JPS61186704A - Catalytic burning process - Google Patents

Catalytic burning process

Info

Publication number
JPS61186704A
JPS61186704A JP60027994A JP2799485A JPS61186704A JP S61186704 A JPS61186704 A JP S61186704A JP 60027994 A JP60027994 A JP 60027994A JP 2799485 A JP2799485 A JP 2799485A JP S61186704 A JPS61186704 A JP S61186704A
Authority
JP
Japan
Prior art keywords
catalyst
catalyst layer
combustion
temperature
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60027994A
Other languages
Japanese (ja)
Other versions
JPH0522802B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60027994A priority Critical patent/JPS61186704A/en
Publication of JPS61186704A publication Critical patent/JPS61186704A/en
Publication of JPH0522802B2 publication Critical patent/JPH0522802B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve ignitability in low temp. and prevent deterioration by heat at the same time by using catalysts and forming cross sectional area of flow paths at a catalyst vessel in such a manner that catalyst having superior low temp. activity but inferior heat resistance at the upper stream part and catalyst having superior heat resistance but low temp. activity at the down stream part and the former cross sectional area of flow path is determined to be smaller than the latter one. CONSTITUTION:Catalyst forming a catalyst layer 21A of the upper stream part is made by adding catalyst such as platinum or palladium, etc. to gamma-alumina catalyst carrier and has superior low temp. activity and on the other hand, catalyst forming a catalyst layer 21B is made by adding catalyst such as platinum to catalyst carrier such as alumina, zirconium and silicon carbide, etc. and has superior heat resistance. At the start time operation, preheated temp. of fuel gas by a preheater 14 is set up to be higher than ignition temp. of catalyst forming catalyst layer 21A and then burning reaction takes place only in the catalyst layer 21A of the upper stream part and by its burning heat, temp. of the catalyst layer 21B of the down stream part becomes higher than its ignition temp. When the flow rate is increased consecutively, fire extinction takes place at the catalyst layer 21A of the upper stream part and burning starts at the catalyst layer 21B of down stream part because gas flow velocity in the catalyst layer 21A of the upper stream part is larger than that in the catalyst layer 21B of the down stream.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は触媒燃焼方法に係り、特に起動時の着火性に優
れるとともに、高温燃焼に好適な触媒燃焼方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a catalytic combustion method, and particularly to a catalytic combustion method that has excellent ignition performance at startup and is suitable for high-temperature combustion.

〔発明の背景〕[Background of the invention]

近年、触媒により燃焼反応を促進する、いわゆる触媒燃
焼法を用いて、ボイラや各樵燃焼器の小型化を実現しよ
うとする試みが多数友めされている。この触媒燃焼法で
は、単位容積および時間当りの発熱量である容積燃焼率
(Kcat/ rrl −h )が従来の火炎燃焼法の
場合の数10倍と大きいkめ、火炉容積ン従来の数10
分の1にすることが可能であり、その他、窒素酸化物(
NOx )Y生成しにくいことや低酸素濃度で完全燃焼
が可能であることなどの長所も併せ持っている。
In recent years, many attempts have been made to downsize boilers and wood combustors by using the so-called catalytic combustion method, in which combustion reactions are promoted by catalysts. In this catalytic combustion method, the volumetric combustion rate (Kcat/rrl-h), which is the calorific value per unit volume and time, is several tens of times larger than that of the conventional flame combustion method, and the furnace volume is several tens of times larger than that of the conventional flame combustion method.
In addition, nitrogen oxides (
It also has the advantages of being difficult to generate NOx)Y and being able to burn completely at low oxygen concentrations.

しかしながら、上記触媒燃焼法には、 ■ 高負荷条件で使用すると燃焼熱により触媒が劣化す
る。
However, in the above catalytic combustion method, (1) When used under high load conditions, the catalyst deteriorates due to combustion heat.

■ 持続的燃焼Y開始(着火)させるためには、触媒7
予熱する必要があり、そのために大容量の予熱器が必要
である。
■ In order to start sustained combustion (ignition), catalyst 7
It is necessary to preheat, which requires a large-capacity preheater.

という2つの問題があり、これか実用化の大きな障害と
なっていた。即ち、触媒体として耐熱性に優れた担体の
採用が行なわれてはいるが、得られる触媒体の着火温度
もそれに伴って高くなり、前記■の予熱の点で不利とな
る傾向にある。一方、触媒体!多孔質化し友り、活性成
分である白金、パラジウム等の貴金属ン高分散化するこ
とにより、着火温度の低下(即ち低温活性の向上)およ
び初期活性の向上に効果を上げてはいるが、このような
触媒体は一旦高温に嘔らされ友場合に熱劣化が著しく、
触媒の活性そのものt失ってしまう失活現象ケ生じ、白
金、パラジウム等を活性成分とする触媒体を用いた場合
には最高連続使用Wffは高々1200〜1300℃に
止まっている。
There were two problems, which were major obstacles to practical application. That is, although carriers with excellent heat resistance are being used as catalysts, the ignition temperature of the resulting catalysts also increases accordingly, which tends to be disadvantageous in terms of preheating described in (2) above. On the other hand, the catalytic body! Although it has been effective to lower the ignition temperature (i.e. improve low-temperature activity) and improve initial activity by making it porous and highly dispersing noble metals such as platinum and palladium, which are active ingredients, Once such catalyst bodies are exposed to high temperatures, they undergo significant thermal deterioration.
A deactivation phenomenon occurs in which the activity of the catalyst itself is lost, and when a catalyst body containing platinum, palladium, etc. as an active component is used, the maximum continuous use Wff is at most 1200 to 1300°C.

即ち、触媒体の耐熱性の向上と着火温度の低温化という
課題は、互に相客れない性質である。即ち、着火温度の
低下を図る几め、活性成分含有量を増加させると活性成
分間の接触する確率が増加して活性成分間でシンタリン
グしやすくなり、逆に耐熱性を向上させようとして活性
成分の接触する確率を低減させるぺ〈活性成分含有量を
低減させると相対的な活性の低下につながり、触媒作用
を十分に活用できなくなってしまう。
That is, the challenges of improving the heat resistance of the catalyst and lowering the ignition temperature are incompatible with each other. In other words, if the content of active ingredients is increased in order to lower the ignition temperature, the probability of contact between the active ingredients increases and sintering between the active ingredients becomes easier. Reducing the probability of component contact (reducing the active component content leads to a decrease in relative activity, making it impossible to fully utilize the catalytic action).

このように、現在までのところ耐熱性および低温着火性
の双方に優れた触媒体は得られておらす、触媒燃焼装置
の構造や運転方法などの面で、前記■、■の問題点を解
決することが望まれており、低温着火性に優れるととも
に高温負荷燃焼に適し友触媒燃焼方法が希求式れてい友
In this way, to date, catalyst bodies with excellent heat resistance and low-temperature ignition properties have been obtained.The problems in ① and ② above have been solved in terms of the structure and operating method of catalytic combustion equipment. Therefore, there is a need for a catalytic combustion method that has excellent low-temperature ignitability and is suitable for high-temperature load combustion.

〔発明の目的〕[Purpose of the invention]

本発明は前記問題点に鑑みなされ友もので、その目的は
低温着火性に優れるとともに高温高負荷燃焼の可能な触
媒燃焼方法を提供することにある。
The present invention was developed in view of the above-mentioned problems, and its purpose is to provide a catalytic combustion method that has excellent low-temperature ignition properties and is capable of high-temperature, high-load combustion.

