JPS6020648B2 - Method for reducing NOx in combustion exhaust gas - Google Patents

Method for reducing NOx in combustion exhaust gas

Info

Publication number
JPS6020648B2
JPS6020648B2 JP52013024A JP1302477A JPS6020648B2 JP S6020648 B2 JPS6020648 B2 JP S6020648B2 JP 52013024 A JP52013024 A JP 52013024A JP 1302477 A JP1302477 A JP 1302477A JP S6020648 B2 JPS6020648 B2 JP S6020648B2
Authority
JP
Japan
Prior art keywords
combustion gas
air
combustion
concentration
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52013024A
Other languages
Japanese (ja)
Other versions
JPS5398525A (en
Inventor
馨 尾野
年郎 岡本
嘉夫 宮入
恭郎 高橋
正康 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52013024A priority Critical patent/JPS6020648B2/en
Publication of JPS5398525A publication Critical patent/JPS5398525A/en
Publication of JPS6020648B2 publication Critical patent/JPS6020648B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、多段燃焼法に関し、特に燃焼ガス中の窒素酸
化物N○×及び一酸化炭素C0、炭火水素等の他の大気
汚染物質を低減し、清浄な燃焼ガスとして大気中へ放出
し得る燃焼ガス処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-stage combustion method, and in particular reduces nitrogen oxides N○× and other air pollutants such as carbon monoxide CO and hydrocarbons in combustion gas, and produces clean combustion gas. The present invention relates to a method for treating combustion gases that can be released into the atmosphere.

燃焼ガス中のN○xは、一酸化窒素NOがほとんどで、
残り‘ま二酸化窒素N02である場合が多い。
Most of the N○x in the combustion gas is nitric oxide NO.
The remainder is often nitrogen dioxide N02.

タ大気保全の立場から、これらN○×の除去方法の開発
は現在積極的に行われている。従来、主に使用されてい
るN○×低減方法として、次のものが挙げられる。
From the standpoint of air quality conservation, the development of methods for removing these N○× is currently being actively pursued. Conventionally, the following methods are listed as N○× reduction methods mainly used.

‘1} 低NOMヒ燃焼法 低過剰空気燃焼法、多段燃焼法、排ガス再循環法等各手
法が考えられている。
'1} Various methods are being considered, including the low NOM combustion method, the low excess air combustion method, the multi-stage combustion method, and the exhaust gas recirculation method.

これらの手法は燃焼城での酸素Q濃度を低下させること
、及び火炎温度を低下させることを基本原理としており
〜N瓜の低減に伴いC0、分解炭化水素等の未燃物の発
生量が増大するため、実用上N○×の低減には限界があ
る。‘2} 選択的又は非選択的触媒還元法 燃焼ガス中にアンモニアN瓜「水素日2、炭化水素等の
ガス状還元怪物質を注入、混合させた後、触媒層を通過
させることによりN○×を窒素N2に還元する方法であ
るが、この方法は、触媒の劣化及び再生上の取り扱い、
触媒として使用する重金属の徴粉等による二次公害〜設
備簾〜 ランニングコスト等種々の技術的「経済的問題
が多い。
The basic principles of these methods are to lower the oxygen Q concentration in the combustion chamber and to lower the flame temperature. As the amount of melon is reduced, the amount of unburned materials such as CO and decomposed hydrocarbons increases. Therefore, there is a limit to the reduction of N○× in practice. '2} Selective or non-selective catalytic reduction method Injecting and mixing a gaseous reducing substance such as ammonia and hydrogen into the combustion gas and then passing it through a catalyst layer. This method reduces the
There are many technical and economic problems such as secondary pollution caused by dust of heavy metals used as catalysts, equipment blinds, and running costs.

‘31選択的又は非選択的無触媒還元法燃焼ガス中に直
接N比又はこの他に比,C○,炭化水素等の易酸化性物
質を単独又は組み合わせた還元性物質を注入し〜N○k
を還元する方法(例えば袴開昭49−47244 50
−?774号公報参照)があるが「還元性物質及びこの
物質の作用によって生成する物質による低温熱回収部の
損傷及び大気放出による新たな公害発生等の問題がある
'31 Selective or non-selective non-catalytic reduction method Directly injecting reducing substances into the combustion gas, such as N ratio or other easily oxidizable substances such as carbon, hydrocarbons, etc., alone or in combination ~ N○ k
(e.g. Hakama Kaisho 49-47244 50
−? However, there are problems such as damage to the low-temperature heat recovery unit due to reducing substances and substances generated by the action of these substances, and new pollution caused by release into the atmosphere.

また、操作条件によっては還元性物質の分解により逆に
N瓜の発生「増大を伴うこともある。上記‘1}の低N
○x化燃焼法及び上記{3’の無触媒還元法は「比較的
安価で簡便な低N○x化手法であるが、上述したように
ト未燃物等の有害物質の発生を伴い易く、N○×低減効
果には限界があり、実用上30%以上の低減は難しい。
本発明者等は「多段燃焼法(以下OFA法という)の研
究中、OFA法の二次空気の吹き込み位置を従来とは全
く異なった場所に移したところ、或る条件の燃焼ガスに
対しては二次空気そのものが酸化作用と同時にかなりの
還元作用を有することを確認した。
In addition, depending on the operating conditions, the decomposition of reducing substances may actually result in an increase in the production of N melon.
The ○x combustion method and the non-catalytic reduction method described in {3' above are relatively inexpensive and simple low-N○x methods, but as mentioned above, they tend to generate harmful substances such as unburned substances. , N○× reduction effect has a limit, and it is difficult to reduce it by 30% or more in practice.
The present inventors stated, ``During research on the multi-stage combustion method (hereinafter referred to as the OFA method), we moved the secondary air blowing position of the OFA method to a completely different location than before, and found that confirmed that secondary air itself has a considerable reducing effect as well as an oxidizing effect.

このN○×をN2に還元する作用を効果的に実用化する
には、二次空気吹き込み位置における燃焼ガスの条件確
保が必要でも このためには二次空気を吹き込む前に例
えば炭化水素等を吹き込むことが有効であり〜かっこの
炭化水素自身もN○×の還元効果を有することが判明し
た。もちろそ、炭化水素吹き込み法以外の方法、例えば
主バーナの燃焼自体を改良する方法等により、上記のよ
うな条件を確保することもできる。以上の知見に基づい
て燃焼ガスを清浄化する方法、すなわち本発明方法を完
成するに至った。本発明は「‘11 N0×を含有する
温度850〜1300℃でかつ酸素濃度が零または略零
の燃焼ガスに「空気を多段に分割して混入するに際し、
前に混入した空気中の酸素の燃焼反応が略終了する領域
に次の分割空気が混入するように、一定間隔をおいて蟻
次混合、燃焼させることにより該燃焼ガス中のNO広を
低減させることを特徴とする燃焼ガスの処理方法。
In order to effectively put this action of reducing N○× into N2 into practical use, it is necessary to ensure the combustion gas conditions at the secondary air blowing position. It was found that blowing is effective and that the hydrocarbons in parentheses themselves also have the effect of reducing N○×. Of course, the above conditions can also be achieved by a method other than the hydrocarbon injection method, for example, by improving the combustion itself of the main burner. Based on the above findings, we have completed a method for cleaning combustion gas, that is, the method of the present invention. The present invention is based on "'11 When air is divided into multiple stages and mixed into combustion gas containing NOx at a temperature of 850 to 1300°C and an oxygen concentration of zero or approximately zero,"
The amount of NO in the combustion gas is reduced by mixing and burning at regular intervals so that the next divided air is mixed into the region where the combustion reaction of the oxygen in the previously mixed air has almost finished. A method for processing combustion gas characterized by the following.

‘21 N○×を含有する温度950〜1400℃でか
つ酸素濃度が約5%以下の燃焼ガスに該燃焼ガス中の酸
素と燃焼したと仮定したときに該燃焼ガス中の酸素濃度
が雰または略奪となるような量の炭化水素を1段または
多段に分割して順次混合〜燃焼させて得られる燃焼ガス
の温度850〜1300℃の領域に、該燃焼ガス中に存
在している分解炭化水素および一酸化炭素等未燃物を完
全に酸化したと仮定したときに残存する酸素濃度がi.
5%以上になるような量の空気を多段に分割して混入す
るに際し、前に混入した空気中の酸素の燃焼反応が略終
了する領域に次の分割空気が混入するように〜一定間隔
をおいて順次混合も燃焼させることにより「上記禾燃物
を実質的に路完全に酸化させると同時に燃焼ガス中のN
○kを低減させることを特徴とする燃焼ガスの処理方法
とを要旨とするものである。
'21 Assuming that a combustion gas containing N○× at a temperature of 950 to 1400°C and an oxygen concentration of about 5% or less is combusted with oxygen in the combustion gas, the oxygen concentration in the combustion gas is The decomposed hydrocarbons present in the combustion gas obtained by dividing a plunderable amount of hydrocarbons in one or multiple stages and sequentially mixing and combusting the combustion gas in a temperature range of 850 to 1300°C. And, assuming that unburned materials such as carbon monoxide are completely oxidized, the remaining oxygen concentration is i.
When dividing and mixing air in an amount of 5% or more in multiple stages, the air is divided at regular intervals so that the next divided air is mixed into the region where the combustion reaction of oxygen in the previously mixed air has almost completed. By sequentially mixing and burning the fuel at the same time, the above-mentioned fuel is substantially completely oxidized, and at the same time, N
The gist of the present invention is a combustion gas processing method characterized by reducing ○k.

