JPS59136140A - Catalyst body for combustion - Google Patents

Catalyst body for combustion

Info

Publication number
JPS59136140A
JPS59136140A JP58009418A JP941883A JPS59136140A JP S59136140 A JPS59136140 A JP S59136140A JP 58009418 A JP58009418 A JP 58009418A JP 941883 A JP941883 A JP 941883A JP S59136140 A JPS59136140 A JP S59136140A
Authority
JP
Japan
Prior art keywords
combustion
catalyst
flow
heat
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58009418A
Other languages
Japanese (ja)
Other versions
JPH0247262B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Masao Ota
大田 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58009418A priority Critical patent/JPS59136140A/en
Publication of JPS59136140A publication Critical patent/JPS59136140A/en
Publication of JPH0247262B2 publication Critical patent/JPH0247262B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To provide a catalyst body having catalysts for contact combustion on the wall surfaces of flow passages in which fuel-contg. gas flows and meeting the combustion condition for high load by arranging two kinds of flow passages having catalytic activity and having no catalytic activity so as to contact with each other via the wall surfaces. CONSTITUTION:The flow passages in a monolithic catalyst are formed by arranging flow passages 15 having catalyst layers on the surface and flow passages 16 having no catalyst layers adjacently with each other. The combustion heat generated on the layers 11 in the passages 15 flows therefore in the form of heat flow 12 in the flow passage direction and is used only for preheating of a gaseous mixture; at the same time, the layers 11 are cooled and the thermal deterioration thereof is prevented. The heat flow in the direction opposite to the inflow direction of the gas is decreased by the flow 12.

Description

【発明の詳細な説明】 本発明は燃焼用触媒体に係り、特に高負荷燃焼に適した
接触燃焼用触媒体および該触媒体を用いた燃焼装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion catalyst, and more particularly to a catalyst for catalytic combustion suitable for high-load combustion, and a combustion apparatus using the catalyst.

近年、触媒によシ燃焼反応を促進する、いわゆる触媒燃
焼法を用いて、ボイラや各種燃焼器の小型化を実現しよ
うとする試みが多くなされている。
In recent years, many attempts have been made to downsize boilers and various combustors by using the so-called catalytic combustion method, which promotes combustion reactions using catalysts.

触媒燃焼法では、単位容積および時間当たりの発熱量で
ある容積燃焼率(k c a L / ffI″h)が
従来の火炎燃焼法の場合の数10倍と大きいため、火炉
容積を従来の数10分の1にすることが可能である。そ
の他、触媒燃焼法は(1)窒素酸化物(NOT)を生成
17にくい(2)低酸素濃度で完全燃焼可能である、な
どの長所も併せて持っており、水洗の実用化が切望され
ている。
In the catalytic combustion method, the volumetric combustion rate (k a L / ffI''h), which is the amount of heat generated per unit volume and time, is several ten times larger than that in the conventional flame combustion method. The catalytic combustion method also has the following advantages: (1) It is difficult to generate nitrogen oxides (NOT) (2) Complete combustion is possible at low oxygen concentrations. I have one, and the practical application of water washing is eagerly awaited.

しかし、上記触媒燃焼法においては、触媒を高負荷売件
で使用すると燃焼熱により触媒が劣化するという現象を
生じ、これが実用化の大きな障害となっている。このた
め、(1)燃焼ガスの再循環、(2)燃料の分注といっ
た方法により、触媒の熱劣化を回避する方策が検討され
ている。
However, in the above-mentioned catalytic combustion method, when the catalyst is used under high-load conditions, the catalyst deteriorates due to combustion heat, which is a major obstacle to practical application. For this reason, measures to avoid thermal deterioration of the catalyst are being considered by methods such as (1) recirculation of combustion gas and (2) dispensing of fuel.

