JPH0247262B2 - - Google Patents

Info

Publication number
JPH0247262B2
JPH0247262B2 JP58009418A JP941883A JPH0247262B2 JP H0247262 B2 JPH0247262 B2 JP H0247262B2 JP 58009418 A JP58009418 A JP 58009418A JP 941883 A JP941883 A JP 941883A JP H0247262 B2 JPH0247262 B2 JP H0247262B2
Authority
JP
Japan
Prior art keywords
combustion
catalyst
heat
fuel
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58009418A
Other languages
Japanese (ja)
Other versions
JPS59136140A (en
Inventor
Yasuyoshi Kato
Kunihiko Konishi
Masao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58009418A priority Critical patent/JPS59136140A/en
Publication of JPS59136140A publication Critical patent/JPS59136140A/en
Publication of JPH0247262B2 publication Critical patent/JPH0247262B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は燃焼用触媒体に係り、特に高負荷燃焼
に適した接触燃焼用触媒体および該触媒体を用い
た燃焼装置に関する。 近年、触媒により燃焼反応を促進する、いわゆ
る触媒燃焼法を用いて、ボイラや各種燃焼器の小
型化を実現しようとする試みが多くなされてい
る。触媒燃焼法では、単位容積および時間当たり
の発熱量である容積燃焼率(kcal/m3h)が従来
の火炎燃焼法の場合の数10倍と大きいため、火炉
容積を従来の数10分の1にすることが可能であ
る。その他、触媒燃焼法は(1)窒素酸化物(NOx)
を生成しにくい(2)低酸素濃度で完全燃焼可能であ
る、などの長所も併せて持つており、本法の実用
化が切望されている。 しかし、上記触媒燃焼法においては、触媒を高
負荷条件で使用すると燃焼熱により触媒が劣化す
るという現象を生じ、これが実用化の大きな障害
となつている。このため、(1)燃焼ガスの再循環、
(2)燃料の分注といつた方法により、触媒の熱劣化
を回避する方策が検討されている。 すなわち、第1図は、燃焼ガス再循環による改
良例を示したものであるが、空気導入管3から導
入された空気は熱交換器8で予熱された後、配管
2から燃料が注入され、混合器5で均一に混合さ
れた後、触媒体1を装填した触媒装置1Aに導入
され、触媒燃焼に供される。該触媒装置1Aの燃
焼排ガスは熱回収器4を経て取出され、その一部
は配管6を通つて送風器7により燃料注入配管2
の前流側に再循環され、残りの排ガスは前述の熱
交換器8に送られ、熱回収された後、配管9から
外部に排出される。また第2図は、燃料の分注に
よる改良例を示したもので、空気導入配管3から
導入された空気は予熱器10を経て予熱された後
配管2から燃料が注入され、さらに混合器5で混
合された後、触媒燃焼装置1Aに導入され、ここ
で触媒燃焼された後、熱回収器4で熱回収が行わ
れ、さらに熱回収した後の燃焼排ガスに配管から
燃料が注入され、再び混合器5、触媒燃焼装置1
Aおよび熱回収器4で前述の操作が繰返された
後、配管9から燃焼排ガスが外部に排出される。 しかしながら、(1)の方法(第1図)では、再循
環のために扱うガス量が数倍に増大し、触媒燃焼
の長所が薄れるだけでなく、装置構造も複雑にな
るという欠点がある。また(2)の方法(第2図)で
は、燃料を分注するため、構造が複雑化するとと
もに、燃料濃度の低い条件で運転するため、着火
温度が高くなるという問題を生じる。 上記の欠点をなくすため、触媒層を分割して部
分燃焼させることが考えられるが、この場合は、
熱暴走により部分的に触媒のシンタリングを生じ
たり、または触媒の一部のみが加熱され、均一な
燃焼を続行することができず、さらに部分燃焼生
成物である一酸化炭素や未燃カーボンを生成する
という問題がある。 本発明の目的は、上記従来技術の欠点を改善
し、高負荷の燃焼条件に容易に対応することがで
き、かつ熱劣化の生じにくい燃焼用触媒体を提供
することにある。 本発明は、燃料含有ガスが通る流路壁面に接触
燃焼用触媒を有する触媒体において、流路壁面が
触媒活性を有する流路と触媒活性を有しないか、
または前記流路よりも触媒活性の少ない流路との
