JPS61186291A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPS61186291A
JPS61186291A JP60023572A JP2357285A JPS61186291A JP S61186291 A JPS61186291 A JP S61186291A JP 60023572 A JP60023572 A JP 60023572A JP 2357285 A JP2357285 A JP 2357285A JP S61186291 A JPS61186291 A JP S61186291A
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
partition wall
semiconductor single
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023572A
Other languages
Japanese (ja)
Inventor
Koji Tada
多田 紘二
Sukehisa Kawasaki
河崎 亮久
Yasuo Namikawa
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60023572A priority Critical patent/JPS61186291A/en
Publication of JPS61186291A publication Critical patent/JPS61186291A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce a compound semiconductor single crystal having high quality and containing volatile substance, by covering the growing single crystal as a whole with a liquid encapsulant, and placing a partition wall in the crucible. CONSTITUTION:In the production of a single crystal of a compound semiconductor containing volatile substance (e.g. GaAs, InP, ZnSe, etc.), the growing single crystal 3 is covered completely with a liquid encapsulant 4 (e.g. B2O3) and plural partition walls 9 are placed in the crucible 1. The partition wall 9 decreases the temperature gradient in the liquid encapsulant 4 during the growth of the single crystal 3, and reduces the thermal fluctuation. Accordingly, the generation of dislocation is suppressed, and a compound semiconductor single crystal having high quality can be produced. The material of the partition wall is e.g. carbon, PBN, BN, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAe 、  GaP 、  工nP  
などの■−V族化合物半導体単結晶、及び0dTe 、
  Zn5eなどのII−M族化合物半導体単結晶の製
造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to GaAe, GaP,
■-V group compound semiconductor single crystals such as, and 0dTe,
The present invention relates to a method for manufacturing a single crystal of a II-M compound semiconductor such as Zn5e.

〔従来の技術〕[Conventional technology]

多くの化合物半導体には、揮発性の高い成分が含まれて
いるため、引上げ法にょシ単結晶を育成する場合には、
B2O3などの液体封止剤を用いてその成分の揮散を防
ぐ方法(L1!+O法)が用いられる。また、化合物半
導体の高品質化には、転位密度を低減させることが必要
であるが、そのためには、単結晶育成中の温度環境を安
定化することが必要となる。従来技術としては、中西外
、゛封止剤中育成法による無転位GaA3単結晶の育成
”第31回応用物理学関係連合講演会講演予稿集31p
−D−11(1984)p626、に提案されているよ
うに、Ll[iO法においてB、Os 厚を80−と厚
くすることにより、温度勾配を35℃/3と小さくする
という方法がある。
Many compound semiconductors contain highly volatile components, so when growing single crystals using the pulling method,
A method (L1!+O method) is used in which a liquid sealant such as B2O3 is used to prevent the components from volatilizing. Furthermore, in order to improve the quality of compound semiconductors, it is necessary to reduce the dislocation density, and for this purpose, it is necessary to stabilize the temperature environment during single crystal growth. As for the conventional technology, Gai Nakanishi, ``Growing dislocation-free GaA3 single crystal by growth method in encapsulant'', 31st Applied Physics Association Lecture Proceedings, p. 31
-D-11 (1984) p626, there is a method of reducing the temperature gradient to 35°C/3 by increasing the B, Os thickness to 80- in the Ll[iO method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記の従来方法では、厚くした液体封止剤
の対流が抑えられないために、温度のゆらぎを十分に少
さくしきれないという問題があった。
However, the conventional method described above has a problem in that temperature fluctuations cannot be sufficiently reduced because convection of the thickened liquid sealant cannot be suppressed.

そこで本発明の目的はこの問題の解決、すなわち厚くし
た液体封止剤の対流を防止して、温度環境を安定化する
ことにより転位密度を低減して高品質な化合物半導体単
結晶を製造できる方法を提供することにある。
Therefore, the purpose of the present invention is to solve this problem, that is, to prevent convection of a thickened liquid encapsulant and stabilize the temperature environment, thereby reducing dislocation density and producing a high-quality compound semiconductor single crystal. Our goal is to provide the following.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は揮発性物質を含む化合物半導体の単結晶製造方
法で、液体封止剤により育成中の単結晶全体をおおい、
かつ、るつは内部に隔壁をもうけることを特徴とする化
合物半導体単結晶の製造方法である。
The present invention is a method for producing a single crystal of a compound semiconductor containing a volatile substance, in which the entire single crystal being grown is covered with a liquid sealant,
Moreover, the method for manufacturing a compound semiconductor single crystal is characterized in that a partition wall is provided inside.