〔発明の概要〕[Summary of the invention]

発明者らは前記した問題点を解決すべく触媒燃焼現象に
ついて詳細に検討し几結果、低温着火性と熱劣化の防止
との双方!実現する几めには、それぞれの特性に優れる
触媒を使い分けることが最善であるという結論に到達し
、本発明lなすに到つ友ものである。以下に、その着眼
点と原理とを示す。
In order to solve the above-mentioned problems, the inventors investigated the catalytic combustion phenomenon in detail and found that both low-temperature ignitability and prevention of thermal deterioration were achieved! In order to achieve this goal, we have come to the conclusion that it is best to use different catalysts that have excellent characteristics, and this has led us to the present invention. The points of view and principles are shown below.

第11図は、触媒燃焼装置において、燃料ガス1が導か
れる触媒槽2の上流部に、低温活性に優れるが耐熱性の
悪い触媒体ン充てんした触媒層3を形成し、その下流部
には耐熱性に優れるが低温活性に劣る触媒体を充てんし
た触媒層4ン形成し、起動時には前者ン、そして高負荷
燃焼時には後者を活用させるようにし友ものを示す図で
ある。しかしながらこの第11図に示す触媒槽2では、
起動時および高負荷燃焼時いずれの場合にも上流部の耐
熱性に劣る触媒層3でのみ燃焼反応が進行し、第12図
において実線と破線で示されるような温度分布(但し、
実線は触媒燃焼装置起動時の、破線は高負荷時の触媒槽
内の温度分布を示す)となり、上流部の触媒Aは一回の
使用で熱劣化して大幅な着火温度の上昇をまねいた; 本発明の主眼の1つはこの着火温度の上昇を妨げること
である。発明者らは、触媒燃焼では第13図に示される
ように、触媒槽を通過する燃料ガスの流量を増加させて
空筒速度を序々に上げていくと、燃焼率が急速に低下す
る、いわゆる吹き消えによる失火現象を生じるという点
に着目し、上流部触媒層3内ン流れる燃料ガスの空筒速
度ン下流部触媒層4内のそれより大となるようにすれば
、起動時の燃料ガス量の少ない間は上流部で燃焼がおき
るが、負荷の上昇に伴ってガス量を増加すると上流部触
媒層3でガス流速は前記の失火領域に入り失火し、下流
部の触媒層4はこの時には燃焼熱で十分高温になってい
る友め燃焼反応はここで、続行される。この結果、触媒
槽2は第12図1点鎖線に示される温度分布を呈し、着
火に使用される上流部触媒層3は、高負荷燃焼時にはほ
とんど入口ガス温度にまで低下して熱劣化から保護され
ることになるという観点から本発明をなすに至つ次もの
である。また、上流部触媒層だけを失火させるには、前
述し友ように触媒槽内の燃料ガスの流速ケ上流部と下流
部とで異ならしめるという手段の他、上流部触媒層の燃
料ガスとの接触表面積を下流部触媒層のそれより小さく
することによっても達成できる。
FIG. 11 shows a catalytic combustion device in which a catalyst layer 3 filled with a catalyst having excellent low-temperature activity but poor heat resistance is formed in the upstream part of a catalyst tank 2 through which fuel gas 1 is introduced, and in the downstream part thereof. FIG. 2 is a diagram showing a system in which four catalyst layers are formed filled with a catalyst having excellent heat resistance but poor low-temperature activity, and the former is utilized during startup, and the latter is utilized during high-load combustion. However, in the catalyst tank 2 shown in FIG.
During both startup and high-load combustion, the combustion reaction proceeds only in the upstream catalyst layer 3, which has poor heat resistance, and the temperature distribution is as shown by the solid line and broken line in FIG.
(The solid line shows the temperature distribution in the catalyst tank when the catalytic combustion equipment is started, and the broken line shows the temperature distribution in the catalyst tank at high load.) Catalyst A in the upstream section was thermally degraded after one use, resulting in a significant rise in ignition temperature. ; One of the main objectives of the present invention is to prevent this increase in ignition temperature. The inventors discovered that in catalytic combustion, as shown in Figure 13, when the flow rate of fuel gas passing through the catalyst tank is increased and the cylinder velocity is gradually increased, the combustion rate rapidly decreases. Focusing on the fact that a misfire phenomenon occurs due to blowout, if the cylinder velocity of the fuel gas flowing in the upstream catalyst layer 3 is made higher than that in the downstream catalyst layer 4, the fuel gas at startup can be reduced. While the amount is small, combustion occurs in the upstream section, but when the gas amount increases as the load increases, the gas flow velocity in the upstream catalyst layer 3 enters the misfire region and misfire occurs, and the downstream catalyst layer 4 Sometimes the heat of combustion is high enough for the combustion reaction to continue here. As a result, the catalyst tank 2 exhibits a temperature distribution shown by the dashed line in FIG. 12, and the upstream catalyst layer 3 used for ignition is protected from thermal deterioration by decreasing to almost the inlet gas temperature during high-load combustion. The present invention is based on the following aspects. In addition, in order to misfire only the upstream catalyst layer, in addition to making the flow velocity of the fuel gas in the catalyst tank different between the upstream and downstream parts as described above, it is also possible to misfire the fuel gas in the upstream catalyst layer. This can also be achieved by making the contact surface area smaller than that of the downstream catalyst layer.

また第14図は、ムライトに白金が担持され次触媒体を
充てんしてなる触媒層にメタンガス(濃度4チ)を流し
なから昇温と降温を繰り返して着火および失火温度を示
し次ものであり、この図において、実線は1回目に行な
った着火と失火711点鎖線はつづいて行なつ友2回目
の着火と失火を、破線はさらKつづいて行なつ友3回目
の着火と失火7示すものである。この第14因に示され
る特徴的現象は、昇降温を繰り返すことによって昇温時
のメタンガスの燃焼開始温度、いわゆる着火温度は触媒
体の熱劣化のために次第に上昇するが、降温時の特性は
殆んど変化しないことである。
In addition, Figure 14 shows the ignition and misfire temperatures by repeatedly raising and lowering the temperature after flowing methane gas (concentration: 4 cm) through a catalyst layer in which platinum is supported on mullite and then filled with a catalyst. , In this figure, the solid line shows the first ignition and misfire, the dashed line shows the second ignition and misfire, and the broken line shows the third ignition and misfire. It is. The characteristic phenomenon shown in the 14th factor is that by repeatedly increasing and decreasing the temperature, the combustion start temperature of methane gas at the time of temperature increase, the so-called ignition temperature, gradually increases due to thermal deterioration of the catalyst body, but the characteristics when the temperature decreases are There is almost no change.

これは、触媒燃焼が白金の触媒作用にのみ起因して生ず
ると考えると説明できない。即ち、昇温の繰り返しによ
り白金粒子どうしが焼結して活性が低下し着火温度が上
昇すると考えられるにもかかわらず、降温時には着火温
度以下まで燃焼が持続し、かつ失火する温度は燃焼熱に
よる劣化の影響をほとんど受けないという、触媒作用に
関する通常の予測とは相反する挙動を示している。
This cannot be explained if it is considered that catalytic combustion occurs only due to the catalytic action of platinum. In other words, although it is thought that repeated temperature rises cause the platinum particles to sinter, reducing their activity and raising the ignition temperature, when the temperature falls, combustion continues below the ignition temperature, and the temperature at which misfire occurs is due to the heat of combustion. This behavior is contrary to the usual predictions regarding catalytic activity, which is that it is almost unaffected by deterioration.