2種類の流路が壁面を介して互いに接するように
配列されたことを特徴とする。 本発明の触媒体は、方形、円形、6角形などの
開口形状で、ガス流に対し平行な流路を有する、
いわゆるモノリス触媒体に好ましく適用される。 以下、本発明を図面によりさらに詳しく説明す
る。 第3図ないし第7図は、本発明の原理を模式的
に説明する図である。先ず第4図は、従来のモノ
リス触媒内の燃焼状況を模式的に示したものであ
るが、空気と燃料の混合ガスは矢印の方から触媒
内に流入し、触媒1の表面で接触的に燃焼し発熱
する。そのとき燃焼熱の一部が触媒の内部を通
り、熱流12となつてガスの流れに対し逆向きに
伝わり、空気と燃料の混合気を予熱することにな
る。これによつて引き起こされた温度上昇のため
に、燃焼反応はより速やかに進行するようになる
が、その結果、前述の逆向きの熱流による混合ガ
スの予熱が強化され、さらに燃焼反応は促進され
る。結果として触媒体内部に幅の狭い極めて高温
な燃焼帯13が形成され、燃焼はほとんどこの部
分で完結する。この場合の触媒体の温度分布を示
したものが第4図であるが、前記した逆向きの熱
流12により混合ガスのエンタルピーが増大し、
触媒燃焼による燃焼帯の温度(実線A)は、点線
Bで示した無触媒の火炎燃焼に較べて高いのみな
らず、断熱火炎温度Cをはるかに上回る高温とな
り、触媒の熱劣化が進行し易くなる。 以上に示したように現状の触媒内に形成される
燃焼帯の幅は極めて狭く、ほとんどの燃焼反応が
その部分で急速に進行しているため、触媒長を短
くする方法で安定に部分燃焼を実施することは原
理的に困難である。このため、本発明では触媒の
ガス流路を不均質なものとし、熱流を断面方向に
分散させて逆向きの熱流を低減せしめ、安定な部
分燃焼を可能にした。すなわち、模式的には第5
図に示すように、モノリス触媒内の流路を触媒層
11を表面に持つ流路15と触媒層を持たない流
路16を隣接させた。このようにすれば流路15
中の触媒層11上で発生した燃焼熱は、流路6方
向の熱流12となつて流れ、混合ガスの予熱にの
み使用されるとともに、触媒層11は冷却され、
熱劣化が防止される。また、熱流12によつて、
ガス流入方向に逆向きの熱流は減少し、第6図の
Dに示すように発熱帯における極端な温度上昇は
生じなくなり、触媒の熱劣化は著しく低減され
る。さらに本発明の場合には、触媒層11を有し
ない流路16を設けることによつて部分燃焼を構
造的に実現するため、狭い反応帯を分離する方法
の場合に生じる燃焼の不安定現象や局部加熱は生
じなくなる。また、流路15に流入する混合ガス
は、流路の出口に到達するまでの間に触媒層11
によつて完全燃焼させることができ、未然炭素や
一酸化炭素の生成も抑制される。さらに流入する
ガスは燃料分注の場合とは異なり、空気比を1近
くに選定できるため、容易に着火起動させること
ができる利点も得られる。 なお、第5図に示す触媒層11を有する流路1
5と有しない流路16は、第5A図に示すように
逆にしてもよい。 本発明の触媒体は、第7図に示すように、触媒
成分を内面に有する流路15と、これを有しない
流路16とを層状に、かつ交互に設けたものや、
第8図に示すように、流路断面に千鳥状に配置し
たものが例示されるが、要するに流路15と16
の2種の流路が、一部または全部の外面を互いに
接するように配置されていればよく、他に種々の
変形が考慮される。例えば流路15と16は必ず
しも同一流路断面積を有しなくてもよく、また流
路16の内面を流路15の内面の触媒より活性の
低い触媒層で覆うことも、本特許の原理から容易
に推察可能な範囲にある。また、触媒層11また
は担体14の材質は金属、金属酸化物など、燃焼
用触媒であればどのようなものであつても使用可
能である。 次に本発明の燃焼用触媒体を用いた燃焼装置の
一例を第9図に示す。この装置は、配管3から導
入される空気を予熱器10と、該予熱空気に燃料
を供給する燃料注入配管2と、該燃料と空気とを
混合する混合器5と、該混合器5からの燃料空気
混合ガスを燃焼させる燃焼装置1Aとからなり、
この燃焼装置1Aは、比較的短いモノリス触媒体
20と、熱回収器4を交互に配列したものからな
る。このモノリス型触媒20は、前述の第7図お
よび第8図に示したようなものからなる。このよ
うに触媒層を分割し、熱回収器である伝熱管と交
互に配置し、各触媒層で燃料を部分燃焼させなが
ら燃焼熱を除去することにより、触媒の最高温度
が制限されるとともに、各触媒体20においても
第5図に示したように、流路断面方向に燃焼熱が
分散されるので、極めて安定な分割燃焼が実現さ
れ、空気比1近くの高負荷燃焼にも充分適用し得
る熱回収装置を構成することができる。なお、本
発明の触媒体は、第9図に示した燃焼装置のみな
らず、第1図および第2図に示した燃焼装置にも
適用可能である。 以下、本発明を具体的な実施例によりさらに詳
細に説明する。 実施例 流路形状が1辺2mmの正方形で隔壁厚味0.5mm