すなわち本発明はるつばの液体封止剤部分に隔壁を設け
ることにより、該液体封止剤の対流を抑制したものであ
る。
That is, the present invention suppresses convection of the liquid sealant by providing a partition wall in the liquid sealant portion of the crucible.

以下図面を参照して本発明を具体的に説明する。The present invention will be specifically described below with reference to the drawings.

第1図は本発明の実施態様を示す図であって、基本構造
は通常のLEO法引上げ炉と同様である。すなわち、1
はるつぼ、2は原料融液、3は育成中の単結晶、4は液
体封止剤、5はヒーター、6は上軸、7は下軸、8はチ
ャンバーである。それらに加えて、液体封止剤対流防止
用の隔壁9が複数枚、るつは1内にもうけられている。
FIG. 1 is a diagram showing an embodiment of the present invention, and the basic structure is the same as that of a normal LEO method pulling furnace. That is, 1
A crucible, 2 is a raw material melt, 3 is a single crystal being grown, 4 is a liquid sealant, 5 is a heater, 6 is an upper shaft, 7 is a lower shaft, and 8 is a chamber. In addition to these, a plurality of partition walls 9 for preventing liquid sealant convection are provided within the joint 1.

隔壁9の形状は、リング状の円板をガしておシ、中央部
の穴の直径は、引き上げる単結晶の外径よシも10〜2
0目大きくしておく必要がある。また、隔壁間の間隔は
、8〜12■程度とする。液体封止剤の厚さは80〜1
20■とし、隔壁は、7〜10枚もうける。
The shape of the partition wall 9 is a ring-shaped disk, and the diameter of the hole in the center is 10 to 2 mm larger than the outer diameter of the single crystal to be pulled.
It is necessary to make the 0 value larger. Further, the interval between the partition walls is about 8 to 12 squares. The thickness of the liquid sealant is 80-1
20cm, and make 7 to 10 partition walls.

本発明において隔壁に用いることのできる材料としては
、カーボン、PBN、BN、7リコンナイトライド、ア
ルミナイドライド、カーボンやBNにP]3Nあるいは
BNをコートしたもの、その他モリブデン等が挙げられ
る。
Examples of materials that can be used for the partition walls in the present invention include carbon, PBN, BN, 7-licon nitride, aluminide, carbon or BN coated with P]3N or BN, and molybdenum.

以上の本発明の構成により化合物半導体単結晶を成長さ
せるには、通常のLEO法単結晶引上げ法と同じ操作・
手順によるが、液体封止剤4は溶融時にその厚さが80
〜120露となるように、通常法に比べて大量にチャー
ジしなければならない。隔壁の穴の直径は引上げる単結
晶の外径よシラ0〜20I+I+!大きく設定している
ので、育成中の単結晶とのすき間は5〜10■となる。
To grow a compound semiconductor single crystal using the above-described structure of the present invention, the same operations and procedures as the normal LEO single crystal pulling method are used.
Depending on the procedure, the liquid sealant 4 has a thickness of 80 mm when melted.
It is necessary to charge a large amount compared to the normal method, so that the amount is ~120 dew. The diameter of the hole in the partition wall is the outer diameter of the single crystal to be pulled, which is 0 to 20I+I+! Since it is set large, the gap between the single crystal and the growing single crystal is 5 to 10 square meters.

液体封止剤は、通常B2O3などのガラス状材質を用い
るため粘度が高く、例えばB! osでは、800℃で
約420 poise、1200℃で約50 pois
eである。グリセリンの20℃での粘性率が15.0 
poiseであることを考えると、この値はかなシ高い
ことが分る。この場合、5〜10−のすき間に対しては
、熱対流をほぼ完全に抑えることができ、一定の温度勾
配を持った安定な温度環境下で化合物半導体単結晶を引
き上げることができる。温度勾配は、B、03 厚80
■に対して31℃/儒という値を得ることができた。
Liquid sealants usually have high viscosity because they use glassy materials such as B2O3, such as B! os, about 420 poise at 800℃, about 50 poise at 1200℃
It is e. The viscosity of glycerin at 20℃ is 15.0
Considering that it is a poise, it can be seen that this value is quite high. In this case, thermal convection can be almost completely suppressed for a gap of 5 to 10 −, and the compound semiconductor single crystal can be pulled up in a stable temperature environment with a constant temperature gradient. Temperature gradient is B, 03 thickness 80
For (2), we were able to obtain a value of 31°C/F.