この現象を解析して得た結論は、触媒燃焼反応における
触媒体の機能としては、活性成分の触媒作用による燃焼
促進作用と、触媒層を形成する触媒体内の熱伝導により
燃焼熱を効率よく燃料ガス入口方向に伝達して予熱が強
化されることによる燃焼の促進作用とがあり、燃焼開始
時(着火時)には前者が、持続燃焼時には後者が支配的
な役割を果すということである。従って、着火し友後は
触媒体の触媒作用はなくてもよく、換言すれば、効率よ
く燃焼熱をガス流入方向に伝達し得る熱伝導部材を触媒
体にかえて用いた場合にも前述の燃焼促進効果が期待で
きるのである。
The conclusion obtained by analyzing this phenomenon is that the functions of the catalyst in a catalytic combustion reaction are to promote combustion through the catalytic action of the active component, and to efficiently transfer combustion heat to fuel through heat conduction within the catalyst that forms the catalyst layer. There is a combustion promoting effect by intensifying preheating by transmitting it to the gas inlet direction, and the former plays a dominant role at the start of combustion (at the time of ignition), and the latter plays a dominant role during sustained combustion. Therefore, after ignition, there is no need for the catalyst to have a catalytic action.In other words, even if a heat conductive member that can efficiently transfer combustion heat in the gas inflow direction is used instead of the catalyst, the above-mentioned It can be expected to have a combustion promoting effect.

発明者らはこの点に着目し、触媒体の有する前述の2つ
の機能を分離させて用いることにより、本発明!なすに
至ったものである。
The inventors focused on this point, and by separating and using the above-mentioned two functions of the catalyst body, the present invention! This is what led to the eggplant.

本発明に係る触媒燃焼方法は、可燃性ガスを燃焼触媒で
燃焼する方法において、可燃性ガス流路の上流側に低温
活性に優れた触媒層からなる低温活性触媒域を設け、下
流側に前記上流側触媒層より耐熱性に優れた耐熱材層か
らなる燃焼域を設け、前記低温活性触媒域における可燃
性ガスの空筒速度の変化により前記上流側触媒域での着
火および失火を行なうことt特徴とするものであり、着
火しやすい上流側の触媒域で着火させ、負荷増大に伴っ
て上流側触媒域で失火させるとともに耐熱性に優れた下
流側燃焼域で燃焼を続行させるようになっているので、
着火性に優れるとともに高温高負荷燃焼に適し次ものと
なっている。
The catalytic combustion method according to the present invention is a method of burning combustible gas with a combustion catalyst, in which a low-temperature active catalyst zone consisting of a catalyst layer with excellent low-temperature activity is provided on the upstream side of a combustible gas flow path, and the Providing a combustion zone made of a heat-resistant material layer with better heat resistance than the upstream catalyst layer, and causing ignition and misfire in the upstream catalyst zone by changing the cylinder velocity of combustible gas in the low-temperature active catalyst zone. It is characterized by igniting in the upstream catalyst area where it is easy to ignite, causing misfire in the upstream catalyst area as the load increases, and continuing combustion in the downstream combustion area which has excellent heat resistance. Because there are
It has excellent ignitability and is suitable for high-temperature, high-load combustion.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図は、本発明に係る方法に使用する触媒燃焼装置の
第1実施例ケフロー図で示したものである。
FIG. 1 is a diagram showing a first embodiment of a catalytic combustion apparatus used in the method according to the present invention.

この図において、混合器5には燃料注入用配管6によっ
て燃料が供給され、空気取入用配管7、ファン8、空気
注入用配管10を介して空気も供給されており、燃料は
この混合器2によって空気と混合されて適切な空燃比の
燃料ガスとなってダクト12から予熱器14に導かれて
予熱され、さらにダクト16によって触媒槽20に導か
れ触媒槽内20の触媒体と接触して燃焼するようになっ
ている。また、その燃焼ガスはダクト28によって熱利
用を目的とする装置(図示せず)に導かれるようになっ
ている。
In this figure, fuel is supplied to the mixer 5 through a fuel injection pipe 6, and air is also supplied via an air intake pipe 7, a fan 8, and an air injection pipe 10, and the fuel is supplied to the mixer 5. 2, the fuel gas is mixed with air to become a fuel gas with an appropriate air-fuel ratio, and is led from the duct 12 to the preheater 14 to be preheated, and further led to the catalyst tank 20 by the duct 16, where it comes into contact with the catalyst body in the catalyst tank 20. It is designed to burn. Further, the combustion gas is led through a duct 28 to a device (not shown) for the purpose of heat utilization.

触媒槽20Vi上流部20Aと下流部20Bとに分かれ
ており、上流部20Aの流路横断面積は下流部20Bの
流路横断面積より小さく構成されており、その比は触媒
槽20内に充てんされる触媒体、使用燃料の種類により
多少異なるが、前者が後者の数分の1から数10分の1
の間に設定てれている。iた、触媒槽20の上流部20
Aおよび下流部20 BKは担持体に触媒乞担持嘔ぜた
ノ・ニカム構造の触媒体が充てんされてそれぞれ触媒層
21A、21Bが形成されている。上流側触媒層21A
i形成する触媒体は担持体としてγ−アルミナが用いら
れ、これに白金またはパラジウムなどの触媒が担持きれ
たもので低温活性に優れており、一方、下流側触媒層2
1B’Y形成する触媒体はα−アルミナ、ジルコニア、
炭化ケインなどの耐熱性に優れた担持体に白金などの触
媒が担持されたものである。
The catalyst tank 20Vi is divided into an upstream part 20A and a downstream part 20B, and the flow passage cross-sectional area of the upstream part 20A is configured to be smaller than that of the downstream part 20B, and the ratio is such that the catalyst tank 20 is filled with Although it varies somewhat depending on the catalyst body used and the type of fuel used, the former is a few to several tenths of the latter.
It is set between i, Upstream section 20 of catalyst tank 20
A and the downstream portion 20BK are filled with a catalyst body having a non-nicam structure in which a catalyst is supported on a carrier to form catalyst layers 21A and 21B, respectively. Upstream catalyst layer 21A
i The catalyst body to be formed uses γ-alumina as a support, and supports a catalyst such as platinum or palladium on it, and has excellent low-temperature activity.On the other hand, the downstream catalyst layer 2
The catalyst body that forms 1B'Y is α-alumina, zirconia,
A catalyst such as platinum is supported on a support having excellent heat resistance such as carbonized cane.

起動に当っては、予熱器14による燃料ガスの予熱温度
ン上流側触媒層21A’に形成する触媒体の着火温度よ
り高く設定し、燃料カスの流量は定常負荷(高負荷)時
の数分の1から数10分の1に抑えられる。筐た空燃比
は、断熱燃焼温度が上流側触媒421A′Ij!r:形
成する触媒体の耐熱温度以下で、かつ下流側触媒層21
BY形成する触媒体着火温度以上になるように選定され
る。この条件により燃焼反応は上流側触媒層21Aでの
み生じ、七の燃焼熱により下流側触媒層21Bはその着
火温度以上にもちき友される。
At startup, the preheating temperature of the fuel gas by the preheater 14 is set higher than the ignition temperature of the catalyst formed in the upstream catalyst layer 21A', and the flow rate of the fuel scum is set to several minutes at a steady load (high load). It can be suppressed to one to several tenths of that. The air-fuel ratio in the case is such that the adiabatic combustion temperature is the upstream catalyst 421A'Ij! r: below the allowable temperature limit of the catalyst body to be formed, and the downstream catalyst layer 21
The temperature is selected so that the temperature is higher than the ignition temperature of the catalyst that forms BY. Under these conditions, the combustion reaction occurs only in the upstream catalyst layer 21A, and the downstream catalyst layer 21B is heated to above its ignition temperature by the heat of combustion.