あるムライト質担体を、30mm角、30mm長さに切出
し、アルミナ(γ−Al2O3)に白金0.5wt%担持
した350メツシユ粉末の水スラリを、第7図に示
したような構造となるように流路中に注ぎ込ん
だ。これを140℃、2時間乾燥後、500℃で2時間
焼成し、ムライト担持上に触媒粉を約0.1mm厚に
なるように析出させた。 比較例 実施例と同様の担体を30mm角、15mm長さの形状
に切出し、そのすべての流路の内壁に同様の方法
で触媒を析出させた。 実験例 実施例になる触媒と比較触媒とに、8vol%のメ
タン(残部空気)の混合ガスを400℃に予熱し、
35N/minの流量で接触させ、触媒燃焼試験を
行つた。 実験直後と10時間後の両触媒の性能を第1表に
示した。
The present invention relates to a combustion catalyst, and particularly to a catalytic combustion catalyst suitable for high-load combustion, and a combustion apparatus using the catalyst. In recent years, many attempts have been made to downsize boilers and various combustors by using a so-called catalytic combustion method in which a combustion reaction is promoted using a catalyst. In the catalytic combustion method, the volumetric combustion rate (kcal/m 3 h), which is the amount of heat generated per unit volume and time, is several tens of times larger than that of the conventional flame combustion method. It is possible to set it to 1. In addition, the catalytic combustion method (1) Nitrogen oxide (NOx)
(2) complete combustion is possible at low oxygen concentrations, and the practical application of this method is eagerly awaited. However, in the above catalytic combustion method, when the catalyst is used under high load conditions, the catalyst deteriorates due to the heat of combustion, which is a major obstacle to practical application. For this reason, (1) recirculation of combustion gases;
(2) Measures to avoid thermal deterioration of the catalyst using methods such as fuel dispensing are being considered. That is, FIG. 1 shows an improved example of combustion gas recirculation, in which the air introduced from the air introduction pipe 3 is preheated by the heat exchanger 8, and then fuel is injected from the pipe 2. After being uniformly mixed in the mixer 5, the mixture is introduced into the catalyst device 1A loaded with the catalyst body 1, and subjected to catalytic combustion. The combustion exhaust gas of the catalyst device 1A is taken out through a heat recovery device 4, and a part of it is passed through a pipe 6 and sent to a fuel injection pipe 2 by an air blower 7.
