JPS61186276A - Coated silicon nitride sintered body - Google Patents

Coated silicon nitride sintered body

Info

Publication number
JPS61186276A
JPS61186276A JP60025859A JP2585985A JPS61186276A JP S61186276 A JPS61186276 A JP S61186276A JP 60025859 A JP60025859 A JP 60025859A JP 2585985 A JP2585985 A JP 2585985A JP S61186276 A JPS61186276 A JP S61186276A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
aluminum oxide
thin film
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025859A
Other languages
Japanese (ja)
Inventor
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60025859A priority Critical patent/JPS61186276A/en
Publication of JPS61186276A publication Critical patent/JPS61186276A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、切削工具部品として好適に使用される耐摩耗
性に著しく富んだ強靭窒化珪素焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a tough silicon nitride sintered body having extremely high wear resistance and suitably used as cutting tool parts.

従来の技術 窒化珪素焼結体は、従来の酸化アルミニウム、酸化アル
ミニウム/炭化チタン焼結体等のいわゆるセラミックス
工具部品に仕べ、常温および高温(]000℃以」二)
での抗折強度が著しく大きいのに加えに+cも大巾に改
善されている。
Conventional technology Silicon nitride sintered bodies are used in so-called ceramic tool parts such as conventional aluminum oxide, aluminum oxide/titanium carbide sintered bodies, etc.
In addition to the significantly high bending strength at , +c has also been greatly improved.

加えて、セラミックス工具の最大の欠点である、熱衝撃
に関してもその目安となる熱衝撃抵抗値が、窒化珪素は
16と酸化アルミニラl、の6.5を大きく上まわるば
かりか、超硬合金の13をも上まわっている。
In addition, regarding thermal shock, which is the biggest drawback of ceramic tools, the thermal shock resistance value, which is a guideline, is not only much higher than 16 for silicon nitride and 6.5 for aluminum oxide l, but also higher than that of cemented carbide. It's even more than 13.

しかしながら、窒化珪素焼結体は、セラミックス工具部
品の最大の欠点である、耐欠損性に劣るため切削工具材
料としてはいまだ改善すべき余地がある。
However, silicon nitride sintered bodies have poor fracture resistance, which is the biggest drawback of ceramic tool parts, so there is still room for improvement as a cutting tool material.

さらに、窒化珪素焼結体は、鋼と反応するため、鋼を実
際に旋削するときわめて短寿命であった。
Furthermore, since the silicon nitride sintered body reacts with steel, the life of the silicon nitride sintered body was extremely short when actually turning the steel.

このような欠点を考慮して、被削材との反応が問題とな
らない鋳物や非鉄金属を切削したところ、予想どおり窒
化珪素の耐欠損性が発揮されはしたものの、特に鋳物を
切削した際に、従来使用されていた酸化アルミニウム/
炭化チタン焼結体(以下黒セラと称す)に比べると、耐
摩耗性に劣り、今一つその使用領域が狭いものであった
Taking these drawbacks into account, we cut castings and non-ferrous metals where reaction with the work material is not a problem. Although silicon nitride demonstrated its chipping resistance as expected, it , conventionally used aluminum oxide/
Compared to titanium carbide sintered bodies (hereinafter referred to as black ceramics), they have poorer wear resistance and have a relatively narrower range of use.

この改良として、窒化珪素焼結体の表面に、窒化珪素よ
りも硬度の富む酸化アルミニウム等の薄層を被覆する被
覆窒化珪素焼結体が種々提案され、実用化している。
As an improvement on this, various coated silicon nitride sintered bodies in which the surface of the silicon nitride sintered body is coated with a thin layer of aluminum oxide or the like, which is harder than silicon nitride, have been proposed and put into practical use.

窒化珪素焼結体に酸化アルミニウムの薄層を被覆した被
覆窒化珪素で、実際に鋳物を切削してみたところ、1μ
の膜厚の酸化アルミニウムで被覆したものは、未処理の
ものに比べ著しく耐摩耗性が向上し、約3倍程度の寿命
延長が認められたものの、黒セラに比べれば、未だ耐摩
耗性が不足していた。そこで、酸化アルミニウムの膜厚
を1μより厚くすれば、耐摩耗性が改善されるとの予想
のもとに、酸化アルミニウムの膜厚を2μ、3μと増加
させたところ、逆に被覆膜が剥離してしまい、未処理の
ものよりも短寿命になった。これは、被覆膜と窒化珪素
との接着強度不足のためと考えられた。
When we actually cut a casting using coated silicon nitride, which is a silicon nitride sintered body coated with a thin layer of aluminum oxide, we found that it was 1μ
The coating coated with aluminum oxide with a film thickness of There was a shortage. Therefore, based on the expectation that the wear resistance would be improved if the aluminum oxide film was made thicker than 1 μm, we increased the aluminum oxide film thickness to 2 μm and 3 μm. It peeled off and had a shorter lifespan than the untreated one. This was thought to be due to insufficient adhesive strength between the coating film and silicon nitride.