すなわち、第1図は、燃焼ガス再循環による改良例を示
したものであるが、空気導入管3から導入された空気は
熱交換器8で予熱された後、配管2から燃料が注入され
、混合器5で均一に混合された後、触媒体1を装填した
触媒装置IAに導入され、触媒燃焼に供される。該触媒
装置IAの燃焼排ガスは熱回収器4を経て取出され、そ
の一部は配管6を通って送風器7罠より燃料注入配管2
の前流側に再循環され、残りの排ガスは前述の熱交換器
8に送られ、熱回収された後、配管9がら外部K II
、 距さ−れ、る−6また第2図は、燃料の分注による
改良例を示したもので、空気導入配管3がら導入された
空気は予熱器1oを経て予熱された後配管2から燃料が
注入され、さら罠混合器5で混合された後、触媒燃箇装
置IAK導入され、ことで触媒燃焼された後、熱回収器
4で熱回収が行われ、さら圧熱回収した後の燃焼排ガス
に配管から燃料が注入され、再び混合器5、触媒燃焼装
置IAおよび熱回収器4で前述の操作が繰返された後、
配管9から燃焼排ガスが外部に排出される。
That is, FIG. 1 shows an improved example of combustion gas recirculation, in which the air introduced from the air introduction pipe 3 is preheated by the heat exchanger 8, and then fuel is injected from the pipe 2. After being uniformly mixed in the mixer 5, the mixture is introduced into the catalyst device IA loaded with the catalyst body 1, and subjected to catalytic combustion. The combustion exhaust gas of the catalyst device IA is taken out through the heat recovery device 4, and a part of it passes through the pipe 6 and is sent to the fuel injection pipe 2 from the blower 7 trap.
The remaining exhaust gas is sent to the aforementioned heat exchanger 8, where the heat is recovered, and the remaining exhaust gas is then sent to the external K II through the piping 9.
Fig. 2 shows an example of improvement by dispensing fuel, in which the air introduced through the air introduction pipe 3 is preheated through the preheater 1o, and then is discharged from the pipe 2. After the fuel is injected and mixed in the trap mixer 5, the catalytic combustion unit IAK is introduced, and after catalytic combustion is performed, heat is recovered in the heat recovery device 4, and further compressed heat is recovered. After fuel is injected into the combustion exhaust gas from the pipe and the above-mentioned operation is repeated again in the mixer 5, the catalytic combustion device IA, and the heat recovery device 4,
Combustion exhaust gas is discharged from the pipe 9 to the outside.

しかしながら、(1)の方法(第1図)では、再循環の
ために扱うガス詞が数倍忙増大し、触媒燃焼の長所が薄
れるだけでなく、装置構造も複雑になるという欠点があ
る。また(2)の方法(第2図)では、燃料を分注する
ため、構造が複雑化するとともに1燃料濃度の低い条件
で運転するため、着火温度が高くなるという問題を生じ
る。
However, method (1) (FIG. 1) has the disadvantage that the amount of gas to be handled for recirculation increases several times, which not only diminishes the advantages of catalytic combustion, but also complicates the device structure. Further, in the method (2) (FIG. 2), since the fuel is dispensed, the structure is complicated, and since the fuel is operated under conditions of low fuel concentration, the ignition temperature becomes high.

上記の欠点をなくすため、触媒層を分割して部分燃焼さ
せることが考えられるが、この場合は、熱暴走により部
分的に触媒のシ/タリングを生じたり、また社触媒の一
部のみが加熱され、均一な燃焼を続行することができず
、さらに部分燃焼生成物である一酸化炭素や未燃カーボ
ンを生成するという問題がある。
In order to eliminate the above-mentioned drawbacks, it is possible to divide the catalyst layer and perform partial combustion, but in this case, thermal runaway may cause partial shedding of the catalyst, or only a portion of the catalyst may be heated. There is a problem in that it is not possible to continue uniform combustion, and carbon monoxide and unburned carbon, which are partial combustion products, are produced.