The remaining exhaust gas is sent to the heat exchanger 8 described above, where the heat is recovered, and then discharged to the outside from the piping 9. FIG. 2 shows an example of improvement by dispensing fuel. Air introduced from air introduction pipe 3 is preheated via preheater 10, then fuel is injected from pipe 2, and then air is introduced into mixer 5. After being mixed in the combustion exhaust gas, it is introduced into the catalytic combustion device 1A, where it is catalytically combusted, and then heat is recovered in the heat recovery device 4. After the heat recovery, fuel is injected from the pipe into the combustion exhaust gas, and the fuel is injected into the combustion exhaust gas again. Mixer 5, catalytic combustion device 1
After the above-described operations are repeated in A and the heat recovery device 4, the combustion exhaust gas is discharged to the outside from the pipe 9. However, method (1) (Fig. 1) has the disadvantage that the amount of gas handled for recirculation increases several times, which not only diminishes the advantages of catalytic combustion, but also complicates the device structure. Furthermore, in the method (2) (FIG. 2), since the fuel is dispensed, the structure becomes complicated, and the ignition temperature becomes high because the fuel is operated under conditions of low fuel concentration. In order to eliminate the above disadvantages, it is possible to divide the catalyst layer and perform partial combustion, but in this case,
Thermal runaway may cause partial sintering of the catalyst, or only a portion of the catalyst may be heated, making it impossible to continue uniform combustion, and producing carbon monoxide and unburned carbon, which are partial combustion products. There is a problem with generating it. An object of the present invention is to improve the drawbacks of the above-mentioned prior art, to provide a combustion catalyst body that can easily cope with high-load combustion conditions and that is less likely to undergo thermal deterioration. The present invention provides a catalyst body having a catalyst for catalytic combustion on the wall surface of a channel through which a fuel-containing gas passes, the channel wall surface having catalytic activity and the channel wall surface having no catalytic activity;
Alternatively, two types of flow paths, including a flow path having a lower catalytic activity than the flow path, are arranged so as to be in contact with each other through a wall surface. The catalyst body of the present invention has an opening shape such as a rectangular, circular, or hexagonal shape and has a flow path parallel to the gas flow.
It is preferably applied to so-called monolith catalyst bodies. Hereinafter, the present invention will be explained in more detail with reference to the drawings. 3 to 7 are diagrams schematically explaining the principle of the present invention. First of all, Fig. 4 schematically shows the combustion situation in a conventional monolithic catalyst. The mixed gas of air and fuel flows into the catalyst from the direction of the arrow and comes into contact with the surface of catalyst 1. Burns and generates heat. At that time, part of the combustion heat passes through the inside of the catalyst, becomes a heat flow 12, and is transmitted in the opposite direction to the gas flow, thereby preheating the air-fuel mixture. Due to the temperature increase caused by this, the combustion reaction proceeds more rapidly, but as a result, the preheating of the gas mixture by the aforementioned reverse heat flow is enhanced, further promoting the combustion reaction. Ru. As a result, a narrow and extremely high temperature combustion zone 13 is formed inside the catalyst body, and combustion is almost completed in this zone. FIG. 4 shows the temperature distribution of the catalyst in this case, and the enthalpy of the mixed gas increases due to the heat flow 12 in the opposite direction, as described above.