つついて空燃比をそのままに維持するとともに、燃料ガ
スの流量を増加していくと、上流側触媒層21A内のガ
ス流速が下流側触媒層21B内のそれに比べて大きいの
で上流側触媒層21Aで失火するとともに、下流側触媒
層21Bで燃焼が開始される。この状態で空燃比を下げ
ると下流側触媒層21Bでの燃焼温度が上昇する。しか
しながら上流側触媒層21Aは失火し几状態のままであ
り予熱温度まで温度が逆に低下して上流側触媒層21A
−Y形成する触媒体は熱劣化から保護されるのである。
When the air-fuel ratio is maintained as it is and the flow rate of fuel gas is increased, the gas flow velocity in the upstream catalyst layer 21A is higher than that in the downstream catalyst layer 21B, so the gas flow rate in the upstream catalyst layer 21A is increased. Along with the misfire, combustion starts in the downstream catalyst layer 21B. If the air-fuel ratio is lowered in this state, the combustion temperature in the downstream catalyst layer 21B will rise. However, the upstream catalyst layer 21A misfires and remains in a cold state, and the temperature decreases to the preheating temperature, causing the upstream catalyst layer 21A to misfire.
-Y forming catalysts are protected from thermal deterioration.

このように本実施例によれば、触媒槽20の形状と運転
操作により、着火用触媒体と高負荷燃焼用触媒体とを使
い分けることが可能となり、この几め着火温度を従来法
に比べ大幅に低くできる。
As described above, according to this embodiment, it is possible to use the catalyst for ignition and the catalyst for high-load combustion depending on the shape and operation of the catalyst tank 20, and this reduced ignition temperature can be significantly reduced compared to the conventional method. can be lowered to

し九がって予熱器14’lk小容量のものとすることが
できる。ま几、下流部触媒層21BY形成する高負荷燃
焼用の触媒体には高温活性のみ高いものを用いることが
できるので、耐熱性の優れ次触媒体を用いれば最高燃焼
温度を従来のものに比べて高くすることができる。
Therefore, the preheater 14'lk can be of small capacity. For the catalyst for high-load combustion that forms the downstream catalyst layer 21BY, a catalyst with high high-temperature activity can be used, so if a catalyst with excellent heat resistance is used, the maximum combustion temperature will be lower than that of conventional catalysts. can be made higher.

第2図は、第1図に示す触媒燃焼装置を用いて着火温度
の変化を調べ比試験結果を従来触媒燃焼方法の場合と比
較して示した口で、触媒層20の上流部20A、下流部
20B内にそれぞれ形成される上流側触媒層21A、下
流側触媒層21Bの仕様は第1表に、起動時および高負
荷燃焼時の燃焼条件は第2表に示されている。
FIG. 2 shows the upstream portion 20A of the catalyst layer 20, the downstream portion 20A of the catalyst layer 20, The specifications of the upstream catalyst layer 21A and the downstream catalyst layer 21B formed in the section 20B are shown in Table 1, and the combustion conditions at startup and during high-load combustion are shown in Table 2.

第1表 試験に当っては、予熱器14の温度ン徐々に上昇させ、
上流側触媒層21Aにおいて燃焼が開始されるとその温
度に維持し、前記第1の実施例に示した運転手順によっ
て高負荷燃焼に移行させ次。
In the Table 1 test, the temperature of the preheater 14 was gradually increased,
When combustion starts in the upstream catalyst layer 21A, the temperature is maintained at that temperature, and then high-load combustion is started according to the operating procedure shown in the first embodiment.

なお、第2図において、○印は本実施例の場合を示し、
一方Δ印は触媒槽20の上流部20A1下流部20Bを
同一横断面、即ち、上流側触媒層21Aと下流側触媒層
21Bの横断面積が同一である従来の触媒燃焼装置を用
い友燃焼方法を示すものである。
In addition, in FIG. 2, the ○ mark indicates the case of this example,
On the other hand, the mark Δ indicates that the upstream portion 20A and downstream portion 20B of the catalyst tank 20 are in the same cross section, that is, the upstream catalyst layer 21A and the downstream catalyst layer 21B have the same cross-sectional area. It shows.

この第2図から明らかなように、従来例では約600℃
であった着火温度が本実施例では約350℃となってお
り、本実施例の方が低温着火性に優れていることがわか
る。
As is clear from this Figure 2, in the conventional example, the temperature was approximately 600°C.
The ignition temperature was approximately 350° C. in this example, and it can be seen that this example has better low-temperature ignition properties.

第3図は本発明に係る方法に使用する触媒燃焼装置の第
2の実施例を示す図である。
FIG. 3 is a diagram showing a second embodiment of the catalytic combustion apparatus used in the method according to the present invention.

第3図において、触媒燃焼装置の触媒槽3oは上流部3
0Aと下流部30Bとに分かれ、上流部30Aと下流部
30Bの流路横断面積は同一の大きさに形成されている
が、上流部30Aに充てんされ上流側触媒層31AY形
成する低温活性に優れ次触媒体の粒径は下流部30Bに
充てんされ下流側触媒層31 B”k形成する耐熱性に
優れ次触媒体の粒径より大きくした点に特徴がある。触
媒層の燃料ガスとの接触表面積ン上流側触媒層31Aと
下流側触媒層31Bとで異ならしめ、燃料ガスの流量!
増加させることによって上流側触媒層31Aで失火させ
るとともに、下流側触媒層31Bで高温燃焼を行なわせ
るようにしたものであり、その他は前記第1の実施例と
同一であるため同一の符号を付すことによりその説明〉
省略する。
In FIG. 3, the catalyst tank 3o of the catalytic combustion device is the upstream part 3.
It is divided into 0A and downstream part 30B, and the cross-sectional area of the upstream part 30A and downstream part 30B is formed to be the same size, but the upstream part 30A is filled and the upstream catalyst layer 31AY is formed, which has excellent low-temperature activity. The particle size of the secondary catalyst is larger than the particle size of the secondary catalyst, which is filled in the downstream section 30B and forms the downstream catalyst layer 31B, which is characterized by excellent heat resistance. The surface area is different between the upstream catalyst layer 31A and the downstream catalyst layer 31B, and the flow rate of fuel gas!
By increasing the amount, the upstream catalyst layer 31A causes a misfire and the downstream catalyst layer 31B performs high-temperature combustion.The rest is the same as the first embodiment, so the same reference numerals are given. Possibly an explanation〉
Omitted.

この第2の実施例によれば、上流側触媒層31Aの単位
体積当りの外表面積が乍流側触媒層31Bの単位体積当
りの外表面積より小さいため、燃料ガスの流量を増加さ
せると上流側触媒層31Aが失火するが、下流側触媒層
31Bで高温燃焼を行なうことができるので、低温着火
性が良く、かつ高温高負荷燃焼を達成できる。
According to this second embodiment, since the outer surface area per unit volume of the upstream side catalyst layer 31A is smaller than the outer surface area per unit volume of the downstream side catalyst layer 31B, when the flow rate of fuel gas is increased, the upstream side Although the catalyst layer 31A misfires, high-temperature combustion can be performed in the downstream catalyst layer 31B, so low-temperature ignitability is good and high-temperature, high-load combustion can be achieved.

