has been processed.
JP59014024A 1984-01-27 1984-01-27 Apparatus for producing ammonium sulfate from coke oven gas Granted JPS60161325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014024A JPS60161325A (en) 1984-01-27 1984-01-27 Apparatus for producing ammonium sulfate from coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014024A JPS60161325A (en) 1984-01-27 1984-01-27 Apparatus for producing ammonium sulfate from coke oven gas

Publications (2)

Publication Number Publication Date
JPS60161325A true JPS60161325A (en) 1985-08-23
JPH0247406B2 JPH0247406B2 (en) 1990-10-19

Family

ID=11849604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014024A Granted JPS60161325A (en) 1984-01-27 1984-01-27 Apparatus for producing ammonium sulfate from coke oven gas

Country Status (1)

Country Link
JP (1) JPS60161325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205201A (en) * 2011-06-10 2011-10-05 赵玉斌 Recovering process for desulphurized ammonium sulfate/magnesium sulfate
CN104649298A (en) * 2014-04-21 2015-05-27 柳州钢铁股份有限公司 Production method of ammonium sulfate
JP2016527165A (en) * 2013-05-24 2016-09-08 サイペム エッセ.ピ.ア. Method and system for recovering ammonium sulfate from a urea plant gas stream

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205201A (en) * 2011-06-10 2011-10-05 赵玉斌 Recovering process for desulphurized ammonium sulfate/magnesium sulfate
JP2016527165A (en) * 2013-05-24 2016-09-08 サイペム エッセ.ピ.ア. Method and system for recovering ammonium sulfate from a urea plant gas stream
CN104649298A (en) * 2014-04-21 2015-05-27 柳州钢铁股份有限公司 Production method of ammonium sulfate

Also Published As

Publication number Publication date
JPH0247406B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
RU2558112C2 (en) Method of producing ammonium nitrate
US4553409A (en) Multiple regeneration multiple absorption type heat pump
US4330364A (en) Process of strengthening dilute phosphoric acid
JPS5849781B2 (en) Absorption heat pump
CN112944726B (en) Open type heat absorption heating system with high heat storage density
JP3824436B2 (en) Triple effect absorption refrigerator
JPS60161325A (en) Apparatus for producing ammonium sulfate from coke oven gas
GB1058261A (en) Process for the production of so, and/or sulphuric acid by the catalytic conversion of so-containing gases
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JPS6389410A (en) Concentration of sulfuric acid
US4616692A (en) Method of recovering heat of reaction
US4662191A (en) Absorption - type refrigeration system
JPS5943402B2 (en) Method for producing sulfuric acid
CN113310246A (en) Wine condensation heat energy comprehensive utilization system and heat energy comprehensive utilization method
JPS6218935Y2 (en)
CN217220911U (en) System for improve system acid system heat recovery rate
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
US5961781A (en) Process for recovering heat energy by condensation of vapor and dilution of sodium hydroxide using a condensing heat exchanger scrubbing system
JPH0472767B2 (en)
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
CN114345111A (en) System and method for improving heat recovery rate of acid making system
JPS5849780B2 (en) Absorption heat pump
JPS6213903A (en) Method of generating steam
JPS59129363A (en) Absorption heat pump device
JPH0350373Y2 (en)