すなわち「本発明においては〜前記した二次空気そのも
のが酸化作用と同時にかなりの還元作用を示す或る条件
の燃焼ガスとは、温度850〜1300℃でかつ02濃
度が零または略零、好ましくは−2〜i%である燃焼ガ
スのことであり、この条件の燃焼ガスを確保するために
は、前記したように炭化水素注入法や主バーナの燃焼改
良法「その他適宜の方法が探られる。
That is, ``In the present invention, the combustion gas under certain conditions in which the secondary air itself has a considerable reducing effect at the same time as the oxidizing effect is defined as a combustion gas having a temperature of 850 to 1300°C and an 02 concentration of zero or approximately zero, preferably -2% to i%, and in order to secure the combustion gas under this condition, the hydrocarbon injection method, the combustion improvement method of the main burner, and other appropriate methods are explored as described above.

なお「 上記の02濃度が−2%とは「酸素不足のため
に禾燃物が存在している燃焼ガス中にト化学反応を考慮
しない単純計算上演合後の02濃度が2%になるように
空気を混合させたとき、理論上ちようど上記未燃物が完
全燃焼して02が消失する状態をいう。本発明では、上
記した条件の燃焼ガスに空気を2段または多段に分割し
て系外より注入し、該燃焼ガスと順次速やかに混合させ
る。
Furthermore, ``The above 02 concentration is -2%'' means ``The 02 concentration is 2% after a simple calculation that does not take into account the chemical reaction in the combustion gas where combustible substances are present due to lack of oxygen.'' When air is mixed with air, theoretically, the above-mentioned unburned substances are completely combusted and 02 disappears.In the present invention, the air is divided into two stages or multiple stages into the combustion gas under the above-mentioned conditions. The gas is injected from outside the system and mixed rapidly with the combustion gas.

この場合、空気の注入量は、混合後の02濃度が1.5
%以上になるように設定することが好ましい。また、本
発明では、通常のボィラ、加熱炉等で発生する02濃度
約5%以下、好ましくは0.5〜2%、C○、分解炭化
水素等の未燃物は多少含まれていてもよく、CO濃度と
して100〜10,00功地程度の含有は許される燃焼
ガス流の温度950〜1400℃の領域に、炭化水素を
1段又は多段に分割して系外より注入し、該燃焼ガスと
順次速やかに混合させることによって上記の02濃度の
条件、すなわち零または略零、好ましくは−2〜1%を
確保し、この燃焼ガスの後流側温度850〜1300o
oの領域に、空気を2段または多段に分割して系外より
注入し、この燃焼ガスと順次速やかに混合させる。
In this case, the air injection amount is such that the 02 concentration after mixing is 1.5.
It is preferable to set it to % or more. In addition, in the present invention, the 02 concentration generated in ordinary boilers, heating furnaces, etc. is approximately 5% or less, preferably 0.5 to 2%, and even if some unburned materials such as C○ and decomposed hydrocarbons are contained. Hydrocarbons are often divided into one or more stages and injected from outside the system into a region where the temperature of the combustion gas stream is 950 to 1400 degrees Celsius, where a CO concentration of 100 to 10,000 is permissible. The above 02 concentration condition, i.e. zero or almost zero, preferably -2 to 1%, is ensured by sequentially and rapidly mixing with the combustion gas, and the downstream temperature of this combustion gas is 850 to 1300o.
Air is divided into two or multiple stages and injected from outside the system into the region o, and is rapidly mixed with the combustion gas one after another.

この場合、上記炭化水素の注入量は、混合後の02濃度
が上記の雲または略零、好ましくは−2〜1%となるよ
に設定し、かつ多段に分割して注入する場合は、1段目
の注入量は混合後の02濃度が2%以下になるように設
定することが効果的である。
In this case, the injection amount of the hydrocarbon is set so that the 02 concentration after mixing becomes the cloud or approximately zero, preferably -2 to 1%, and when the injection is divided into multiple stages, 1 It is effective to set the injection amount in each stage so that the 02 concentration after mixing is 2% or less.

また、上記後流側での空気注入量は、前記のように混合
後の02濃度が1.5%以上になるように設定する。な
お、この炭化水素注入法によれば、炭化水素注入時に、
上記の02濃度条件が確保されると同時に燃焼ガス中の
NO皮がかなりN2に還元されるという効果をも奏する
ことができる。
Further, the amount of air injected on the downstream side is set so that the 02 concentration after mixing becomes 1.5% or more as described above. Furthermore, according to this hydrocarbon injection method, at the time of hydrocarbon injection,
While the above 02 concentration conditions are ensured, it is also possible to achieve the effect that NO skin in the combustion gas is considerably reduced to N2.

この結果、最終的には燃焼排ガス中のN○×濃度は30
%以上減少することができるばかりでなく、未燃物も実
質的に存在しなくなる(CO<5瓜肌)、本発明方法の
特徴および効果を以下にまとめて列挙する。
As a result, the final concentration of N○× in the combustion exhaust gas was 30
The characteristics and effects of the method of the present invention, which not only can reduce the amount of CO by more than %, but also substantially eliminate the presence of unburned substances (CO<5 melon skin), are summarized below.

‘1} 無触媒方式である。'1} It is a non-catalytic method.

{2) N○×の還元及び酸化等に必要な系外供給物質
は、ボィラ、加熱炉等で通常使用されている炭化水素及
び空気であるので、特殊な取り扱いを必要とせず、新た
な二次公害発生の懸念はない。
{2) The materials to be supplied outside the system necessary for reduction and oxidation of N○× are hydrocarbons and air that are normally used in boilers, heating furnaces, etc., so no special handling is required and a new There is no concern about further pollution occurring.

脚 低N○x化燃焼法と併用することにより極めて有効
にN○×低減を図ることができ、実質的に未燃物の発生
を伴わない。
Leg: By using it in conjunction with the low-N○x combustion method, it is possible to achieve an extremely effective reduction in N○x, and virtually no unburned matter is generated.

■ 吹き込み用炭化水素としては、メタン、ェ夕ン、プ
ロパン等気体状のものはいうまでもなく、950〜14
00℃の温度城において容易にガス化しうる液状のもも
のでもよく、たとえば「ガソリン(含ナフサ)、灯油類
も使用できる。
■ Hydrocarbons for blowing include gaseous ones such as methane, methane, and propane, as well as 950-14
Any liquid material that can be easily gasified at a temperature of 00°C may be used, such as gasoline (including naphtha) and kerosene.

本発明方法は、N○k含有燃焼ガスを発生する装置でか
つ、本発明適用のための燃焼ガスの所望条件(温度及び
酸素02濃度)が改造も含め実現できる装簿、例えば、
ポイラ、各種工業用加熱炉等に適用することができる。
以下、本発明の基礎となった実験例を挙げて本発明方法
を更に詳述する。
The method of the present invention is an apparatus that generates N○k-containing combustion gas and is equipped with a device that can realize the desired conditions (temperature and oxygen concentration) of the combustion gas for application of the present invention, including modification.
It can be applied to boilers, various industrial heating furnaces, etc.
Hereinafter, the method of the present invention will be explained in further detail by giving experimental examples that are the basis of the present invention.

実験例 1 本実験に用いた実験装置を第1図に示す。Experimental example 1 Figure 1 shows the experimental equipment used in this experiment.

第1図において、燃焼ガス1は炉尻に設置したバーナ2
によって作られる。
In Figure 1, combustion gas 1 is supplied to burner 2 installed at the bottom of the furnace.
made by.