本発明の目的は、上記従来技術の欠点を改善し、高負荷
の燃焼条件に容易に対応することがてき、かつ熱劣化の
生じにくぃ溶焼用触媒体を提供することにある。
An object of the present invention is to improve the drawbacks of the prior art described above, and to provide a catalyst body for melting and firing that can easily cope with high-load combustion conditions and is resistant to thermal deterioration.

本発明tj:、燃料含有ガスが通る流路壁面に接触燃焼
用触媒を有する触媒体において、流路壁面が触媒活性を
有する流路と触媒活性を有しないか、または前記流路よ
りも触媒活性の少ない流路との2種類の流路が壁面を介
して互いに接するように配列されたことを特徴とする。
The present invention tj: In a catalyst body having a catalyst for catalytic combustion on the wall surface of a channel through which a fuel-containing gas passes, the channel wall surface has a catalytic activity and a channel that does not have catalytic activity or has a catalytic activity higher than that of the channel. The present invention is characterized in that two types of channels, one with a small number of channels and the other with a small number of channels, are arranged so as to be in contact with each other through a wall surface.

本発明の触媒体は、方形、円形、6角形などの開口形状
で、ガス流に対し、平行な流路を有する、いわゆるモノ
リス触媒体に好ましく適用される。
The catalyst body of the present invention is preferably applied to a so-called monolith catalyst body, which has an opening shape such as a rectangular, circular, or hexagonal shape and has a flow path parallel to the gas flow.

以下、本発明を図面によシさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図ないし第7図は、本発明の原理を模式的圧説明す
る図である。先ず第4図は1、従来のモノリス触媒内の
燃焼状況を模式的に示しだものであるが、空気と燃料の
混合ガス1よ矢印の方から触媒内に流入し、PA媒10
表面で接触的に燃焼し発熱する。そのとき燃焼熱の一部
が触媒の内部を通り、熱流12となってガスの流れに対
し逆向きに伝わシ、空気と燃料の混合気を予熱すること
になる。
3 to 7 are diagrams schematically explaining the principle of the present invention. First of all, Fig. 4 schematically shows the combustion situation in a conventional monolithic catalyst.A mixed gas of air and fuel 1 flows into the catalyst from the direction of the arrow, and the PA medium 10
Burns in contact with the surface and generates heat. At that time, part of the combustion heat passes through the inside of the catalyst and becomes a heat flow 12 that is transmitted in the opposite direction to the gas flow, thereby preheating the air-fuel mixture.

これによって引き起とされた温度上昇のために、燃焼反
応はよシ速やかに進行するようになるが、その結果、前
述の逆向きの熱流による混合ガスの予熱が強化され、さ
らに燃焼反応社促進される。
Due to the temperature increase caused by this, the combustion reaction proceeds more rapidly, but as a result, the preheating of the mixed gas by the aforementioned reverse heat flow is strengthened, which further accelerates the combustion reaction. be done.

結果として触媒体内部に幅の狭い極めて高温な燃焼帯1
3が形成され、燃焼はほとんどこの部分で完結する。こ
の場合の触媒体の温度分布を示したものが第4図である
が、前記した逆向きの熱流12によシ混合ガスのエンタ
ルピーが増大し、触媒燃焼による燃焼−帯の温度(実線
A ) ii、、点線Bで示した無触媒の火炎燃焼に較
べて高いのみならず、断熱火炎温度Cをはるか罠上回る
高温となり、触媒の熱劣化が進行し易くなる。
As a result, a narrow and extremely high temperature combustion zone 1 is created inside the catalyst body.
3 is formed, and combustion is almost completed in this part. Figure 4 shows the temperature distribution of the catalyst in this case, and the enthalpy of the mixed gas increases due to the heat flow 12 in the opposite direction, and the temperature of the combustion zone due to catalytic combustion (solid line A) ii. The temperature is not only higher than the non-catalytic flame combustion shown by the dotted line B, but also far exceeds the adiabatic flame temperature C, making it easier for the catalyst to undergo thermal deterioration.