第4図は、本発明に係る方法に使用する触媒燃焼装置の
第3実施例を示すものである。前記第2の実施例(第3
図参照)では触媒層31A、31BY形成する触媒体の
粒径な上流部と下流部とで異ならしめて上流側触媒層3
1Aと下流側触媒層31Bの単位体積当りの外表面積を
変えるように構成したが、この第3実施例では、触媒層
40の上流部40Aおよび下流部40Bにハニカム構造
の触媒体によって各触媒層41A、41Bが形成場れて
おり、上流側触媒層41Aのハニカム構造のセル径を下
流側触媒層41Bのそれより大きくし次点に特徴がある
。その他は前記第2の実施例と同一であり同一符号を付
すことによりその説明は省略する。
FIG. 4 shows a third embodiment of a catalytic combustion apparatus used in the method according to the present invention. The second embodiment (third embodiment)
(see figure), the particle size of the catalyst bodies forming the catalyst layers 31A and 31BY is made different between the upstream part and the downstream part, and the upstream catalyst layer 3
1A and the downstream catalyst layer 31B are configured to have different outer surface areas per unit volume, but in this third embodiment, each catalyst layer is provided with a honeycomb structured catalyst body in the upstream portion 40A and downstream portion 40B of the catalyst layer 40. 41A and 41B are formed, and the cell diameter of the honeycomb structure of the upstream catalyst layer 41A is larger than that of the downstream catalyst layer 41B, making it the runner-up. The rest is the same as the second embodiment, and the explanation thereof will be omitted by giving the same reference numerals.

このfli、3の実施例でも、上流側触媒層41Aの単
位面積当りの外表面積が下流側触媒層41Bのそれより
小さくなって、前記第2の実施例と同様の効果が得られ
る。
Also in this embodiment of fli, 3, the outer surface area per unit area of the upstream catalyst layer 41A is smaller than that of the downstream catalyst layer 41B, and the same effect as in the second embodiment can be obtained.

第5図は、本発明に係る方法に使用する触媒燃焼装置の
第4の実施例を示すものである。
FIG. 5 shows a fourth embodiment of a catalytic combustion apparatus used in the method according to the present invention.

第5図において、触媒槽40の上流部4OAには低温活
性に優れ九−・ニカム構造の触媒体が充てんされて上流
側触媒層42Aが形成され、触媒層40の下流部40B
には耐熱性に優れたハニカム構造の触媒体が充てんされ
て下流側触媒層42Bが形成されている。予熱器14か
ら触媒槽40に燃料ガスを導くダクト16の途中には、
触媒槽40の上流部4OAと下流部40Bとの間にのび
るバイパス43が設けられており、ダクト16の分岐点
に設けられ交切換弁44によって燃料ガスの流れる方向
が切換わるようになっている。この切換弁44は、ダク
ト16に設置されているガス流量検出器(図示せず)に
よってダクト16内を流れる燃料ガスの流量が所定値(
上流側触媒層42Aか失火状態に至る直前に相当する燃
料カス流量値)以上となったときに作動してガス流路が
切換ねり、バイパス43’に通って燃料ガスを触媒槽4
0内に供給するようになっている。その他は前記第3の
実施例と同様であり、同一の符号を付すことによりその
説明を省略する。
In FIG. 5, an upstream portion 4OA of the catalyst tank 40 is filled with a catalyst having a nine-Nicum structure having excellent low-temperature activity to form an upstream catalyst layer 42A, and a downstream portion 40B of the catalyst layer 40.
A downstream catalyst layer 42B is formed by filling a catalyst body with a honeycomb structure with excellent heat resistance. In the middle of the duct 16 that guides the fuel gas from the preheater 14 to the catalyst tank 40,
A bypass 43 is provided extending between the upstream portion 4OA and the downstream portion 40B of the catalyst tank 40, and is provided at a branch point of the duct 16 so that the flow direction of the fuel gas can be switched by a switching valve 44. . This switching valve 44 is configured so that the flow rate of the fuel gas flowing through the duct 16 is determined by a gas flow rate detector (not shown) installed in the duct 16 to a predetermined value (
When the fuel gas flow rate in the upstream catalyst layer 42A reaches a value equal to or higher than that corresponding to the value immediately before a misfire occurs, the gas flow path is switched and the fuel gas is passed through the bypass 43' to the catalyst tank 4.
It is designed to supply within 0. The other parts are the same as those in the third embodiment, and the explanation thereof will be omitted by giving the same reference numerals.

前記第1〜第3の実施例では、触媒槽の形状を上流部と
下流部とで異ならしめ友り(第1図参照)、あるいは上
流側触媒層31A、41Aと下流側触媒層31B、41
Bとの外表面積を異ならしめる(第3図、第4図参照)
ことによって、上流側触媒層31A、41Aで失火させ
るとともに下流部触媒層31B、41Bに燃焼反応が移
行するようにしているが、この第4の実施例では、ガス
流量検出器、切換弁44、バイパス43によって下流側
触媒層42Bに燃焼反応が移行するようになっているの
で、前記第3の実施例と同様の効果に加えて触媒層42
A、42B9形成され触媒体のハニカム構造を同一サイ
ズとすることかできるという利点がある。なお、切換弁
44の作動は、ガス流量検出器に代えてガス流速検出器
または触媒槽40内に設置する温度検知器によって行っ
てもよい。
In the first to third embodiments, the shapes of the catalyst tanks are made different between the upstream and downstream parts (see FIG. 1), or the upstream catalyst layers 31A, 41A and the downstream catalyst layers 31B, 41
Make the outer surface area different from B (see Figures 3 and 4)
This causes misfire in the upstream catalyst layers 31A, 41A and transfers the combustion reaction to the downstream catalyst layers 31B, 41B. In this fourth embodiment, the gas flow rate detector, the switching valve 44, Since the combustion reaction is transferred to the downstream catalyst layer 42B by the bypass 43, in addition to the same effect as in the third embodiment, the catalyst layer 42
A, 42B9 has the advantage that the honeycomb structure of the catalyst body can be made of the same size. Note that the switching valve 44 may be operated by a gas flow rate detector or a temperature sensor installed in the catalyst tank 40 instead of the gas flow rate detector.

第6図は、本発明に係る方法に使用する第5のフロー図
を示し友ものである。
FIG. 6 shows a fifth flow diagram for use in the method according to the invention.

この図において、混合器45内で燃料注入用配管46に
よって導かれ九燃料と、空気取入用配管47、ファン4
8、空気注入用配管50を介して導かrL之空気とが混
合され、適切な空燃比の燃料ガスとされてダクト52に
よって予熱器54に導かれ、この予熱器54によって加
熱された後、ダクト56によって触媒槽60内に導かれ
、この触媒槽内に充てんされている触媒と接触して燃焼
するようになっている。また、その燃焼ガスはダクト6
8によって熱利用を目的とする装置(図示せず)K導か
れるようKなっている。
In this figure, nine fuels are introduced into the mixer 45 by a fuel injection pipe 46, an air intake pipe 47, and a fan 4.
8. The rL air introduced through the air injection pipe 50 is mixed with fuel gas having an appropriate air-fuel ratio, and the resulting fuel gas is led to the preheater 54 through the duct 52. After being heated by the preheater 54, the duct 56 into the catalyst tank 60, where it comes into contact with the catalyst filled in the catalyst tank and is combusted. In addition, the combustion gas is transferred to duct 6
8 leads to a device (not shown) for the purpose of heat utilization.