燃焼用空気3は強制通風機4によって加圧され、いわゆ
る強制通風方式で炉内に送りこまれる。燃料20は液状
、ガス状いずれのものも使用できる。本実験ではA〜C
重油、プロパンガスを使用した。この円筒形実験炉5の
内面は、燃焼ガス温度調節用の伝熱管群13を除いた部
分は、主として耐火レンガ6が内張りされている。炉長
は約18肌で、実用炉での実際の燃焼ガス流速を再現す
るため、流れ方向に数段階にわたって炉内座がいまられ
ており、内径はそれぞれ80仇枕、70物吻、50仇駁
、30仇蚊である。これら四つの異なった直径をもつセ
クションを、便宜上、燃焼ガスの上流側から、第1室7
、第2室8、第3室9、第4室10とよぶことにする。
第1室7は、いわゆる熱風発生炉に相当し、ここで発生
した燃焼ガスは順次第2,3,4室を経て煙突11より
大気中に放出される。第2室8の直前には、燃焼ガスの
温度および組成調節用空気取り入れ口12が設置されて
いる。第3室9には、実用炉の対流熱回収部を想定して
一部伝熱管群13を設け、海水14にて冷却できるよう
にしてある。炭化水素(以下、アフタフュェルという)
15および空気(以下ァフタェアという)16の注入は
、炉長方向に約50仇肋ピッチで設けた燃焼ガス組成、
温度等の計測孔17を利用して種々の個所で行った。ア
フタフュヱルの炉内への注入にあたっては拡散混合促進
の観点から空気18あるいはスチーム19が同伴できる
ようにしてある。アフタフュェルとしては市販のプロパ
ンガス、メタンガス、ナフサ等を使用した。また勺燃焼
ガス中にアフタフュェル及びアフタヱアを分散するため
に使用した代表的吹き込み用注入管15および16の概
略図を第2図に示す。
Combustion air 3 is pressurized by a forced draft fan 4 and sent into the furnace using a so-called forced draft method. The fuel 20 can be either liquid or gas. In this experiment, A to C
Heavy oil and propane gas were used. The inner surface of this cylindrical experimental furnace 5 is mainly lined with refractory bricks 6 except for the heat transfer tube group 13 for controlling combustion gas temperature. The furnace length is approximately 18 mm, and in order to reproduce the actual combustion gas flow velocity in a practical furnace, the furnace seats are arranged in several stages in the flow direction, and the inner diameters are 80 mm, 70 mm, and 50 mm, respectively. There were 30 mosquitoes. For convenience, these four sections with different diameters are connected from the upstream side of the combustion gases to the first chamber 7.
, a second chamber 8, a third chamber 9, and a fourth chamber 10.
The first chamber 7 corresponds to a so-called hot air generating furnace, and the combustion gas generated here is sequentially passed through the second, third and fourth chambers and is released into the atmosphere from the chimney 11. Immediately in front of the second chamber 8, an air intake 12 for adjusting the temperature and composition of the combustion gas is installed. The third chamber 9 is partially provided with a group of heat transfer tubes 13 assuming a convective heat recovery section of a practical reactor, and is configured to be cooled with seawater 14. Hydrocarbons (hereinafter referred to as after-fuel)
15 and air (hereinafter referred to as afterair) 16 are injected at a combustion gas composition provided at a pitch of about 50 ribs in the furnace length direction.
The measurement was carried out at various locations using the temperature measurement hole 17. When injecting the afterfuel into the furnace, air 18 or steam 19 is allowed to be entrained in order to promote diffusion and mixing. Commercially available propane gas, methane gas, naphtha, etc. were used as after fuel. FIG. 2 also shows a schematic diagram of typical injection pipes 15 and 16 used to disperse afterfuel and afterair into the combustion gases.

第2図A? Bはアフタフュヱル注入管、第2図C,D
はアフタェア注入管を示す。まず、第2図Aのアフタフ
ュェル注入管AF−M型について説明すると、ライン1
より流入する所定量のァフタフュェルは、3/餌管2の
円管壁に軸万向に6段〜各段ごとに円周方向に2個づっ
開けられた噴出孔(蓬8.4肋)3より燃鱗ガス中に噴
出する。
Figure 2 A? B is the afterfuel injection pipe, Fig. 2 C, D
indicates the aftercare injection tube. First, to explain the afterfuel injection pipe AF-M type shown in Fig. 2A, line 1
A predetermined amount of fatafuel flowing in from 3/6 holes in the circular pipe wall of the bait tube 2 in 6 axial directions to 2 in the circumferential direction for each step (8.4 ribs) 3 It ejects into flaming gas.

なお〜 4は炉内煙道、5は耐火レンガであり、第1図
の6に相当する。次に、第2図Bのアフタフュェル注入
管AF−S型について説明すると、11′28管2を炉
内煙道4の中央部まで挿入し「その先端2′からアフタ
フュェルが噴出する単純構造のものである。なおt第2
図A,8に示す両型の注入管とも「拡散効果を増大させ
るための同伴ガス(空気、スチームなど)も使用でき、
この同伴ガスはライン6より導入される。またt第2図
Cのアフタェア注入管AA−M型は「第2図Aに示すア
フタフュェル注入管AF−M型とほぼ同様の形式のもの
で〜 ライン1から流入する所定量のアフタェアは、2
B管2に円管壁に鞠方向に6段「各段ごとに円周方向に
2個づっ設けられた噴出孔(径2劫舷)3より炉内煙道
4の燃焼ガス中に噴出する。
Note that 4 is an in-furnace flue, and 5 is a refractory brick, which corresponds to 6 in FIG. Next, to explain the afterfuel injection pipe AF-S type shown in Fig. 2B, it has a simple structure in which the 11'28 pipe 2 is inserted to the center of the furnace flue 4 and afterfuel is spouted from its tip 2'. It should be noted that t second
Both types of injection tubes shown in Figures A and 8 can also be used with entrained gases (air, steam, etc.) to increase the diffusion effect.
This entrained gas is introduced through line 6. The afterair injection pipe type AA-M shown in Fig. 2C is of almost the same type as the afterfuel injection pipe AF-M shown in Fig. 2A.
In the B pipe 2, there are 6 ejection holes (diameter 2 x 2) provided in the circumferential direction in 6 stages on the circular pipe wall. .

第2図Dのァフタェア注入管AA−S型は、第2図Bに
示すアフタフュェル注入管AF−S型とほぼ同様の形式
のものであるがt このAA−S型では、2B管2は炉
内中央部でなく炉壁部に先端2′が開□するように設け
、炉壁からアフタェアを吹き込むようにする。これは噴
出流のもつ運動量で燃焼ガス中に吹き出す空気が充分分
散する場合であって、分散能力を考慮して吹き込み位置
は任意に変更できるようにしてある。なお〜アフタフュ
ェル注入管に比べアフタェア注入管の径が大きいのは単
に吹き込み流量が大きいためである。
The afterfuel injection pipe AA-S type shown in Fig. 2D is of almost the same type as the afterfuel injection pipe AF-S type shown in Fig. 2B, but in this AA-S type, the 2B pipe 2 is The tip 2' is provided so as to open □ not in the inner center but in the furnace wall, so that afterair is blown into the furnace wall. This is a case where the air blown out into the combustion gas is sufficiently dispersed due to the momentum of the jet flow, and the blowing position can be changed arbitrarily in consideration of the dispersion ability. Note that the diameter of the after-air injection pipe is larger than that of the after-fuel injection pipe simply because the blowing flow rate is larger.

以上、M型とS型の代表的2つの注入管について説明し
たが、注入管の働きは要するに燃焼ガスと注入物を速や
かに分散、混合できるものであればよく、分散能力に応
じて、注入管2の本数、噴出孔3の孔数は変更する必要
がある。また、実用上はアフタフュェルおよびアフタェ
アの両注入管は、850℃以上の高温燃焼ガス中にさら
されるので「注入管保護の観点から二重管方式にして空
気、水、スチーム等の冷却媒体を用いて冷却することが
必要である。
The two typical injection pipes, M type and S type, have been explained above, but the function of the injection pipe is that it can quickly disperse and mix the combustion gas and the injected material. The number of pipes 2 and the number of jet holes 3 need to be changed. In addition, in practice, both the afterfuel and afterair injection pipes are exposed to high-temperature combustion gases of 850°C or higher, so in order to protect the injection pipes, a double pipe system is used and a cooling medium such as air, water, or steam is used. It is necessary to cool it down.

先ず、前記第1図の装置により、燃焼発熱量30〜18
0万Kca’/日、燃焼空気比^0.8〜2.0の条件
下で燃焼ガスを発生させ、この燃焼ガスにアフタェアを
吹き込んだときの基本特性について調べた。
First, by using the apparatus shown in FIG.
Combustion gas was generated under the conditions of 00,000 Kca'/day and a combustion air ratio of 0.8 to 2.0, and the basic characteristics when afterair was blown into this combustion gas were investigated.

すなわち、プロパンガス110kg/日を用いて空気比
入0.職及び1.15の条件で燃焼ガスを発生させ、鰹
道中の稜々の個所に第2図Cに示すAA−M型の注入管
を移動させてアフタェアを吹き込んだ時の特性を調べた
That is, using 110 kg/day of propane gas and an air ratio of 0. Combustion gas was generated under the conditions of 1.15 and 1.15, and the characteristics were investigated when afterair was injected by moving an AA-M type injection pipe shown in Figure 2C to the ridges of the bonito path.

この結果を第3図に示す。なお、アフタュア注入前後の
燃焼ガスの02濃度は〜 それぞれ、^が0.班のとき
−0.5%、2%、^が1.15のとき3%、5.5%
であった。また、アフタェア注入前のNO戊濃度は、入
が0.職のとき約15&風、^が1.15のとき約20
0脚肌で、該N○×の約95%がNOで、残りはN02
であった。第3図において、機軸はアフタェァ吹き込み
位置直前の燃焼ガス温度「縦軸はアフタヱア吹き込み後
のNO濃度及びN○×濃度を、吹き込み前のNOは濃度
(N○x)。で割った値を百分率(%)で表わしたもの
である。図中、曲線1は上記の空気比入0.98で燃焼
させたときの燃焼ガスのアフタェア吹き込み後のNO濃
度〜曲線2は空気比入0.98で燃焼させたときの燃焼
ガスのアフタヱァ吹き込み後のN仇濃度、曲線3は空気
比入1.15で燃焼させたときの燃焼ガスのアフタェア
吹き込み後のNO濃度、曲線4は空気比入1.15で燃
焼させたときの燃焼ガスのァフタヱア吹き込み後のN○
x濃度の観測結果である。なお「本明細書中で述べるN
0×、NO及びCO値は「すべて次式により0%02濃
度レベルに換算したものである。
The results are shown in FIG. In addition, the 02 concentration of the combustion gas before and after the after injection is ~, respectively, where ^ is 0. -0.5%, 2% when in group, 3%, 5.5% when ^ is 1.15
Met. In addition, the NO concentration before after-injection was 0. About 15 when working & about 20 when wind, ^ is 1.15
With 0 leg skin, about 95% of the N○× is NO, and the rest is N02.
Met. In Figure 3, the axis is the combustion gas temperature just before the afterair injection position.The vertical axis is the NO concentration and N○x concentration after afterair injection, and the NO concentration before injection is the concentration (N○x), divided by the percentage. In the figure, curve 1 is the NO concentration after after-injection of combustion gas when combustion is performed at the above air ratio input of 0.98, and curve 2 is the NO concentration after the combustion gas is blown at the air ratio ratio of 0.98. Curve 3 shows the NO concentration after after-injection of the combustion gas during combustion, and curve 4 shows the NO concentration after after-injection of the combustion gas during combustion at an air ratio of 1.15. N○ after injecting combustion gas into aftertaea when combusting with
This is the observation result of x concentration. Note that "N mentioned in this specification
0x, NO and CO values are all converted to 0%02 concentration level using the following formula.