The temperature of the combustion zone due to catalytic combustion (solid line A) is not only higher than that of non-catalytic flame combustion shown by dotted line B, but also reaches a high temperature that far exceeds the adiabatic flame temperature C, making it easy for thermal deterioration of the catalyst to progress. Become. As shown above, the width of the combustion zone formed in current catalysts is extremely narrow, and most combustion reactions proceed rapidly in that area, so partial combustion can be stably achieved by shortening the catalyst length. It is difficult in principle to implement. Therefore, in the present invention, the gas flow path of the catalyst is made inhomogeneous, the heat flow is dispersed in the cross-sectional direction, the heat flow in the opposite direction is reduced, and stable partial combustion is made possible. That is, schematically the fifth
As shown in the figure, a flow path 15 having a catalyst layer 11 on its surface and a flow path 16 having no catalyst layer are placed adjacent to each other in the monolithic catalyst. In this way, the flow path 15
The combustion heat generated on the catalyst layer 11 inside flows as a heat flow 12 in the six directions of the flow path, and is used only for preheating the mixed gas, and the catalyst layer 11 is cooled.
Heat deterioration is prevented. Also, due to the heat flow 12,
The heat flow in the opposite direction to the gas inflow direction is reduced, and as shown in D in FIG. 6, an extreme temperature rise in the heating zone no longer occurs, and thermal deterioration of the catalyst is significantly reduced. Furthermore, in the case of the present invention, partial combustion is realized structurally by providing a flow path 16 without a catalyst layer 11, so that unstable combustion phenomena that occur in the case of a method of separating narrow reaction zones can be avoided. Local heating no longer occurs. In addition, the mixed gas flowing into the flow path 15 has no effect on the catalyst layer 11 before reaching the outlet of the flow path.
This allows for complete combustion, and the production of unused carbon and carbon monoxide is also suppressed. Furthermore, unlike in the case of fuel dispensing, the air ratio of the inflowing gas can be selected to be close to 1, so there is an advantage that ignition can be started easily. Note that the flow path 1 having the catalyst layer 11 shown in FIG.
5 and 16 may be reversed as shown in FIG. 5A. As shown in FIG. 7, the catalyst body of the present invention has a channel 15 having a catalyst component on the inner surface and a channel 16 not having the same layered and arranged alternately,
As shown in FIG. 8, an example is a channel arranged in a staggered manner in the cross section of the channel, but in short, the channel 15 and 16 are arranged in a staggered manner.
It is sufficient that the two types of flow paths are arranged so that some or all of the outer surfaces thereof are in contact with each other, and various other modifications may be considered. For example, the flow paths 15 and 16 do not necessarily have to have the same cross-sectional area, and the principle of this patent is that the inner surface of the flow path 16 may be covered with a catalyst layer having a lower activity than the catalyst on the inner surface of the flow path 15. It is within the range that can be easily inferred from. Further, the material of the catalyst layer 11 or the carrier 14 may be any combustion catalyst, such as a metal or a metal oxide. Next, FIG. 9 shows an example of a combustion device using the combustion catalyst of the present invention. This device includes a preheater 10 for introducing air from a pipe 3, a fuel injection pipe 2 for supplying fuel to the preheated air, a mixer 5 for mixing the fuel and air, and a preheater 10 for introducing air from the mixer 5. It consists of a combustion device 1A that burns fuel-air mixed gas,
This combustion device 1A consists of relatively short monolithic catalyst bodies 20 and heat recovery units 4 arranged alternately. This monolithic catalyst 20 consists of the one shown in FIGS. 7 and 8 described above. By dividing the catalyst layers in this way and arranging them alternately with heat transfer tubes that serve as heat recovery devices, and removing combustion heat while partially combusting the fuel in each catalyst layer, the maximum temperature of the catalyst is limited, and In each catalyst body 20, as shown in Fig. 5, combustion heat is dispersed in the cross-sectional direction of the flow path, so extremely stable split combustion is achieved, and it is fully applicable to high-load combustion with an air ratio close to 1. A heat recovery device can be configured to obtain Note that the catalyst body of the present invention is applicable not only to the combustion device shown in FIG. 9 but also to the combustion devices shown in FIGS. 1 and 2. Hereinafter, the present invention will be explained in more detail with reference to specific examples. Example: The channel shape is a square with a side of 2 mm, and the partition wall thickness is 0.5 mm.