以上に示したように現状の触媒内に形成される燃焼帯の
幅は極めて狭く、はとんどの燃焼反応がその部分で急速
に進行しているため、触媒層を短くする方法で安定に部
分燃焼を実施することは原理的に困難である。このため
、本発明では触媒のガス流路を不均質なものとし、熱流
を断面方向に分散させて逆向きの熱流を低減せしめ、安
定な部分燃焼を可能にした。すなわち、模式的にれ第5
図に示すように1モノリス触媒内の流路を触媒層11を
表面姉持っ流路15と触媒層を持たない流路16を着接
させた。このようにすれげ流路15中の触媒層11上で
発生した燃焼熱社、流路6方向の熱流12となって流れ
、混合ガスの予熱にのみ使1されるとともに1触媒層1
1は冷却され、熱劣化が防止される。また、熱流12に
よって、ガス流入方向に逆向きの熱流社減少し、第6図
のDK示すように発熱帯における極端な温度上昇は生じ
なくなシ、触媒の熱劣化は著しく低減される。
As shown above, the width of the combustion zone formed in current catalysts is extremely narrow, and most combustion reactions proceed rapidly in that area. Therefore, shortening the catalyst layer can stabilize the combustion zone. Combustion is difficult in principle to carry out. Therefore, in the present invention, the gas flow path of the catalyst is made inhomogeneous, the heat flow is dispersed in the cross-sectional direction, the heat flow in the opposite direction is reduced, and stable partial combustion is made possible. In other words, schematically, the fifth
As shown in the figure, a channel 15 with a catalyst layer 11 on its surface and a channel 16 without a catalyst layer were bonded to each other in a monolithic catalyst. In this way, the combustion heat generated on the catalyst layer 11 in the rough passage 15 flows as a heat flow 12 in 6 directions of the passage, and is used only for preheating the mixed gas, and 1 catalyst layer 1.
1 is cooled to prevent thermal deterioration. Furthermore, the heat flow 12 reduces the heat flow in the opposite direction to the gas inflow direction, and as shown by DK in FIG. 6, an extreme temperature rise in the heating zone does not occur, and thermal deterioration of the catalyst is significantly reduced.

さらに本発明の場合には、触媒層11を有しない流路1
6を設けることによって部分燃焼を構造的に実現するた
め、狭い反応帯を分離する方法の場合に生じる燃焼の不
安定現象や局部加熱は生じなくなる。オだ、流路15に
流入する混合ガス珪、流路の出口に到達するまでの間圧
触*層11によって完全燃焼させることができ、未燃炭
素や一酸化炭素の生成も抑制される。さらに流入するガ
スは燃料分注の場合とは異なり、空気比を1近くに選定
できるため、容易に着火起動させることができる利点も
得られる。
Furthermore, in the case of the present invention, the flow path 1 without the catalyst layer 11
6 structurally realizes partial combustion, so that unstable combustion phenomena and local heating that occur in the case of the method of separating narrow reaction zones do not occur. Moreover, the mixed gas flowing into the flow path 15 can be completely combusted by the contact layer 11 until it reaches the outlet of the flow path, and the generation of unburned carbon and carbon monoxide is also suppressed. Furthermore, unlike in the case of fuel dispensing, the air ratio of the inflowing gas can be selected to be close to 1, so there is an advantage that ignition can be started easily.

なお、第5図に示す触媒層11を有する流PPr15と
有しiい流路16け、第5A図に示すよう圧逆にしても
よい。
Note that the pressure of the flow PPr15 having the catalyst layer 11 shown in FIG. 5 and the flow path 16 having the catalyst layer 11 may be reversed as shown in FIG. 5A.