肋:2,≧;2′肋′ N。Rib: 2, ≧; 2'rib' N.

=2.半2′N。′C。=2. Half 2'N. 'C.

=2.$′C。′(ここで、N○×、NO及びCOは0
%02換算値、NOx′、NO′、CO′は実預血2濃
度02′における実測値である。
=2. $'C. '(Here, N○×, NO and CO are 0
The %02 conversion values, NOx', NO', and CO' are actually measured values at the actual blood deposit 2 concentration 02'.

)第3図に曲線3,4に示すように、Q濃度が3%で燃
焼が完結している燃焼ガス中にアフタヱアを吹き込んで
もN○×低減に全く効果がないが、曲線1,2に示すよ
うに、Q濃度が−0.5%の場合は、1200『0以下
の温度城にアフタェアを投入すると、明らかに脱硝効果
がみられ、95び0近傍でその効果は最大であった。
) As shown in curves 3 and 4 in Figure 3, even if afterair is injected into the combustion gas whose Q concentration is 3% and combustion has been completed, it has no effect on reducing N○×, but curves 1 and 2 As shown, when the Q concentration is -0.5%, when afterair is introduced into a temperature range below 1200°C, a clear denitration effect is seen, and the effect is maximum near 950°C.

また、第3図中斜線で示した帯状の部分は燃焼ガス中に
初期より存在しているN02塁に相当すると考えると、
02濃度が−0.5%の場合は、曲線1,2に示すよう
に、80000以下低温度城ではNOからN02への転
換が起こり、低温になるに従いNQの発生量が増大して
行くことが見し、出された。
Also, considering that the band-shaped part shown with diagonal lines in Fig. 3 corresponds to the N02 base that has been present in the combustion gas from the beginning,
When the 02 concentration is -0.5%, as shown in curves 1 and 2, conversion from NO to N02 occurs at temperatures below 80,000, and the amount of NQ generated increases as the temperature decreases. saw it and was served.

すなわち高温度城ではN○kの脱硝反応のみが起こり、
温度が低くなるに従いNOのN02への酸化反応を共存
いまじめ、やがて酸化反応の方が支配的になることが確
認された。また、120000以上ではN0xは減少せ
ず、むしろ増加の煩向にあつた。なお、第3図において
、領域Qはアフタェア吹き込みにより生成されたN02
相当分、領域8はアフタェア吹き込みによりN2に還元
されたNO相当分、領域yはアフタヱア吹き込み後に存
在するNO相当分である。
In other words, in a high temperature castle, only the denitrification reaction of N○k occurs,
It was confirmed that as the temperature decreases, the oxidation reaction of NO to N02 coexists, and eventually the oxidation reaction becomes dominant. Furthermore, when the value was 120,000 or more, N0x did not decrease, but rather tended to increase. In addition, in FIG. 3, area Q is N02 generated by after-air injection.
The region 8 corresponds to the NO that has been reduced to N2 by the afterair injection, and the region y corresponds to the NO that is present after the afterair injection.

以上のことから、従来のOFA法では、二次空気は13
0000以上の領域で使用されており、この場合二次空
気の使用によりN○xは増大する傾向にあるが、一次空
気の燃焼域でのNO戊低減効果が支配的となって総合的
にはN○kの低減が図られていることが推定される。
From the above, in the conventional OFA method, the secondary air is 13
In this case, the use of secondary air tends to increase NO x, but the NO x reduction effect in the combustion area of primary air becomes dominant, and the overall effect is It is presumed that an attempt is made to reduce N○k.

次に前述のアフタェアの場合と同様にアフタフュェルと
してプロパンガスを燃焼ガス中に吹き込んだときの特然
を調べ、この結果を第4図に示す。
Next, similar to the case of after-air described above, the peculiarities when propane gas was blown into the combustion gas as after-fuel were investigated, and the results are shown in FIG.

この場合、プロパンガス130k9/日を用いて空気比
入1.1及び1.6の条件で燃焼ガスを発生させ、鰹道
中の種々の個所に第2図Aに示すAF−M型の注入管を
移動させて、アフタフュェルとしてのプロパンガスを吹
き込んだ。なお、プロパンガス注入前後の燃焼ガスの0
2濃度は、それぞれ、^が1.1のとき2%、0%、入
=1.6のとき9%、8%であった。プロパンガス吹き
込み前のN○x濃度は、入が1.1のとき約200肌、
入が1.6のとき約250脚で、核N0×の約95%が
NOで、残りはNQであつた。第4図において、機軸プ
ロパンガス吹き込み位置直前の燃焼ガス温度、縦軸はプ
ロパンガス吹き込み後のNO濃度及びN○×濃度を、吹
き込み前のN0k濃度(N○x)。
In this case, combustion gas is generated using propane gas of 130k9/day under conditions of air ratio of 1.1 and 1.6, and injection pipes of the AF-M type shown in Figure 2A are installed at various points along the bonito path. I moved it and filled it with propane gas as an after-fuel. In addition, the 0 of combustion gas before and after propane gas injection
The two concentrations were 2% and 0% when ^ was 1.1, and 9% and 8% when input = 1.6, respectively. The N○x concentration before propane gas injection is approximately 200 skin when the injection is 1.1,
When the input was 1.6, there were about 250 legs, and about 95% of the nuclear NOx was NO, and the rest was NQ. In FIG. 4, the combustion gas temperature immediately before the propane gas blowing position on the machine shaft, the vertical axis shows the NO concentration and N○× concentration after propane gas blowing, and the NOk concentration (N○x) before blowing.

で割った値を百分率(%)で表わしたものである。図中
、曲線1は上記の空気比^1.1で燃焼させたときの燃
焼ガスのプロパンガス吹き込み後のNQ裏度、曲線2は
空気比^1.1で燃焼させたときの燃鱗ガスのプロパン
ガス吹き込み後のN○×濃度、曲線3は空気比入1.6
で燃焼させたときの燃嫌ガスプロバンガス吹き込み後の
NO濃度、曲線4は空気比^1.6で燃焼させたときの
燃焼ガスのプロパンガス吹き込み後のN○k濃度の観測
結果、斜線で示した帯状の部分は燃焼ガス中に初期より
存在しているNQ相当分である。第4図の曲線1,2に
示すように、Q濃度が2%の燃焼ガスにプロパンガスを
吹き込んだ場合の特性は、1400qo以上の領域では
吹き込みプロパンガスは完全燃焼してしまいN○xは増
大の傾向にあるが、1400℃付近からN0kのN2へ
の還元反応がはじまり、700℃付近で最大の反応率を
示し、700qo以下ではNOのNQへの酸化反応も共
存し、温度が低くなるに従い酸化反応の方が支配的にな
ることが確認された。
The value divided by is expressed as a percentage (%). In the figure, curve 1 is the NQ ratio of the combustion gas after propane gas injection when combustion is performed at the above air ratio ^1.1, and curve 2 is the combustion scale gas when combustion is performed at the air ratio ^1.1. N○× concentration after propane gas injection, curve 3 is air ratio 1.6
Curve 4 is the observation result of the N○k concentration after propane gas injection into the combustion gas when combustion is performed at an air ratio of ^1.6. The band-shaped portion shown is the amount equivalent to NQ present in the combustion gas from the beginning. As shown in curves 1 and 2 in Figure 4, the characteristics when propane gas is blown into combustion gas with a Q concentration of 2% are that in the region of 1400 qo or more, the blown propane gas is completely combusted and the N○x is Although it tends to increase, the reduction reaction of NOk to N2 starts around 1400℃, and the reaction rate reaches its maximum around 700℃, and below 700qo, the oxidation reaction of NO to NQ also coexists, and the temperature becomes lower. It was confirmed that the oxidation reaction becomes more dominant.

また、曲線3.4に示すように、02濃度9%の燃焼ガ
スにプロパンガスを吹き込んだ場合の特性も02濃度2
%の場合とほぼ同様の傾向を示すが、この場合、還元反
応は余り顕著に起こらないかわりに、低温城でのNOの
N02への酸化効率が極めて高いことが注目される。以
上、第3図及び第4図について説明したように、アフタ
ェアまたはアフタフュェル吹き込み位置直前の燃焼ガス
の温度及びこのガ.ス中の02濃度条件によっては、ア
フタヱアまたはアフタフュェルを燃焼ガス中に吹き込む
ことにより、かなりのN○×の還元脱硝が期待できるこ
とが判明した。
In addition, as shown in curve 3.4, the characteristics when propane gas is blown into the combustion gas with an 02 concentration of 9% are also
%, but in this case, it is noteworthy that the reduction reaction does not occur so markedly, but the efficiency of oxidizing NO to N02 in the low temperature castle is extremely high. As explained above with reference to FIGS. 3 and 4, the temperature of the combustion gas immediately before the afterair or afterfuel injection position and the temperature of this gas. It has been found that depending on the 02 concentration conditions in the combustion gas, considerable reduction and denitrification of N○× can be expected by blowing afterair or afterfuel into the combustion gas.