触媒槽60は上流部60Aと下流部60Bとに分かれて
おり、上流部60Aの流路横断面積は下流部60Bの流
路横断面積の数分の1から数10分の1の大きさに構成
されている。上流部60Aには低温活性に優れたハニカ
ム構造の触媒体が充てんされて触媒層61が形成され、
一方、下流部60BKは耐熱性に優れたハニカム構造の
セラミック体が充てんされて熱伝導層62が形成されて
いる。触媒層61’Y形成する触媒体は、担持体として
アルミナ、ムライト、コージェライトなどが用いられ、
これに白金、パラジウムなどの燃焼反応促進に活性な触
媒が担持され友もので、着火温度が低く、圧力損失およ
び耐熱性良好という観点から、パラジウムをムライトに
担持させ友ものが望ましい。ま次触媒体はハニカム構造
に代え粒状構造としてもよい。一方、熱伝導層62を形
成するセラミック体は熱伝導率、融点の双方が高いもの
が望ましく、炭化ケイン、α−アルミナが好適であるが
、その他の耐熱性セラミックスでもよい。
The catalyst tank 60 is divided into an upstream section 60A and a downstream section 60B, and the cross-sectional area of the upstream section 60A is a fraction of the cross-sectional area of the downstream section 60B. has been done. The upstream portion 60A is filled with a catalyst body having a honeycomb structure having excellent low-temperature activity to form a catalyst layer 61.
On the other hand, the downstream portion 60BK is filled with a honeycomb-structured ceramic body having excellent heat resistance to form a heat conductive layer 62. For the catalyst body forming the catalyst layer 61'Y, alumina, mullite, cordierite, etc. are used as a carrier,
A catalyst active in promoting combustion reactions such as platinum or palladium is supported on the mullite, and from the viewpoint of low ignition temperature, good pressure loss and heat resistance, it is preferable to support palladium on mullite. The primary catalyst body may have a granular structure instead of a honeycomb structure. On the other hand, it is desirable that the ceramic body forming the heat conductive layer 62 has both high thermal conductivity and high melting point, and cane carbide and α-alumina are preferable, but other heat-resistant ceramics may be used.

またセラきツク体の形状は熱伝達効率ビ良好とする上で
ハニカム構造が望ましいが、バイブ形状の成形体の集合
構造、あるいは粒状構造であってよよい。
Further, the shape of the ceramic body is desirably a honeycomb structure in order to improve heat transfer efficiency, but it may also be an aggregate structure of molded bodies in the shape of a vibrator or a granular structure.

起動に当っては、予熱器54による燃料ガスの予熱温度
を触媒層6阜、を形成する触媒体の着火温度より高く設
定し、燃料ガスの流量は定常負荷(高負荷)時の数分の
1から数10分の1に抑えられている。ま友空燃比は断
熱燃焼温度が触媒層61を形成する触媒体の耐熱温度以
下になるように選定される。この条件により、燃焼反応
は触媒層61で生じる。そして、その燃焼熱により、熱
伝導層−ン 62はその着火温度以上にもき之される。続いて空燃比
ンそのままに維持するとともに、燃料ガスの流量を増加
していくと触媒層61内の燃料ガスの流速か熱伝導層6
2のそれより大きいので触媒層61で失火するとともに
、熱伝導層62で燃焼が開始される。この状態で空燃比
を下げると熱伝導層62での燃焼温度が上昇する。この
熱伝導層62内では、第7図に示されるように、燃料ガ
スの燃焼部64から熱伝導層62を形成するセラミック
体内乞通って矢印Aで示されるような熱流束が上流に伝
わって燃料ガスヶ予熱する予熱部66が形成され、この
予熱部66によって燃料ガスの予熱が強化されるように
なっており、この予熱部66による燃料ガスの予熱強化
作用によって熱伝導層62内で燃焼が生じるのである。
At startup, the preheating temperature of the fuel gas by the preheater 54 is set higher than the ignition temperature of the catalyst body forming the catalyst layer 6, and the flow rate of the fuel gas is reduced by several times the temperature at a steady load (high load). It is suppressed to one to several tenths. The air-fuel ratio is selected so that the adiabatic combustion temperature is lower than the allowable temperature limit of the catalyst body forming the catalyst layer 61. Due to this condition, a combustion reaction occurs in the catalyst layer 61. The heat of combustion causes the heat conductive layer 62 to reach a temperature higher than its ignition temperature. Subsequently, while maintaining the air-fuel ratio as it is and increasing the flow rate of the fuel gas, the flow rate of the fuel gas in the catalyst layer 61 or the heat conductive layer 6 increases.
Since it is larger than that of No. 2, a misfire occurs in the catalyst layer 61 and combustion starts in the heat conductive layer 62. If the air-fuel ratio is lowered in this state, the combustion temperature in the heat conductive layer 62 will rise. In this heat conductive layer 62, as shown in FIG. 7, a heat flux as shown by arrow A is transmitted upstream from the combustion part 64 of the fuel gas through the ceramic body forming the heat conductive layer 62. A preheating section 66 for preheating the fuel gas is formed, and the preheating section 66 strengthens the preheating of the fuel gas.The preheating section 66 strengthens the preheating of the fuel gas, which causes combustion within the heat conductive layer 62. It happens.

したがって触媒燃焼の場合に問題となる熱による活性の
低下を全く考慮する必巣はない。また、第7図に示され
る熱伝導層62の予熱強化による燃焼促進作用は、燃焼
熱による温度上昇が大きい程効果があるので、熱伝導層
62は小さい程高負荷高温燃焼に適しているともいえる
。なお、この高負荷燃焼時に触媒槽60の上流部に形成
されている触媒層61は失火状態となっているので、触
媒層61は予熱器54による予熱温度にまで低下し、触
媒層61を形成する触媒体が熱伝導層62での高温燃焼
によって悪影響を受けることはない。
Therefore, it is not necessary to take into account the reduction in activity due to heat, which is a problem in the case of catalytic combustion. Furthermore, the combustion promotion effect by strengthening the preheating of the heat conductive layer 62 shown in FIG. 7 is more effective as the temperature rise due to combustion heat increases, so the smaller the heat conductive layer 62 is, the more suitable it is for high-load, high-temperature combustion. I can say that. Note that during this high-load combustion, the catalyst layer 61 formed in the upstream part of the catalyst tank 60 is in a misfired state, so the catalyst layer 61 is lowered to the preheating temperature by the preheater 54, and the catalyst layer 61 is formed. The catalytic converter is not adversely affected by the high temperature combustion in the thermally conductive layer 62.

第8図および第9図は、第6図に示す触媒燃焼装fIt
ヲ用いて行つ念燃焼試験の結果を従来例と比較して示し
た図で、燃焼装置の触媒槽の仕様および燃焼条件はそれ
ぞれ第3表、第4表において足場れており、本実施例は
実施例5A、実施例5B、従来例は従来例1、従来例2
の欄にそれぞれ示されている。
8 and 9 show the catalytic combustion system fIt shown in FIG.
This is a diagram showing the results of a combustion test conducted using a conventional combustion engine in comparison with a conventional example. are Example 5A and Example 5B, and the conventional examples are Conventional Example 1 and Conventional Example 2.
are shown in each column.