A certain mullite carrier is cut into pieces of 30 mm square and 30 mm long, and a water slurry of 350 mesh powder containing 0.5 wt% platinum supported on alumina (γ-Al 2 O 3 ) has a structure as shown in Figure 7. It was poured into the flow channel. After drying this at 140°C for 2 hours, it was calcined at 500°C for 2 hours to deposit catalyst powder to a thickness of about 0.1 mm on the mullite support. Comparative Example The same carrier as in the example was cut into a shape of 30 mm square and 15 mm long, and a catalyst was deposited on the inner walls of all the channels in the same manner. Experimental Example A mixed gas of 8 vol% methane (the remainder air) was preheated to 400°C for the example catalyst and comparative catalyst.
A catalytic combustion test was conducted by contacting at a flow rate of 35 N/min. Table 1 shows the performance of both catalysts immediately after the experiment and after 10 hours.

【表】 第1表の結果から、本発明による触媒体は、長
時間触媒性能に変化がなく、COの発生も少ない
のに対し、比較例の触媒体は、初期活性は高かつ
たが、COの発生が著しく、また数時間後には活
性低下のため失火した。 以上、本発明によれば、空気比1近くの条件で
安定した部分触媒燃焼が可能になり、例えば熱回
収器と組み合わせた高負荷燃焼−熱回収システム
を構成することができる。このため、本発明の触
媒体は、特に触媒燃焼ボイラ等に好適である。
[Table] From the results in Table 1, the catalyst according to the present invention has no change in long-term catalytic performance and generates little CO, whereas the catalyst according to the comparative example had high initial activity, but A significant amount of CO was produced, and the fire misfired several hours later due to decreased activity. As described above, according to the present invention, stable partial catalytic combustion is possible under conditions of an air ratio close to 1, and, for example, a high-load combustion-heat recovery system can be configured in combination with a heat recovery device. Therefore, the catalyst body of the present invention is particularly suitable for catalytic combustion boilers and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来の触媒燃焼システ
ムを示す装置系統図、第3図は従来の触媒体内の
燃焼状況を示すモデル図、第4図はその温度分布
を示す図、第5図、第5A図は本発明の原理を示
す触媒体のモデル図、第6図はその温度分布を示
す図、第7図、第8図は、それぞれ本発明の実施
例を示す触媒体の構成図、第9図は、本発明の触
媒体を組込んだ高負荷燃焼−熱回収システムの装
置系統図である。 1,20……触媒体、2……燃焼注入配管、3
……空気導入管、4……熱回収器(伝熱管)、9
……排気配管。
Figures 1 and 2 are equipment system diagrams showing a conventional catalytic combustion system, Figure 3 is a model diagram showing the combustion situation inside a conventional catalyst body, Figure 4 is a diagram showing its temperature distribution, and Figure 5 , FIG. 5A is a model diagram of a catalyst body showing the principle of the present invention, FIG. 6 is a diagram showing its temperature distribution, and FIGS. 7 and 8 are configuration diagrams of a catalyst body showing examples of the present invention, respectively. , FIG. 9 is an equipment system diagram of a high-load combustion-heat recovery system incorporating the catalyst body of the present invention. 1, 20... Catalyst body, 2... Combustion injection pipe, 3
... Air introduction pipe, 4 ... Heat recovery device (heat transfer tube), 9
...Exhaust piping.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料含有ガスが通る流路壁面に接触燃焼用触
媒を有する触媒体において、流路壁面が触媒活性
を有する流路と、触媒活性を有しないか、または
前記流路よりも触媒活性の少ない流路との2種類
の流路が壁面を介して互いに接するように配列さ
れたことを特徴とする燃焼用触媒体。
1 In a catalyst body having a catalyst for catalytic combustion on the wall of a channel through which a fuel-containing gas passes, there is a channel whose wall surface has catalytic activity, and a channel which has no catalytic activity or has less catalytic activity than the channel. A combustion catalyst body characterized in that two types of flow paths are arranged so as to be in contact with each other through a wall surface.