また、上記実験の結果、第5図及び第4図では触れなか
ったが、アフタェア吹き込みによる分解炭化水素、CO
等未燃物の酸化反応特性、及びァフタフュェル吹き込み
による分解炭化水素、CO等未燃物の発生特性が、これ
らの吹き込み位置での燃焼ガスの条件に支配され、一般
にはァフタヱアによって上記禾燃物を実質的に消去する
ことは難しく、実用化不可能なまでの発生量を伴う場合
が多いことも明らかとなった。
In addition, as a result of the above experiment, although not mentioned in Figures 5 and 4, decomposed hydrocarbons and CO
The oxidation reaction characteristics of unburnt substances such as carbon dioxide, etc., and the generation characteristics of unburnt substances such as decomposed hydrocarbons and CO due to afterfuel injection are controlled by the conditions of the combustion gas at these injection positions. It has also become clear that it is difficult to substantially eliminate the oxidation, and that the amount of oxidation generated is often impractical.

そこで本発明では「アフタェア及びアフタフュェルによ
るN○×の低減化のみならずアフタェアにる禾燃物の清
浄化を組み合わせた手法として、前記したように、温度
850〜1300℃、02濃度宅または略纂、好ましく
は−2〜1%、かつ分解炭化水素、CO等の未燃物濃度
100〜10,000脚程度なる条件の燃焼ガス中に、
アフタエアを吹き込み燃隣ガス中のQ濃度を1.5%以
上にするという手法により、N○×を低減し、未燃物を
実質的に含まない清浄な燃焼ガスとするものである。
Therefore, in the present invention, as a method that combines not only the reduction of N○× by afterair and afterfuel but also the cleaning of the fuel in afterair, as described above, the temperature is 850 to 1300℃, , preferably -2 to 1%, and the concentration of unburned substances such as decomposed hydrocarbons and CO is about 100 to 10,000 in the combustion gas,
By blowing after air to make the Q concentration in the combustion gas 1.5% or more, N○× is reduced and the combustion gas becomes clean and substantially free of unburned matter.

この時、Q濃度1.5%以上としたのは、これ以下では
未燃物質が完全に燃焼除去されないからである。また、
上記のアフタェア吹き込み前の燃焼ガスの02濃度−2
〜1%、及び分解炭化水素、CO等未燃物濃度100〜
10,00■血なる条件が通常のボィラ、工業用加熱炉
等では満たされないため、アフタェアを吹き込む前にア
フタフュェルを吹き込み上記条件を確保すると共に、ア
フタフュェル自身の還元作用によりN○ xを更に低減
させようとするものである。次に、上記手法の効果を確
認するための実験例を挙げる。
At this time, the reason why the Q concentration is set to 1.5% or more is because if the Q concentration is lower than this, the unburnt substances will not be completely burned and removed. Also,
02 concentration of combustion gas before afterair injection -2
~1%, and concentration of unburned substances such as decomposed hydrocarbons and CO 100~
10,00■ Since the critical conditions cannot be met with ordinary boilers, industrial heating furnaces, etc., we inject afterfuel before injecting afterair to ensure the above conditions, and further reduce N○ x by the reducing action of afterfuel itself. This is what we are trying to do. Next, an experimental example will be given to confirm the effectiveness of the above method.

実験例 2 第1図に示す装置を用い、プロパンガス130k9/日
を用いて発生した燃焼ガス中にアフタフュェルとしての
プロパンガスとアフタェアのいずれか一方を多段に吹き
込んだ。
Experimental Example 2 Using the apparatus shown in FIG. 1, either propane gas as afterfuel or afterair was blown into combustion gas generated using propane gas of 130 k9/day in multiple stages.

吹き込み用注入管としては第2図Aに示すAF−M型及
び第2図Cに示すAA−M型を複数個使用した。結果を
第5図及び第6図に示す。第5図は、02濃度1%の燃
焼ガス中にプロパンガスを1段(第5図中、矢印aの個
所)、ァフタェァを3段(第6図中、矢印b,c,dの
個所)に分割し吹き込んだときのものである。
As injection pipes for blowing, a plurality of AF-M type shown in FIG. 2A and AA-M type shown in FIG. 2C were used. The results are shown in FIGS. 5 and 6. Figure 5 shows one stage of propane gas in combustion gas with a 02 concentration of 1% (point of arrow a in Figure 5) and three stages of propane gas (points of arrows b, c, and d in Figure 6). This is what it looks like when it is divided into 2 parts and blown into it.

吹き込み直前の燃焼ガスの温度はそれぞれ、1350℃
(第5図中、矢印a)、1120q○(第5図中、矢印
b)、1030qo(第5図中、矢印c)、及び900
qo(第5図中、矢印d)であった。プロパンガスの吹
き込み量は13kg/日、アフタヱアの吹き込み量は上
流側から、60k9/日、60k9/日、240k9/
日であった。なお、第5図中の矢印Gは燃焼ガス流れ方
向を示す。このときの燃焼ガス中の02とN○kの各濃
度変化は第5図に示す通りであった。
The temperature of the combustion gas just before blowing is 1350℃.
(arrow a in Figure 5), 1120qo (arrow b in Figure 5), 1030qo (arrow c in Figure 5), and 900
qo (arrow d in Figure 5). The propane gas blowing amount is 13 kg/day, and the after air blowing amount is 60 k9/day, 60 k9/day, 240 k9/day from the upstream side.
It was day. Note that arrow G in FIG. 5 indicates the flow direction of the combustion gas. Changes in the concentrations of 02 and N○k in the combustion gas at this time were as shown in FIG.

180脚あったNO広はプロパンガスの吹き込みにより
12瓜風となり、更にアフタェアを順次吹き込むことに
より磯跡、4朝脚、最終には3或血となり、未燃物の存
在は実質的には認められなかった。
NO Hiro, which had 180 units, was reduced to 12 units by blowing in propane gas, and by sequentially injecting afterair gas, it became a rocky site, 4 morning units, and finally 3 pieces of blood, and the existence of unburned materials was practically recognized. I couldn't.

また、最初1%あった燃焼ガス中の02濃度はプロパン
ガス及びアフタェア吹き込みにより−i.2%t −0
.6%、0%、2%と順次変化した。なお、比較のため
に、アフタェアを1段にして全量360k9/日を11
20℃(第5図中、矢印b)の燃焼ガス雰囲気の個所に
吹き込んだところ、120肌あったN0×が9Q風1こ
しか減少せず、多段にアフタェアを吹き込むことにより
極めて有効にN○kを減少させうろことが確認された。
In addition, the 02 concentration in the combustion gas, which was initially 1%, was reduced to -i. 2%t −0
.. It changed sequentially to 6%, 0%, and 2%. For comparison, the total amount of 360k9/day is 11 with one stage of aftercare.
When it was blown into a location with a combustion gas atmosphere at 20°C (arrow b in Figure 5), NOx, which was 120 degrees, was reduced by only 1 point in the 9Q style, and by blowing afterair in multiple stages, it was extremely effective to reduce NOx. It was confirmed that it was possible to decrease k.

第6図は、02濃度1%の燃焼ガス中にプロパンガスを
3段(第6図中、矢印b,c,dの個所)、ァフタェァ
を1段(第6図中、矢印aの個所)に分割し吹き込んだ
ときのものである。
Figure 6 shows three stages of propane gas in combustion gas with a 1% concentration of 02 (points indicated by arrows b, c, and d in Figure 6) and one stage of Afterair (points indicated by arrow a in Figure 6). This is what it looks like when it is divided into 2 parts and blown into it.

吹き込み直前の燃焼ガスの温度はそれぞれ、1350o
o(第6図中、矢印b)、1130q0(第6図中、矢
印c)、1050つ0(第6図中、矢印d)、及び95
0qo(第6図中、矢印a)であった。プロパンガスの
吹き込み量は上流側から、6.5k9/日、3.25k
9/日、3.25【9/日、アフタェアの吹き込み量は
、360k9/日であった。なお「第6図中の矢印Gは
燃焼ガスの流れ方向を示す。このときの燃焼ガス中の0
2とN○kの各濃度変化は第6図に示す通りであった。
The temperature of the combustion gas just before blowing is 1350o.
o (arrow b in Figure 6), 1130q0 (arrow c in Figure 6), 1050 0 (arrow d in Figure 6), and 95
0qo (arrow a in Figure 6). The amount of propane gas blown from the upstream side is 6.5k9/day, 3.25k
9/day, 3.25 [9/day, after-air blowing amount was 360k9/day. Note that "arrow G in Figure 6 indicates the flow direction of the combustion gas.
The concentration changes of 2 and N○k were as shown in FIG.