本発明の触媒体は、第7図に示すように、触媒成分を内
面にて有する流路15と、これを有しない流路16とを
層状に、かつ交互に設けたものや、第8図に示すように
、流路断面に千鳥状に配置したものが例示されるが、要
するに流路15と16の2種の流路が、一部または全部
の外面を互いに接するように配置されていれによく、他
忙種々の変形が考慮される。例えば流路15と16は必
ずしも同一流路断面積を有しなくてもよく、また流路1
6の内面を流路15の内面の触媒より活性の低い触媒層
で覆うことも、本特許の原理から容易に推察可能な範囲
にある。また、触媒層11または担体14の材質社金属
、金ハ酸化物など、燃焼用触媒であれはどのような本の
であって本使用可能である。
The catalyst body of the present invention is one in which flow passages 15 having catalyst components on the inner surface and flow passages 16 without catalyst components are provided alternately in a layered manner as shown in FIG. As shown in Fig. 1, an example is one in which the channels are arranged in a staggered manner in the cross section of the channel, but in short, two types of channels, channels 15 and 16, are arranged so that some or all of the outer surfaces are in contact with each other. In many cases, various variations can be considered. For example, channels 15 and 16 do not necessarily have to have the same cross-sectional area;
It is also within the range that can be easily inferred from the principle of this patent to cover the inner surface of the channel 6 with a catalyst layer having a lower activity than the catalyst on the inner surface of the flow path 15. Further, any combustion catalyst can be used as long as the material of the catalyst layer 11 or the carrier 14 is metal, gold halide oxide, etc.

次に本発明の燃焼用触媒体を用いた燃焼装置の一例を第
9図に示す。仁の装置は、配管3がら導入さノ1.る空
気を予熱器1oと、該予熱空気に燃料を供給する燃料注
入配管2と、該燃料と空気とを混合する混合器5と、該
混合器5からの燃料空気混合ガスを燃焼させる燃焼装置
IAとからなり、この燃fil’4[IAは、比較的短
いモノリス触媒体20と、熱回収器4を交互に配列した
ものからなる。このモノリス型触媒2oは、前述の第7
図および第8図に示したようなものからなる。このよう
に触媒層を分割し、熱回収器である伝熱管と交互に配置
し、各触媒層で燃料を部分燃焼させながら燃焼熱を除去
ツることにより、触媒の最高温度が制限されるとともに
、各触媒体20に卦いても第5図に示したように、流路
断面方向に燃焼熱が分散されるので、極めて安定な分割
燃焼が実塑、され、空気比1近くの高負荷燃焼にも充分
適用し得る熱回収装置を構成することができる。なお、
本発明の触媒体は、第9図に示した燃焼装置のみならず
、第1図および第2図に示し冬燃焼装置にも適用可能で
ある。
Next, FIG. 9 shows an example of a combustion device using the combustion catalyst of the present invention. Jin's equipment is introduced from the piping 3.1. a preheater 1o, a fuel injection pipe 2 that supplies fuel to the preheated air, a mixer 5 that mixes the fuel and air, and a combustion device that combusts the fuel-air mixed gas from the mixer 5. The fuel fil'4 [IA consists of relatively short monolithic catalyst bodies 20 and heat recovery units 4 arranged alternately. This monolithic catalyst 2o is the seventh catalyst mentioned above.
It consists of those shown in FIG. 8 and FIG. By dividing the catalyst layers in this way and placing them alternately with heat transfer tubes, which serve as heat recovery units, and removing the combustion heat while partially combusting the fuel in each catalyst layer, the maximum temperature of the catalyst is limited. In each catalyst body 20, as shown in FIG. 5, combustion heat is dispersed in the cross-sectional direction of the flow path, so extremely stable split combustion is achieved in practice, and high-load combustion with an air-to-air ratio of nearly 1 is achieved. It is possible to construct a heat recovery device that can be fully applied to In addition,
The catalyst body of the present invention is applicable not only to the combustion apparatus shown in FIG. 9 but also to the winter combustion apparatus shown in FIGS. 1 and 2.