第3表 第4表 燃焼試験は起動−高負荷燃焼−停止ヶ繰り返して行なっ
たもので、試験に際しては予熱器54の温度を徐々に上
昇嘔ぜて燃焼開始温度(着火温度)を測定した後、負荷
を上昇させて高負荷燃焼を行なう手順奢採用し友。
Table 3 Table 4 The combustion test was conducted repeatedly by starting - high load combustion - stopping. During the test, the temperature of the preheater 54 was gradually increased and the combustion start temperature (ignition temperature) was measured. , the procedure for increasing the load and performing high-load combustion is adopted.

第8図、第9図は上記試験を繰り返し次場合の着火温度
の変化と、高負荷燃料条件下での燃焼率の変化を示すも
のであり、○印は実施例5への場合ン、Δ印は実施例5
Bの場合を、0印、◇印は従来例1.2tそれぞれ示し
ている。これらの図かられかるように、実施例5A、5
Bの場合には、高負荷燃焼の繰り返しによっても着火温
度の上昇は僅かであり、約350℃で着火するとともに
、高負荷燃焼時の燃焼率も約100%Y維持し続は友。
Figures 8 and 9 show changes in ignition temperature and combustion rate under high fuel load conditions when the above test was repeated. The mark is Example 5
In case B, 0 mark and ◇ mark respectively indicate the conventional example 1.2t. As can be seen from these figures, Examples 5A and 5
In the case of B, the ignition temperature increases only slightly even with repeated high-load combustion, and it ignites at about 350°C, and the combustion rate during high-load combustion also maintains about 100% Y, making it a good choice.

これに対し、着火性能に優れるが耐−熱性に劣るパラジ
ウムをムライトに担持さぜ友触媒体を単独で用い友場合
(従来例1)では、第1回目の高負荷燃焼により触媒層
入口部が溶融し、次回のテストが不能となった。
On the other hand, when palladium, which has excellent ignition performance but poor heat resistance, is supported on mullite and is used alone as a catalyst (conventional example 1), the first high-load combustion causes the inlet part of the catalyst layer to It melted, making the next test impossible.

また、パラジウムを耐熱性に優れるα−アルミナに担持
させ友触媒体7単独に用いた場合(従来例2)では、着
火温度が当初より高い上、燃焼試験の繰り返しによりさ
らに上昇し、第2回目以後は700℃まで加熱しても持
続燃焼を開始するには到らなかつ九。
In addition, when palladium is supported on α-alumina, which has excellent heat resistance, and is used alone in the friend catalyst 7 (Conventional Example 2), the ignition temperature is higher than the initial one, and increases even more with repeated combustion tests. After that, even if heated to 700℃, sustained combustion could not be started.

このように、本実施例では、起動時には上流部の低温活
性に優れた触媒体からなる触媒層61で着火燃焼嘔せ、
高負荷時には上流側触媒層61で失火状態とさせるとと
もに、下流部の耐熱性に優れ几セラミック体からなる熱
伝導層62で高温燃焼きせるように構成されているので
、低温着火性に優れ、かつ高温高負荷燃焼が可能である
。さらに、高温燃焼する熱伝導層62は耐熱性セラミッ
ク体にて形成場れているので1200℃以上の高温燃焼
も可能である。
In this way, in this embodiment, at the time of startup, ignition and combustion occur in the upstream catalyst layer 61 made of a catalyst having excellent low-temperature activity.
When the load is high, the upstream catalyst layer 61 causes a misfire, and the downstream part is configured to cause high-temperature combustion with the thermally conductive layer 62 made of a highly heat-resistant and solid ceramic body. High-temperature, high-load combustion is possible. Furthermore, since the heat conductive layer 62, which burns at a high temperature, is formed of a heat-resistant ceramic body, it is possible to burn at a high temperature of 1200° C. or higher.

また、本実施例では1200℃以上の高温域の燃焼が可
能となるので、低カロリーガスの燃焼器のみならず加熱
炉、ボイラ等の一般燃焼器への適用が可能となる。
Furthermore, since this embodiment enables combustion in a high temperature range of 1200° C. or higher, it can be applied not only to low-calorie gas combustors but also to general combustors such as heating furnaces and boilers.

第10図は、本発明に係る方法YtE用する装置のさら
に別の実施例の要部Y示すもので、触媒槽70は燃料ガ
スの流れる方向に同一内径の円筒状に形成されており、
触媒槽70の上流部70Aには低温活性に優れた触媒体
が充てんされて触媒層71が形成され、下流部70Bに
は耐熱性に優れたセラミック体が充てんされて熱伝導層
72か形成されている。そして、触媒層71の単位体積
当りの外表面積が熱伝導層72の単位体積当りの外表面
積より小さくなるように設定されており、例えば両者を
形成する触媒体、セラミック体がともに粒状構造の場合
には、触媒体の粒径がセラばツク体の粒径より大きくさ
れ、ま九、触媒体、セラミック体がともに・・ニカム構
造の場合には、触媒体のセル径がセラミック体のセル径
より大きく嘔れており、燃料ガスの流量Z増加嘔せると
上流部触媒層71にて失火状態となるようになっている
FIG. 10 shows a main part Y of yet another embodiment of the apparatus for the method YtE according to the present invention, in which the catalyst tank 70 is formed in a cylindrical shape with the same inner diameter in the direction of flow of fuel gas,
The upstream part 70A of the catalyst tank 70 is filled with a catalyst body having excellent low-temperature activity to form a catalyst layer 71, and the downstream part 70B is filled with a ceramic body having excellent heat resistance to form a heat conductive layer 72. ing. The outer surface area per unit volume of the catalyst layer 71 is set to be smaller than the outer surface area per unit volume of the heat conductive layer 72, for example, when the catalyst body and the ceramic body forming both have a granular structure. In this case, the particle size of the catalyst body is made larger than the particle size of the ceramic body, and when both the catalyst body and the ceramic body have a nicum structure, the cell diameter of the catalyst body is made larger than that of the ceramic body. It is designed to cause a misfire in the upstream catalyst layer 71 when the flow rate Z of the fuel gas increases.