初期濃度180pmあったN○xはプロパンガスの吹き
込みにより145脚、10■血、7轍皿と順次減少し、
アフタェア吹き込みにより最終的には5斑皿となり、未
燃物の存在は実質的に確認されなかった。なお、比較の
ためにプロパンガスを1段にして全量13k9/日を1
350oo(第6図中、矢印b)の燃焼ガス雰囲気の個
所に吹き込んだ結果は、上記第5図のところで示したよ
うに12び血であり、多段にプロパンガスを吹き込むこ
とにより極めて有効にN○kを減少させうろことが確認
された。
The initial concentration of N○x was 180 pm, which gradually decreased to 145 feet, 10 blood, and 7 ruts by blowing propane gas.
After-air blowing resulted in 5 mottled plates, and the presence of unburnt material was virtually not confirmed. For comparison, propane gas is used in one stage and the total amount is 13k9/day.
The result of blowing into a location with a combustion gas atmosphere of 350oo (arrow b in Figure 6) was 12 liters of blood as shown in Figure 5 above, and by blowing propane gas in multiple stages, it was extremely effective to remove nitrogen. It was confirmed that ○k was decreased.

なお、本発明方法においてアフタフュェルの燃焼ガス中
への拡散、混合効果を促進するために、該アフタフュェ
ルにスチーム、燃焼排ガス、空気等を同伴させることが
できる。この同伴効果を確認するために次の実験例を挙
げる。実験例 3 第1図に示す装置を用い、プロパンガス80k9ノ日を
空気量1285k9/日で燃焼させて発生した燃焼ガス
中に、アフタフユヱルとしてのプロパンガスを同伴媒体
としてスチームまたは空気を用い、同伴量を種々変化さ
せて吹き込み、その後アフタェァを吹き込んで脱硝率を
測定した。
In addition, in the method of the present invention, steam, combustion exhaust gas, air, etc. can be entrained in the afterfuel in order to promote the diffusion and mixing effect of the afterfuel into the combustion gas. The following experimental example is given to confirm this entrainment effect. Experimental Example 3 Using the apparatus shown in Figure 1, propane gas as after-oil is entrained in the combustion gas generated by burning 80k9 days of propane gas with an air amount of 1285k9/day using steam or air as an entrainment medium. The denitrification rate was measured by blowing in various amounts and then blowing afterair.

なお、スチームまたは空気同伴プロパンガス吹き込みは
「02濃度0.2〜0.5%、温度1020〜1060
℃の燃焼ガス中に、注入管として第2図Aに示すAF一
M型を使用して行なった。プロパンガスの吹き込み量は
4k9/日、プロパンガス吹き込み直前の燃焼ガス中の
NO力農度は11功■であった。また、プロパンガス吹
き込み後のアフタェアの吹き込みは、Q濃度0%、温度
920〜950qoの燃焼ガス中に、吹き込み量312
k9/日で行なった。この結果を第7図に示す。第7図
中、曲線1‘まスチームを同伴媒体とした場合、曲線2
は空気を同伴媒体とした場合である。第7図から、スチ
ームの同伴量を増す程、徐々に脱硝率は向上することが
確認された。
In addition, steam or air-entrained propane gas blowing is carried out at ``02 concentration 0.2-0.5%, temperature 1020-1060.
The injection was carried out into the combustion gas at .degree. C. using an AF-M type shown in FIG. 2A as an injection tube. The amount of propane gas injected was 4k9/day, and the NO power level in the combustion gas just before propane gas injection was 11 times. In addition, after-air blowing after propane gas blowing is performed at a blowing amount of 312
It was done at k9/day. The results are shown in FIG. In Figure 7, when steam is used as the entraining medium, curve 1' is curve 2'.
is the case when air is used as the entraining medium. From FIG. 7, it was confirmed that the denitrification rate gradually improved as the amount of steam entrained increased.

また、空気を使用した場合は拡散、混合効果の促進とい
うよりも、脱硝反応の支配因子である02濃度を変える
ことによる影響の方が大きく、空気同伴の良否は一概に
いえないことが確認された。従って、上記同伴媒体とし
ては不活性なものであることが好ましいということがで
きる。次に、アフタフュェルとアフタェアの吹き込んで
燃焼ガス清浄化を行う際の主要因子の炉内変化情況につ
いて、実験例を用いて説明する。
In addition, when air is used, the effect of changing the 02 concentration, which is the governing factor of the denitrification reaction, is greater than the promotion of diffusion and mixing effects, and it has been confirmed that it is not possible to say with certainty whether air entrainment is good or bad. Ta. Therefore, it can be said that it is preferable that the entrainment medium is inert. Next, the changes in the furnace, which are the main factors when purifying combustion gas by blowing afterfuel and afterair, will be explained using an experimental example.

実験例 4 第1図に示す装置を用い、655X9/日の空気量でプ
ロパンガス40k9/日を燃焼したときに生成する燃焼
ガス中に、約1150ooの温度城でアフタフュェルと
して3.25k9/日の空気を同伴したプロパンガス2
k9ノ日を第2図Aに示すAF−M型注入管を用いて注
入し、更に後流側の約9000Cの温度域で115k9
/日のアフタヱアを第2図Cに示すAA一M型注入管を
用いて注入した。
Experimental Example 4 Using the apparatus shown in Fig. 1, 3.25 k9/day of afterfuel is added to the combustion gas generated when propane gas is combusted with an air flow of 655 x 9/day at a temperature of approximately 1150 oo. Propane gas with air 2
Inject k9 days using the AF-M type injection pipe shown in Figure 2A, and further inject 115 k9 days in a temperature range of about 9000 C on the downstream side.
/day after-hours were injected using the AA-M type injection tube shown in Figure 2C.

この結果を第8図に示す。第8図において、上例の図お
よび下側の図とも、機軸は第1室(熱風発生炉)出ロか
らの距離〔机〕を示す。
The results are shown in FIG. In FIG. 8, the axis of the machine indicates the distance [desk] from the outlet of the first chamber (hot air generating furnace) in both the upper figure and the lower figure.

上側の図は、燃焼ガスの炉内流速(曲線1)及び温度分
布(曲線2)と、炉内任意位置までの滞留時間(曲線3
)を表わしている。
The upper diagram shows the flow rate of combustion gas in the furnace (curve 1) and temperature distribution (curve 2), and the residence time to any position in the furnace (curve 3).
).

下側の図は、燃焼ガス中のC○(曲線4)、N0(曲線
5)、N○×(:NO+N02)(曲線6)及びQ(曲
線7)の各濃度分布であり、この図において、矢印bは
空気同伴プロパンガス吹き込み位贋、矢印aはアフタェ
ア吹き込み位贋を示す。
The lower figure shows the concentration distribution of C○ (curve 4), N0 (curve 5), N○× (:NO+N02) (curve 6) and Q (curve 7) in the combustion gas. , arrow b indicates a fault in air-entrained propane gas blowing, and arrow a indicates a fault in after-air blowing.

第8図の上側と下側の図より次のことが解明された。○
} N○×濃度は、プロパンガスとアフタェア吹き込み
により1秒足らずの間に14錨風のものが7弦血まで減
少し「 その後の変化はほとんどみられなかった。
The following was clarified from the upper and lower diagrams in Figure 8. ○
} The N○× concentration decreased from 14 anchor-like to 7-string blood in less than 1 second by propane gas and afterair blowing, and "there was hardly any change after that.

{2)CO濃度は、プロパンガス吹き込みにより1秒足
らずでO脚から約4,00啄肌まで増大し、アフタェア
吹き込みにより1秒足らずで2■風まで減少した。
{2) The CO concentration increased from bow-legged to approximately 4,000 ft in less than 1 second by propane gas blowing, and decreased to 2 takuda in less than 1 second by after-air blowing.

{3’ 02濃度は、主燃焼ガスで約1%あったものが
プロパンガスの注入により、Qが消失し、アフタェアの
注入により約2%となった。
{3' The 02 concentration was approximately 1% in the main combustion gas, but Q disappeared due to the injection of propane gas, and it became approximately 2% due to the injection of afterair gas.

なお、処理後の燃焼ガス中のガス分析を行ったところ「
プロパンガス、ホルムアルデヒド、シアン化水素及びN
比の各成分の存在は実質上認められなかった。上記の実
験結果から分かるように、N○×の脱硝反応及びCOな
どの未燃物の酸化反応は極めて速く、反応物の拡散、混
合時間を除けば、純粋な反応時間は0.9段以下と考え
られる。
In addition, gas analysis in the combustion gas after treatment revealed that ``
Propane gas, formaldehyde, hydrogen cyanide and N
The presence of each component in the ratio was virtually not observed. As can be seen from the above experimental results, the denitrification reaction of N○× and the oxidation reaction of unburned substances such as CO are extremely fast, and the pure reaction time is less than 0.9 stages, excluding the diffusion and mixing time of reactants. it is conceivable that.

実験例 5 実験例4と同様な実用化実験を行ない「 そのデータの
一例を第1表に示す。
Experimental Example 5 A practical experiment similar to Experimental Example 4 was conducted and an example of the data is shown in Table 1.

第1表 註)ァフタフュェルおよびァフタェァはいずれも1段吹
き込みとした。
Note to Table 1) Both Faftafuel and Faftaair were blown in one stage.