以下、本発明を具体的な実施例によりさらに詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例 流路形状が1辺2朋の正方形で隔壁厚味IC5m貢ある
ムライト質担体を、30闘角、30罷長さに切出し、ア
ルミナ(r  AJtOs )に白金Q、 5 wt%
担持しだ350メツシユ粉末の水スラリを、第7図に示
したような構造となるように流路中に注ぎ込んだ。これ
を140℃、2時間乾燥後、500℃で2時間焼成し、
ムライト担持上に触媒粉を約0.1闘厚になるように析
出させた。
Example A mullite carrier with a square channel shape of 2 mm on each side and a partition wall thickness of IC 5 m was cut into pieces with a fighting angle of 30 and a thread length of 30. Alumina (rAJtOs) was mixed with platinum Q and 5 wt%
A water slurry of the supported 350 mesh powder was poured into the channel so as to form the structure shown in FIG. After drying this at 140°C for 2 hours, it was fired at 500°C for 2 hours,
Catalyst powder was deposited to a thickness of about 0.1 on the mullite support.

比較例 実施例と同様の担体を30w角、15門長さの形状に切
出し、そのすべての流路の内壁に同様の方法で触媒を析
出させた。
Comparative Example The same carrier as in Example was cut into a shape of 30w square and 15 gates long, and the catalyst was deposited on the inner walls of all the channels in the same manner.

実施例 実施例罠なる触媒と比較触媒とIc、 8 vol f
4のメタン(残部空気)の混合ガスを400℃に予熱し
、35Nl/−の流量で接触させ、触媒燃焼試験を行っ
た。
Examples Examples Trap Catalysts and Comparison Catalysts and Ic, 8 vol f
A catalytic combustion test was conducted by preheating the mixed gas of methane (remaining air) from No. 4 to 400° C. and contacting the mixture at a flow rate of 35 Nl/−.

実験直後と10時間後の両触媒の性能を第1表に示した
Table 1 shows the performance of both catalysts immediately after the experiment and after 10 hours.

第1表 第1表の結果から、本発明による触媒体tit: 、長
時間触媒性能に変化がなく、COL:r)発生も少ない
のに対し、比較例の触媒体は、初期活性杖高かつたが、
COの発生が著しく、また数時間後には活性低下のため
失火17た。
From the results in Table 1, it can be seen that the catalyst according to the present invention has no change in long-term catalyst performance and has little COL: r) generation, whereas the catalyst of the comparative example has high initial activity and However,
The generation of CO was significant, and a misfire occurred several hours later due to a decrease in activity.

以上、本発明によれば、空気比1近くの争件で安定した
部分触媒燃焼が可能になり、例えば熱回収器と組み合わ
せた高負荷燃焼−熱回収システムを構成することができ
る。このため、本発明の触媒体は、特に触媒燃焼ボイラ
等に好適である。
As described above, according to the present invention, stable partial catalytic combustion becomes possible even when the air ratio is close to 1, and, for example, a high-load combustion-heat recovery system can be configured in combination with a heat recovery device. Therefore, the catalyst body of the present invention is particularly suitable for catalytic combustion boilers and the like.

【図面の簡単な説明】[Brief explanation of drawings]