JP58009418A 1983-01-25 1983-01-25 Catalyst body for combustion Granted JPS59136140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009418A JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009418A JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Publications (2)

Publication Number Publication Date
JPS59136140A JPS59136140A (en) 1984-08-04
JPH0247262B2 true JPH0247262B2 (en) 1990-10-19

Family

ID=11719819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009418A Granted JPS59136140A (en) 1983-01-25 1983-01-25 Catalyst body for combustion

Country Status (1)

Country Link
JP (1) JPS59136140A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259013A (en) * 1985-05-13 1986-11-17 Babcock Hitachi Kk Catalyst combustion device
US4870824A (en) * 1987-08-24 1989-10-03 Westinghouse Electric Corp. Passively cooled catalytic combustor for a stationary combustion turbine
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
WO1992000490A1 (en) * 1990-06-29 1992-01-09 Nippon Chemical Plant Consultant Co., Ltd. Burner
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5593299A (en) * 1991-01-09 1997-01-14 Pfefferle; William C. Catalytic method
EP0510498B1 (en) * 1991-04-22 1997-01-29 Corning Incorporated Catalytic reactor system
US5328359A (en) * 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
EP1255077B1 (en) 2001-04-30 2008-06-11 ALSTOM Technology Ltd Device for the combustion of a gaseous mixture of fuel and oxidant
US6982065B2 (en) * 2001-08-08 2006-01-03 Alstom Technology Ltd Catalyzer
DE10336530B3 (en) 2003-08-05 2005-02-17 Leinemann Gmbh & Co. Flame arrester
US9567875B2 (en) 2012-02-23 2017-02-14 Showa Denko K.K. Power generation apparatus, power generation method, decomposition-gas turbine and decomposition-gas boiler

Also Published As

Publication number Publication date
JPS59136140A (en) 1984-08-04

Similar Documents

Publication Publication Date Title
JPH0247262B2 (en)
EP1266176B1 (en) Method and apparatus for a fuel-rich catalytic reactor
US7240483B2 (en) Pre-combustors for internal combustion engines and systems and methods therefor
US3544264A (en) Method and means for two-stage catalytic treating of engine exhaust gases
US20060096297A1 (en) Method and apparatus for operating a burner of a heat engine, in particular of a gas turbine installation
JP5436859B2 (en) Liquid mixing device that is inserted into or combined with the reactor
US6284206B1 (en) Compact selective oxidizer assemblage for a fuel cell power plant
SU514578A3 (en) Fuel treatment system
JP2006501390A5 (en)
JPH04273914A (en) Contact combustion
Kolios et al. Heat-integrated reactor concepts for catalytic reforming and automotive exhaust purification
US3701823A (en) Method and means for two-stage catalytic treating of engine exhaust gases
US6282371B1 (en) Devices for reducing emissions, and methods for same
WO1998026214A1 (en) Process and apparatus for gas phase exothermic reactions
JPH09196307A (en) Contact combustion system by multistage fuel injection
JPH07507863A (en) catalytic combustion
JPH06219705A (en) Fuel reformer
RU2286308C2 (en) Radial type device for production of the synthesis gas
US8815193B1 (en) Selective non-catalytic reduction for NOx removal
US20050201906A1 (en) Two stage catalytic combustor
KR20200130261A (en) Method for producing heat in the plant
JPH03109202A (en) Fuel reformer for fuel cell system
DE2401204A1 (en) Catalytic reactor for exhaust gases - for oxidation of carbon monoxide and unburnt hydrocarbons
JPH08296433A (en) Exhaust emission control device for gas engine
KR20180100840A (en) Catalytic combustion apparatus