実験番号5及び9は本発明の効果が十分いかされた場合
で「脱硝率はそれぞれ60%及び80%、未燃物は実質
的に存在しなかった。実験番号8では脱硝率は高いもの
の、発煙が生じ実用上問題がある。実験番号3及び7の
ような条件ではプロパンガス及びアフタェアを吹き込む
ことによりかなりN0×濃度は高くなってしまうことが
確認された。以下、本発明を実際のポィラに適用する場
合の実施態様例を列挙する。
Experiments Nos. 5 and 9 were cases in which the effects of the present invention were fully utilized; the denitrification rates were 60% and 80%, respectively, and there was virtually no unburned material.In experiment No. 8, the denitrification rate was high, but This generates smoke and poses a practical problem.It was confirmed that under the conditions of experiment numbers 3 and 7, the NOx concentration became considerably high by blowing propane gas and afterair. Examples of implementations when applied to are listed below.

実施態様例 1 ボィラに本発明を実施した場合について第9図を用いて
説明する。
Embodiment Example 1 A case in which the present invention is implemented in a boiler will be described using FIG. 9.

燃料1と燃焼用空気IQを用いてバーナ9により炉内に
火炎6が形成されt燃焼ガスは鏡射熱回収部及び対流熱
回収部3,亀,5を膿次流れて行く。
A flame 6 is formed in the furnace by the burner 9 using the fuel 1 and the combustion air IQ, and the combustion gas sequentially flows through the specular heat recovery section and the convection heat recovery section 3, 5, and 5.

通常の場合「バーナ9により燃料1の完全燃焼が要求さ
れるが、本発明では燃焼ガスの後流側○2にアフタェア
8を入れるので、遊離炭素が発生する直前まで燃焼用空
気翼D‘ま減少させることができる。例えば燃料1がC
重油の場合は理論空気量程度まで、炭化水素系燃料であ
る場合は燃焼ガス流○,中に未燃物が5%程度存在する
まで、空気量をいまることができる。このような燃焼状
態にすることによりまずバーナ9での主燃焼部分で約2
0%のN○×削減ができる。次に燃焼ガスの温度が95
0〜1400q○のところG,にアフタフュェル吹き込
み用注入管亀亀を用いてアフタェア7を吹き込む。吹き
込み後の燃焼ガス中の禾燃物が5〜10%程度になるよ
うにアフタフュェルの吹き込み量を設定する。このアフ
タフュヱル吹き込みによりN○xは40%程度減少する
。更に後流側で燃焼ガスの温度が850〜1300qC
のところG2にアフタェア吹き込み用注入管12を用い
て「空気8を吹き込む。吹き込み後の燃焼ガス中の02
濃度が1.5%以上になるように吹き込み量を設定する
。このアフタェア吹き込みにより未燃物は実質上ゼロと
なり「N○xは更に40%程度減少する。従って、ボィ
ラに本発明を適用することにより、通常燃焼時に比べ「
約70%のNO戊低減が達成できる。実施態様例 2第
亀Q図は工業炉加熱炉(オレフィン製造用分鱗炉、比、
NH3、メタノール等製造用改質炉、石油精製・石油化
学用加熱炉など)に本発明の基本操作を2段繰返して適
用した場合である。
Normally, complete combustion of the fuel 1 is required by the burner 9, but in the present invention, the afterair 8 is inserted into the wake side ○2 of the combustion gas, so the combustion air blade D' or For example, if fuel 1 is C
In the case of heavy oil, the amount of air can be kept up to about the theoretical amount of air, and in the case of hydrocarbon fuel, the amount of air can be kept up to about 5% of unburned matter in the combustion gas flow. By creating such a combustion state, the main combustion part of burner 9 will first burn approximately 2
It is possible to reduce N○× by 0%. Next, the temperature of the combustion gas is 95
Afterair 7 is injected into G from 0 to 1400q○ using the afterfuel injection injection tube tortoise. The amount of afterfuel blown is set so that the amount of combustible matter in the blown combustion gas is approximately 5 to 10%. This afterfuel injection reduces N○x by about 40%. Furthermore, the temperature of the combustion gas on the downstream side is 850 to 1300qC.
Now, air 8 is blown into G2 using the injection pipe 12 for afterair blowing.
Set the blowing amount so that the concentration is 1.5% or more. This afterair injection makes the amount of unburned matter virtually zero, further reducing N○x by about 40%.
Approximately 70% NO reduction can be achieved. Embodiment Example The second turtle Q diagram shows an industrial furnace heating furnace (scaling furnace for olefin production,
This is a case where the basic operation of the present invention is repeated in two stages and applied to a reforming furnace for producing NH3, methanol, etc., a heating furnace for petroleum refining and petrochemicals, etc.).

燃料1と燃焼用空気2を用いて、バーナ9により炉内に
火炎6が形成され、燃焼ガスG,,G2,G3,G4は
頚射熱回収部及び対流熱回収部3,4,5を順次流れて
行く。
Using fuel 1 and combustion air 2, flame 6 is formed in the furnace by burner 9, and combustion gases G, , G2, G3, and G4 pass through radiation heat recovery section and convection heat recovery section 3, 4, and 5. It flows sequentially.

バーナ9により燃料1が完全燃焼され、燃焼ガスG,中
の02濃度は3%、未燃物はゼロとする。まず、燃焼ガ
スが1200℃程度のところG,に、アフタフュェル吹
き込み用注入管12を用いてアフタフユェルを吹き込む
。該アフタフュェルの吹き込み量は計算上燃焼ガスG,
中の02が吹き込みアフタフュェルの燃焼に全て寄与し
たとして、かつ燃焼ガス中に未藤物が1〜10%存在す
るように設定する。この後流側で燃焼ガスの温度が11
00午0程度のところG2に、アフタェア吹き込み用注
入管13を用いてアフタェア8を吹き込む。アフタェア
の吹き込み量は計算上燃焼ガスG2中の未燃物1〜10
%が完全に燃焼したとして、かつ燃焼ガス中に02が0
.5〜2%存在するように設定する。更に、この後流側
で燃焼ガスの温度が1000q0程度のところG3及び
90000程度のところ○4に、アフタフュェル7及び
アフタェア8を注入管14及び15を用いて吹き込む。
アフタフュェル及びアフタェアに吹き込み量は上述と同
様な計算に基づき、燃焼ガス中の未燃物及び02がそれ
ぞれ、1〜5%、1.5〜2.5%程度になるように設
定する。これらの操作により、処理後の燃焼ガスG3中
の未燃物は実質上ゼロとなり、NO叫ま燃焼ガスG,中
の初期含有量に比べ約70%の低減が達成できる。
The fuel 1 is completely combusted by the burner 9, the 02 concentration in the combustion gas G is 3%, and the amount of unburned matter is zero. First, afterfuel is blown into G, where the combustion gas is about 1200° C., using the afterfuel injection injection pipe 12. The amount of afterfuel blown is calculated as combustion gas G,
It is assumed that all of the 02 in the combustion gas contributes to the combustion of the blown afterfuel, and the combustion gas is set so that 1 to 10% of filtrate is present. On this wake side, the temperature of the combustion gas is 11
Afterair 8 is injected into G2 at approximately 00:00 using the afterair injection injection pipe 13. The amount of afterair injection is calculated from 1 to 10 unburned substances in the combustion gas G2.
% is completely burned, and 02 is 0 in the combustion gas.
.. Set it so that it exists at 5 to 2%. Further, on the downstream side, afterfuel 7 and afterair 8 are injected into G3 at a temperature of about 1000q0 and ○4 at a temperature of about 90000q0 using injection pipes 14 and 15.
The amounts of afterfuel and afterair are set based on calculations similar to those described above so that the amount of unburned matter and 02 in the combustion gas is approximately 1 to 5% and 1.5 to 2.5%, respectively. By these operations, the amount of unburned substances in the treated combustion gas G3 becomes substantially zero, and a reduction of about 70% can be achieved compared to the initial content in the NOx combustion gas G.

実施態様例 3 この実施態様例は実施態様例1で述べたボィラにおいて
ァフタフュェルを3段に分割して順次吹き込んだ場合で
あり、その概要を第11図に示す。
Embodiment Example 3 This embodiment is a case in which the boiler described in Embodiment Example 1 is divided into three stages and blown in sequentially, and an outline thereof is shown in FIG. 11.

アフタフュェル注入管を11以外に新たに13及び14
を設けており、これらの注入管11,13,1 4の設
置位置は燃焼ガス温度が1300℃〜100000の範
囲にする。
New after fuel injection tubes 13 and 14 in addition to 11
These injection pipes 11, 13, and 14 are installed at locations where the combustion gas temperature ranges from 1,300°C to 100,000°C.

またアフタフュェルの吹き込みは、吹き込み後の燃焼ガ
ス中の02濃度が1%〜2%で、1段当たりの02減少
濃度が0.5%以上となるようにする。その他の操作条
件等は実施態様例1に示す通りである。このようにァフ
タフュェルを多段に分割して吹き込むことにより、実施
態様例1の場合より更に一層のNO広低減化を図ること
ができる。
Further, after-fuel injection is performed so that the 02 concentration in the combustion gas after injection is 1% to 2%, and the 02 concentration reduced per stage is 0.5% or more. Other operating conditions are as shown in Embodiment Example 1. By dividing and injecting the Fatafuel into multiple stages in this way, it is possible to achieve an even wider reduction in NO than in the case of the first embodiment.