wc1図および第2図は、従来の触界燃焼システムを示
す装置系統図、第3図は従来の触媒体内の燃焼状況を示
すモデル図、第4図U、その温度分布を示す図、第5図
、第5A図は本発明の原理を示す触媒体のモデル図、第
6図はその温度分布を示す図、第7図、第8図は、それ
ぞれ本発明の実施例を示す触媒体の構成図、第9図は、
本発明の触媒体を組込んだ高負荷燃焼−熱回収システム
の装置系統図である。 1.20・・・触媒体、2・・・燃焼注入配管、3・・
・空気導入管、4・・・熱回収器(伝熱管)、9・・・
排気配管。 代理人 弁理士  川 北 武 長 第1図 第2図 第3図 第5図 第5A図 「 竿7図 瓜 第9図 手続補正書く方式) %式% 1、事件の表示 昭和58年 特 許 願第 9418号2、発明の名称
 燃焼用触媒体 3、補正をする者 事件との関係 特許出願人 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
発送日 昭和58年4月26日) 6、 ?ili正の対象 願書および明細書全文。 8、補正の内容 願書および明細書の浄書(内容に変更
なし。)
wc1 and 2 are device system diagrams showing a conventional catalytic combustion system, Fig. 3 is a model diagram showing the combustion situation inside the conventional catalyst body, Fig. 4 U is a diagram showing its temperature distribution, and Fig. 5 Figure 5A is a model diagram of a catalyst body showing the principle of the present invention, Figure 6 is a diagram showing its temperature distribution, and Figures 7 and 8 are configurations of catalyst bodies showing examples of the present invention, respectively. Figure 9 is
FIG. 1 is a system diagram of a high-load combustion-heat recovery system incorporating the catalyst of the present invention. 1.20... Catalyst body, 2... Combustion injection pipe, 3...
・Air introduction pipe, 4... Heat recovery device (heat transfer tube), 9...
Exhaust piping. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 2 Figure 3 Figure 5 Figure 5A ``Style 7 Figure 9 Procedure amendment writing method'' % formula % 1. Indication of the case 1988 Patent application No. 9418 2, Title of the invention Combustion catalyst 3, Relationship with the case of the person making the amendment Patent applicant 4, Agent 103 Address 11-8 Nihonbashi Kayaba-cho, Chuo-ku, Tokyo (
Shipping date: April 26, 1982) 6.? ili positive subject Full text of application and specification. 8. Contents of amendment: Copying of application and specification (no change in content)

Claims (1)

【特許請求の範囲】[Claims] (1)燃料含有ガスが通る流路壁面に接触燃焼用触媒を
有する触媒体において、流路壁面が触媒活性を有する流
路と、触媒活性を有しないか、または前記流路よりも触
媒活性の少ない流路との2種類の流路が壁面を介して互
いに接するように配列されたことを特徴とする燃焼用触
媒体。
(1) In a catalyst body having a catalyst for catalytic combustion on the wall surface of a channel through which fuel-containing gas passes, there is a channel whose wall surface has catalytic activity and a channel whose wall surface has no catalytic activity or whose catalytic activity is lower than that of the channel. A combustion catalyst body characterized in that two types of flow paths, one with a small number of flow paths and the other with a small number of flow paths, are arranged so as to be in contact with each other through a wall surface.
JP58009418A 1983-01-25 1983-01-25 Catalyst body for combustion Granted JPS59136140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009418A JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009418A JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Publications (2)

Publication Number Publication Date
JPS59136140A true JPS59136140A (en) 1984-08-04
JPH0247262B2 JPH0247262B2 (en) 1990-10-19

Family

ID=11719819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009418A Granted JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Country Status (1)