〔実施例〕〔Example〕

本発明をGaAs単結晶製造に用いた。液体封止剤には
B2O3を用い、その厚さは、80mとした。隔壁は8
w間隔で7枚もうけた。チャンバー内はN、  ガスで
50気圧に加圧し通常のLIC法の単結晶製造方法によ
り引上げを実施したが、転位の少ない良好な品質の単結
晶を得ることができた。
The present invention was used to produce GaAs single crystals. B2O3 was used as the liquid sealant, and its thickness was 80 m. The bulkhead is 8
I made 7 pieces at w intervals. The inside of the chamber was pressurized to 50 atmospheres with N and gas, and pulling was carried out using the usual LIC single crystal manufacturing method, and a good quality single crystal with few dislocations could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、るつは内に隔壁を設けることで単
結晶育成中の液体封止剤の温度勾配が小さくなシ、熱的
ゆらぎも小さくなるので、転位の発生が抑えられ、品質
のよい化合物半導体単結晶を製造することができるとい
う利点がある。
As explained above, by providing partition walls inside the melt, the temperature gradient of the liquid encapsulant during single crystal growth is reduced, and thermal fluctuations are also reduced, suppressing the occurrence of dislocations and improving quality. There is an advantage that a good compound semiconductor single crystal can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物半導体単結晶の製造方法の1実
施態様を説明する図である。
FIG. 1 is a diagram illustrating one embodiment of the method for manufacturing a compound semiconductor single crystal of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  揮発性物質を含む化合物半導体の単結晶製造方法で、
液体封止剤により育成中の単結晶全体をおおい、かつ、
るつぼ内部に隔壁をもうけることを特徴とする化合物半
導体単結晶の製造方法。
A method for producing single crystals of compound semiconductors containing volatile substances,
Cover the entire growing single crystal with a liquid sealant, and
A method for producing a compound semiconductor single crystal, characterized by providing a partition wall inside a crucible.
JP60023572A 1985-02-12 1985-02-12 Production of compound semiconductor single crystal Pending JPS61186291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023572A JPS61186291A (en) 1985-02-12 1985-02-12 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023572A JPS61186291A (en) 1985-02-12 1985-02-12 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS61186291A true JPS61186291A (en) 1986-08-19

Family

ID=12114253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023572A Pending JPS61186291A (en) 1985-02-12 1985-02-12 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS61186291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016848A (en) * 2003-06-26 2005-01-20 Daikin Ind Ltd Indoor unit for air-conditioner
WO2006012924A1 (en) * 2004-08-05 2006-02-09 Pusch, Bernard Method of growing single crystals from melt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016848A (en) * 2003-06-26 2005-01-20 Daikin Ind Ltd Indoor unit for air-conditioner
WO2006012924A1 (en) * 2004-08-05 2006-02-09 Pusch, Bernard Method of growing single crystals from melt

Similar Documents

Publication Publication Date Title
JPS6345198A (en) Production of crystal of multiple system
US4944925A (en) Apparatus for producing single crystals
JPS61186291A (en) Production of compound semiconductor single crystal
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JPS61178495A (en) Method for growing single crystal
JPS6210274A (en) Method and device for vapor phase synthesis
JPH01122998A (en) Production of cd zn te mixed crystal semiconductor
JP3231050B2 (en) Compound semiconductor crystal growth method
JPS6472999A (en) Heat treatment of compound semiconductor single crystal
JPS6036397A (en) Apparatus for growing compound single crystal
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP2766897B2 (en) Single crystal growth equipment
JPS61215292A (en) Apparatus for producing compound semiconductor single crystal
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPS57129896A (en) Liquid phase epitaxial growing apparatus
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPH06166598A (en) Terbium aluminate single crystal and its production
Jeske et al. A-Type Swirl Defects as a Source of Dislocation Generation on the Macroscopic Scale During Growth of Float Zone Silicon Single Crystals
JPH061692A (en) Device for producing compound semiconductor single crystal
Mogilevskii et al. Growing Single Crystals of the LaNi sub 5 Intermetallide
JPS60131893A (en) Growth method of group 3-5 compound semiconductor mixed crystal
Qiu et al. Positron Annihilation in Lattice of As Grown Float-Zone Silicon Crystals
JPS59182297A (en) Production of single crystal