実施態様例 4 この実施態様例は、実施態様例3においてァフタフュェ
ル注入管13及び14をアフタェア注入管に置き換えて
、ァフタェァを3段に分割して吹き込んだ場合である。
Embodiment Example 4 This embodiment is a case where the Afterfuel injection pipes 13 and 14 in Embodiment Example 3 are replaced with Afterair injection pipes, and Afterair is injected in three stages.

各段のアフタヱア吹き込みは、吹き込み後の燃焼ガス中
の02濃度が−1〜1.5%で、1段当たりの02増加
濃度が0.5%以上となるようにする。また「最終段す
なわち3段目のアフタヱア吹き込みは、吹き込む直前の
燃焼ガス中のQ濃度が1%以下のところで行なう。これ
は、燃焼ガス中の02濃度が1.5%以上であると、該
最終段による脱硝は実質的に達成できないからである。
その他の操作条件等は実施態様例1と同様にする。この
ようにアフタェアを多段に分割して吹き込むことにより
、実施態様例1の場合より更に一層のN○×低減化を図
ることができる。
After air blowing in each stage is performed so that the 02 concentration in the combustion gas after blowing is -1 to 1.5%, and the increased 02 concentration per stage is 0.5% or more. Furthermore, ``The final or third stage afterair injection is performed when the Q concentration in the combustion gas is 1% or less just before blowing.This means that if the 02 concentration in the combustion gas is 1.5% or more, the This is because denitrification in the final stage cannot be substantially achieved.
Other operating conditions and the like are the same as in the first embodiment. By dividing and blowing the afterair into multiple stages in this manner, it is possible to achieve a further reduction in N○× than in the case of the first embodiment.

もちろん、アフタフュェル及びアフタェアの両方を多段
に分割して燃焼ガス中に吹き込むことも極めて有効な低
NO戊化手法である。
Of course, it is also an extremely effective method to reduce NO by dividing both afterfuel and afterair into the combustion gas in multiple stages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実験例で用いた燃焼装置の概略図、第
2図は第1図の燃焼装置に用いられたアフタフュェルお
よびアフタェア注入管の概略図、第3,4図は燃焼ガス
にアフタフュェルまたはアフタェアを吹き込んだ場合の
基本特性を示す図表、第5,6図はフフタフュェルの吹
き込みとァフタェアの吹き込みとを併用した場合の効果
を示す図表、第7図はアフタフュェル吹き込み時に同伴
媒体を用いた場合の効果を示す図表、第8図はアフタフ
ュェルとアフタェアとを吹き込んだ場合の主要因子の炉
内変化情況を示す図表、第9〜11図は本発明の実施態
様例で用いた実炉の概略図である。 矛1図 オ2図 矛3図 矛4図 才5図 才6図 矛7図 矛8図 オ9図 オ10図 オn図
Fig. 1 is a schematic diagram of the combustion device used in the experimental example of the present invention, Fig. 2 is a schematic diagram of the afterfuel and afterair injection pipe used in the combustion device of Fig. 1, and Figs. A chart showing the basic characteristics when injecting Afterfuel or Afterair, Figures 5 and 6 are charts showing the effect when using both Afterfuel and Afterair, and Figure 7 shows when an entrained medium is used when injecting Afterfuel. Figure 8 is a diagram showing changes in the main factors in the furnace when afterfuel and afterair are injected. Figures 9 to 11 are schematic diagrams of actual furnaces used in embodiments of the present invention. It is a diagram. 1 figure O 2 figure 3 spear 4 figure 5 figure 6 figure spear 7 figure 8 figure o 9 figure o 10 figure on n figure

Claims (1)

【特許請求の範囲】 1 NOxを含有する温度850〜1300℃でかつ酸
素濃度が零または略零の燃焼ガスに、空気を多段に分割
して混入するに際し、前に混入した空気中の酸素の燃焼
反応が略終了する領域に次の分割空気が混入するように
、一定間隔をおいて順次混合、燃焼させることにより該
燃焼ガス中のNOxを低減させることを特徴とする燃焼
ガスの処理方法。 2 NOxを含有する温度950〜1400℃でかつ酸
素濃度が約5%以下の燃焼ガスに該燃焼ガス中の酸素と
燃焼したと仮定したときに該燃焼ガス中の酸素濃度が零
または略零となるような量の炭火水素を1段または多段
に分割して順次混合、燃焼させて得られる燃焼ガスの温
度850〜1300℃の領域に、該燃焼ガス中に存在し
ている分解炭火水素および一酸化炭素等未燃物を完全に
酸化したと仮定したときに残存する酸素濃度が1.5%
以上になるような量の空気を多段に分割して混入するに
際し、前に混入した空気中の酸素の燃焼反応が略終了す
る領域に次の分割空気が混入するように、一定間隔をお
いて順次混合、燃焼させることにより、上記未燃物を実
質的に略完全に酸化させると同時に燃焼ガス中のNOx
を低減させることを特徴とする燃焼ガスの処理方法。
[Claims] 1. When air is divided into multiple stages and mixed into combustion gas containing NOx at a temperature of 850 to 1300°C and an oxygen concentration of zero or approximately zero, the oxygen in the previously mixed air is A method for treating combustion gas, characterized in that NOx in the combustion gas is reduced by sequentially mixing and burning at regular intervals so that the next divided air is mixed into the region where the combustion reaction has substantially completed. 2. Assuming that a combustion gas containing NOx at a temperature of 950 to 1400°C and an oxygen concentration of about 5% or less is combusted with oxygen in the combustion gas, the oxygen concentration in the combustion gas is zero or approximately zero. In the temperature range of 850 to 1,300°C of the combustion gas obtained by dividing and sequentially mixing and burning the amount of hydrocarbons in one or multiple stages, the cracked hydrocarbons and carbon atoms present in the combustion gas are Assuming that unburnt materials such as carbon oxide are completely oxidized, the remaining oxygen concentration is 1.5%.
When dividing and mixing the above amount of air into multiple stages, the air is divided at regular intervals so that the next divided air is mixed into the region where the combustion reaction of oxygen in the previously mixed air has almost completed. By sequentially mixing and burning, the unburned materials are substantially completely oxidized and at the same time NOx in the combustion gas is removed.
A method for processing combustion gas, characterized by reducing.
JP52013024A 1977-02-10 1977-02-10 Method for reducing NOx in combustion exhaust gas Expired JPS6020648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52013024A JPS6020648B2 (en) 1977-02-10 1977-02-10 Method for reducing NOx in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52013024A JPS6020648B2 (en) 1977-02-10 1977-02-10 Method for reducing NOx in combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPS5398525A JPS5398525A (en) 1978-08-29
JPS6020648B2 true JPS6020648B2 (en) 1985-05-23

Family

ID=11821561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52013024A Expired JPS6020648B2 (en) 1977-02-10 1977-02-10 Method for reducing NOx in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS6020648B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443645A1 (en) * 1978-12-04 1980-07-04 Air Liquide METHOD AND PLANT FOR THE TREATMENT OF INDUSTRIAL WASTE
JPS5731710A (en) * 1980-07-30 1982-02-20 Kawasaki Heavy Ind Ltd Method of low nox combustion and combustor therefor
JP5515733B2 (en) * 2009-12-25 2014-06-11 三浦工業株式会社 boiler
CN103423766B (en) * 2013-07-18 2016-03-02 武汉九州三维燃烧科技有限公司 A kind of firing optimization method improving SNCR denitration efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494237A (en) * 1972-03-31 1974-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494237A (en) * 1972-03-31 1974-01-16

Also Published As

Publication number Publication date
JPS5398525A (en) 1978-08-29

Similar Documents

Publication Publication Date Title
CN101356344B (en) Method of denitration of exhaust gas and apparatus thereof
US4496306A (en) Multi-stage combustion method for inhibiting formation of nitrogen oxides
US7842266B2 (en) Method of denitration of exhaust gas and apparatus therefor
JP6703626B2 (en) Ultra low nitrogen oxide combustion device
ES2274288T3 (en) SYSTEM AND PROCEDURE FOR CONTROLLING NOX EMISSIONS FROM BOILERS THAT BURN CARBON FUELS WITHOUT USING EXTERNAL REAGENTS.
JPS622207B2 (en)
JPS6225927B2 (en)
TW200424481A (en) Method for treating emissions
BRPI0620195B1 (en) METHOD FOR TREATING A GAS CURRENT RESIDUAL REGENERATOR
JPS6020648B2 (en) Method for reducing NOx in combustion exhaust gas
US9746177B2 (en) Urea decomposition and improved SCR NOx reduction on industrial and small utility boilers
JP2014190692A (en) Method and apparatus for burning hydrocarbons and other liquids and gases
CN111836997A (en) Heat production method of power device
Garg Trimming NOx from furnaces
JPH026961B2 (en)
CN201335380Y (en) Sulfur production combustion furnace gas mixer
JP4902834B2 (en) Denitration method and denitration apparatus
JPS60126508A (en) Finely powdered coal burning device
JPS6249521B2 (en)
JP5004493B2 (en) Denitration method of exhaust gas
US5785930A (en) Apparatus for burning a wide variety of fuels in air which produces low levels of nitric oxide and carbon monoxide emissions
JPH0571706A (en) Combustion method for simultaneously inhibiting nitrogen oxide and incomplete combustion product
JP3526490B2 (en) Exhaust gas denitration device and denitration method
CN105363328B (en) A kind of FCC two-stage regenerations device denitration method for flue gas
JP2634279B2 (en) Method for burning NOx-containing gas