Country Link
JP (1) JPS59136140A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259013A (en) * 1985-05-13 1986-11-17 Babcock Hitachi Kk Catalyst combustion device
EP0304707A1 (en) * 1987-08-24 1989-03-01 Westinghouse Electric Corporation Passively cooled catalytic combustor for a stationary combustion turbine
WO1992000490A1 (en) * 1990-06-29 1992-01-09 Nippon Chemical Plant Consultant Co., Ltd. Burner
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5328359A (en) * 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
US5720605A (en) * 1991-01-09 1998-02-24 Pfefferle; William C. Catalytic method
US5863508A (en) * 1991-04-22 1999-01-26 Corning Incorporated Catalytic reactor system
EP1300555A2 (en) * 2001-08-08 2003-04-09 ALSTOM (Switzerland) Ltd Catalyst
US6638055B2 (en) 2001-04-30 2003-10-28 Alstom (Switzerland) Ltd Device for burning a gaseous fuel/oxidant mixture
WO2005014112A1 (en) * 2003-08-05 2005-02-17 Leinemann Gmbh & Co. Flame arrester
WO2013124997A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Power generating apparatus, power generating method, decomposition-gas boiler, and decomposition-gas turbine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259013A (en) * 1985-05-13 1986-11-17 Babcock Hitachi Kk Catalyst combustion device
EP0304707A1 (en) * 1987-08-24 1989-03-01 Westinghouse Electric Corporation Passively cooled catalytic combustor for a stationary combustion turbine
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
WO1992000490A1 (en) * 1990-06-29 1992-01-09 Nippon Chemical Plant Consultant Co., Ltd. Burner
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5720605A (en) * 1991-01-09 1998-02-24 Pfefferle; William C. Catalytic method
US5720606A (en) * 1991-01-09 1998-02-24 Pfefferle; William C. Catalytic method
US5863508A (en) * 1991-04-22 1999-01-26 Corning Incorporated Catalytic reactor system
US5328359A (en) * 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
US6638055B2 (en) 2001-04-30 2003-10-28 Alstom (Switzerland) Ltd Device for burning a gaseous fuel/oxidant mixture
EP1300555A2 (en) * 2001-08-08 2003-04-09 ALSTOM (Switzerland) Ltd Catalyst
EP1300555A3 (en) * 2001-08-08 2003-11-26 ALSTOM (Switzerland) Ltd Catalyst
WO2005014112A1 (en) * 2003-08-05 2005-02-17 Leinemann Gmbh & Co. Flame arrester
US7241137B2 (en) 2003-08-05 2007-07-10 Leinemann Gmbh & Co. Kg Flame arrestor
WO2013124997A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Power generating apparatus, power generating method, decomposition-gas boiler, and decomposition-gas turbine
JPWO2013124997A1 (en) * 2012-02-23 2015-05-21 昭和電工株式会社 Power generation device, power generation method, cracked gas boiler, and cracked gas turbine
US9567875B2 (en) 2012-02-23 2017-02-14 Showa Denko K.K. Power generation apparatus, power generation method, decomposition-gas turbine and decomposition-gas boiler

Also Published As

Publication number Publication date
JPH0247262B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
JPS59136140A (en) Catalyst body for combustion
US4072007A (en) Gas turbine combustor employing plural catalytic stages
JP3175943B2 (en) Apparatus and method for injecting NOx reducing agents
US3832122A (en) Reduction of nitrogen oxides from products of hydrocarbon combustion with air
JPH05340505A (en) Method for reducing amount of production of nitrogen oxide produced during combustion
AU629834B2 (en) Method for lowering the content of oxides of nitrogen in flue gases
US20080131823A1 (en) Homogeous Combustion Method and Thermal Generator Using Such a Method
EP1335163B1 (en) Ultra low NOx burner for process heating
JPH09196307A (en) Contact combustion system by multistage fuel injection
US7691338B2 (en) Two stage catalytic combustor
US8815193B1 (en) Selective non-catalytic reduction for NOx removal
JP2843035B2 (en) Gas turbine combustor
KR20200130261A (en) Method for producing heat in the plant
US5785930A (en) Apparatus for burning a wide variety of fuels in air which produces low levels of nitric oxide and carbon monoxide emissions
JPH0611132A (en) Exhaust gas temperature increasing device for exhaust soot denitriding device
JPS5949494A (en) Heat exchanger
JP2010078162A (en) Method of designing tubular flame burner
JPH0743137B2 (en) Gas turbine combustor
JPS6020648B2 (en) Method for reducing NOx in combustion exhaust gas
JP3771230B2 (en) How to burn a radiant tube burner
JPH05231623A (en) Catalyst combustion device
JPS603422A (en) Catalytic burner
JPS59170622A (en) Combustor for gas turbine
JPH06201105A (en) Method and device for low-nox combustion
JPS6222363B2 (en)