その他は既に説明しfc第5図に示す装置の構造と同一
であるため、同一符号を付すことによりその説明は省略
する。
Since the other parts are the same as the structure of the apparatus already explained and shown in FIG. 5, the explanation thereof will be omitted by giving the same symbols.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、低温
着火性に優れ、かつ高温高負荷燃焼を達成することかで
きる。
As is clear from the above description, according to the present invention, it is possible to achieve excellent low-temperature ignitability and high-temperature, high-load combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法に使用する触媒燃焼装置の第
1の実施例の概要図、第2図はその着火温度の変化を示
しt図、第3図はその第2の実施例の概要図、第4図は
その第3の実施例の概要図、第5図はその第4の実施例
の概要図、第6図はその第5の実施例の概要図、第7図
はその熱伝導層の予熱強化作用の説明図、第8図はその
着火温度の変化を示しfc因、第9図はその高負荷条件
下での燃焼率の変化を示した図、第10図はその第6の
実施例の概要図、第11図は従来の触媒燃焼装置の触媒
槽の縦断面図、第12図はその触媒槽内の温度分布を示
す図、第13図は触媒燃焼の失火現象を示す図、第14
図は従来の触媒燃焼装置の触媒槽内の触媒の燃焼劣化現
象を示す図である。 5.45・・・混合器、  14.54・・・予熱器、
20.30,40.充h60.70・・・触媒槽、20
A、50A、40A、60A、70A・・・触媒槽上流
部、20B、50B、40B、608゜70B・・・触
媒槽下流部、21A、!+1A、41A。 42A、61.71・・・上流側触媒層、21B、31
B、41B、42B・・・下流側触媒層、44・・・切
換弁、43・・・バイパス、62.72・・・熱伝導層
Fig. 1 is a schematic diagram of a first embodiment of the catalytic combustion device used in the method according to the present invention, Fig. 2 is a t diagram showing changes in the ignition temperature, and Fig. 3 is a diagram of the second embodiment. 4 is a schematic diagram of the third embodiment, FIG. 5 is a schematic diagram of the fourth embodiment, FIG. 6 is a schematic diagram of the fifth embodiment, and FIG. 7 is a schematic diagram of the fifth embodiment. An explanatory diagram of the preheating strengthening effect of the heat conductive layer. Figure 8 shows the change in ignition temperature due to fc. Figure 9 shows the change in combustion rate under high load conditions. Figure 10 shows the change in combustion rate under high load conditions. A schematic diagram of the sixth embodiment, FIG. 11 is a vertical cross-sectional view of a catalyst tank of a conventional catalytic combustion device, FIG. 12 is a diagram showing the temperature distribution in the catalyst tank, and FIG. 13 is a misfire phenomenon of catalytic combustion. Figure 14 showing
The figure is a diagram showing a combustion deterioration phenomenon of a catalyst in a catalyst tank of a conventional catalytic combustion device. 5.45...Mixer, 14.54...Preheater,
20.30,40. Full h60.70...Catalyst tank, 20
A, 50A, 40A, 60A, 70A...upstream part of the catalyst tank, 20B, 50B, 40B, 608°70B...downstream part of the catalyst tank, 21A,! +1A, 41A. 42A, 61.71...Upstream catalyst layer, 21B, 31
B, 41B, 42B...Downstream catalyst layer, 44...Switching valve, 43...Bypass, 62.72...Heat conductive layer.

Claims (4)

【特許請求の範囲】[Claims] (1)可燃性ガスを燃焼触媒で燃焼する方法において、
可燃性ガス流路の上流側に低温活性に優れた触媒層から
なる低温活性触媒域を設け、下流側に前記上流側触媒層
より耐熱性に優れた耐熱材層からなる燃焼域を設け、前
記低温活性触媒域における可燃性ガスの空筒速度の変化
により前記上流側触媒域での着火および失火を行なうこ
とを特徴とする触媒燃焼方法。
(1) In a method of burning flammable gas with a combustion catalyst,
A low-temperature active catalyst region made of a catalyst layer having excellent low-temperature activity is provided on the upstream side of the combustible gas flow path, a combustion region made of a heat-resistant material layer having better heat resistance than the upstream catalyst layer is provided on the downstream side, and the A catalytic combustion method characterized in that ignition and misfire in the upstream catalyst region are performed by changing the cylinder velocity of combustible gas in the low temperature active catalyst region.
(2)前記下流側の耐熱材層を耐熱性に優れた触媒層と
することを特徴とする特許請求の範囲第1項記載の触媒
燃焼方法。
(2) The catalytic combustion method according to claim 1, wherein the downstream heat-resistant material layer is a catalyst layer with excellent heat resistance.
(3)前記下流側の耐熱材層をセラミックスから成る熱
伝導層とすることを特徴とする特許請求の範囲第1項記
載の触媒燃焼方法。
(3) The catalytic combustion method according to claim 1, wherein the downstream heat-resistant material layer is a heat conductive layer made of ceramic.
(4)前記上流側の触媒層内と後流側の耐熱材層内を流
れる可燃性ガスの各々の流速をu_1、u_2とし、上
流側の触媒層と下流側の耐熱材層のそれぞれの単位体積
当りの外表面積をS_1、S_2として、u_1/S_
1>u_2/S_2なる条件式を満足するようにしたこ
とを特徴とする特許請求の範囲第1項〜第3項のいずれ
かに記載の触媒燃焼方法。
(4) Let u_1 and u_2 be the respective flow velocities of the combustible gas flowing in the catalyst layer on the upstream side and the heat-resistant material layer on the downstream side, and the respective units of the catalyst layer on the upstream side and the heat-resistant material layer on the downstream side Assuming the outer surface area per volume as S_1 and S_2, u_1/S_
The catalytic combustion method according to any one of claims 1 to 3, characterized in that the conditional expression 1>u_2/S_2 is satisfied.
JP60027994A 1985-02-15 1985-02-15 Catalytic burning process Granted JPS61186704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60027994A JPS61186704A (en) 1985-02-15 1985-02-15 Catalytic burning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60027994A JPS61186704A (en) 1985-02-15 1985-02-15 Catalytic burning process

Publications (2)

Publication Number Publication Date
JPS61186704A true JPS61186704A (en) 1986-08-20
JPH0522802B2 JPH0522802B2 (en) 1993-03-30

Family

ID=12236373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60027994A Granted JPS61186704A (en) 1985-02-15 1985-02-15 Catalytic burning process

Country Status (1)

Country Link
JP (1) JPS61186704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001702A1 (en) * 1996-07-08 1998-01-15 Ab Volvo Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber
JP2003081687A (en) * 2001-09-10 2003-03-19 Mitsubishi Heavy Ind Ltd Gas ignition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel
JPS60196511A (en) * 1984-03-19 1985-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst system for combustion and burning method used in said system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941706A (en) * 1982-08-31 1984-03-08 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst system for methane fuel
JPS60196511A (en) * 1984-03-19 1985-10-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst system for combustion and burning method used in said system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001702A1 (en) * 1996-07-08 1998-01-15 Ab Volvo Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber
US6302683B1 (en) 1996-07-08 2001-10-16 Ab Volvo Catalytic combustion chamber and method for igniting and controlling the catalytic combustion chamber
JP2003081687A (en) * 2001-09-10 2003-03-19 Mitsubishi Heavy Ind Ltd Gas ignition method

Also Published As

Publication number Publication date
JPH0522802B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US6270336B1 (en) Catalytic combustion system and combustion control method
KR100404253B1 (en) Catalytic Combuation Apparatus
JPH0244121A (en) Catalytic burner
JPH1122916A (en) Combustion device
JPS59136140A (en) Catalyst body for combustion
JPS6014938A (en) Combustion catalyst for gas turbine
JPS61186704A (en) Catalytic burning process
JPS61235609A (en) Combustion method for methane fuel in catalyst system
JPS60147243A (en) Gas turbine combustor
JPH01210707A (en) Device and method of catalytic combustion device
JPS6060424A (en) Catalytic combustion apparatus
JP2018150818A (en) Exhaust emission control device for internal combustion engine
JP4226143B2 (en) Catalytic combustion apparatus and combustion control method thereof
JPS5949403A (en) Method and device for combustion
JPH1151310A (en) Catalytic combustion equipment
JPH0849810A (en) Catalyst combustion type fluid heating device
JP2000055312A5 (en)
JP2000146298A (en) Catalyst combustor
JPH033774Y2 (en)
JP3339957B2 (en) Catalytic combustion device capable of detecting deterioration
JPS5962344A (en) Combustion catalyst for gas turbine
JP3726381B2 (en) Steam boiler
JPH07243325A (en) Catalytic method
JPH0645441B2 (en) Reformer
JPH0650164B2 (en) Catalytic combustion method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term