発明の解決すべき問題点 本発明の目的は酸化アルミニウム被覆膜と、窒、 化珪
素との接着強度を改善することによって、酸化アルミニ
ウム被覆の膜厚を大きし、長寿命の切削工具チップとし
て好適に使用できる被覆窒化珪素を提供することにある
Problems to be Solved by the Invention The purpose of the present invention is to increase the thickness of the aluminum oxide coating by improving the adhesive strength between the aluminum oxide coating and nitrogen and silicon oxide, thereby creating a long-life cutting tool tip. An object of the present invention is to provide coated silicon nitride that can be suitably used.

問題点を解決すべき手段 実際に化学蒸着法にて酸化アルミニウムを各種のセラミ
ックス材料の表面に被覆して、その接着強度を調べてみ
たところ、酸化アルミニウムと接着性の良好な材料は、
炭化チタン、窒化チタン等のチタンの化合物が極めて好
ましいとの知見をえた。
Measures to solve the problem When we actually coated the surfaces of various ceramic materials with aluminum oxide using the chemical vapor deposition method and investigated the adhesive strength, we found that the materials that had good adhesion to aluminum oxide were:
It has been found that titanium compounds such as titanium carbide and titanium nitride are extremely preferable.

そこで、この炭化チタン、窒化チタンを窒化珪素の表面
に被覆してそれらの窒化珪素との接着強度を調べてみた
ところ、酸化アルミニウムに比べれば若干改善はされて
いるものの使用上十分とはいいがたかった。
Therefore, when we coated the surface of silicon nitride with titanium carbide and titanium nitride and investigated their adhesive strength with silicon nitride, we found that although it was slightly improved compared to aluminum oxide, it was not sufficient for use. I wanted to.

第1表および第2表にLSRH社製のスクラッチテスタ
ーRevetest/Automat icによる接着
強度の測定データを示す。
Tables 1 and 2 show measurement data of adhesive strength using a scratch tester Revtest/Automatic manufactured by LSRH.

なお、接着強度はクリチカルロードの大きいもの程、強
いと考えられる。
In addition, it is considered that the adhesive strength is stronger as the critical load becomes larger.

第1表および第2表より明らかなごとく、酸化アルミニ
ウムと炭化チタン、窒化チタンとの接着強度は大巾に改
善されてはいるものの、窒化珪素とこれ等被覆材料との
接着強度は、酸化アルミニウムに比べれば改善されてい
るとはいえ未だ十分とはいいがたい。
As is clear from Tables 1 and 2, although the adhesive strength between aluminum oxide and titanium carbide and titanium nitride has been greatly improved, the adhesive strength between silicon nitride and these coating materials is Although it has been improved compared to , it is still not enough.

ここで、窒化珪素焼結体に化学蒸着法で窒化珪素を1μ
被覆した試料の接着強度を測定したところクリチカルロ
ードが58.2 Nときわめて高いという知見を得た。
Here, 1 μm of silicon nitride was applied to the silicon nitride sintered body by chemical vapor deposition.
When the adhesive strength of the coated sample was measured, it was found that the critical load was extremely high at 58.2 N.

これらの技術的知見を総合的に考えると、酸化アルミニ
ウムおよび窒化珪素と良好な接着性を有する材料として
は、窒化珪素と窒化チタンの混合物が最適であるとの結
論に達した。(炭化チタンは第2表に示す結果から好ま
しくないと判断される。) 以上の考えに従って実際にかかる構造の被覆窒化珪素を
試作してみたところ、予想どおりの実験結果が得られ、
本発明を完成したものである。
Considering these technical findings comprehensively, we have reached the conclusion that a mixture of silicon nitride and titanium nitride is optimal as a material that has good adhesion to aluminum oxide and silicon nitride. (Titanium carbide is judged to be undesirable based on the results shown in Table 2.) When we actually tried making a coated silicon nitride with this structure based on the above idea, we obtained experimental results as expected.
This completes the present invention.

すなわち、本発明に従うと、窒化珪素を60〜99重量
%含有した窒化珪素焼結体の表面に気相より、窒化珪素
と窒化チタンとの複合物にて、窒化チタンを5〜95重
量%含む薄膜を0.1〜10μ被覆した上に、酸化アル
ミニウムを0,1〜10μ被覆したことを特徴とする被
覆窒化珪素焼結体が提供される。
That is, according to the present invention, a composite of silicon nitride and titanium nitride containing 5 to 95% by weight of titanium nitride is added to the surface of a silicon nitride sintered body containing 60 to 99% by weight of silicon nitride from the gas phase. A coated silicon nitride sintered body is provided, which is characterized in that a thin film is coated with a thickness of 0.1 to 10μ, and then aluminum oxide is coated with a thickness of 0.1 to 10μ.

さらに本発明に従うと、上記した窒化珪素と窒化チタン
との複合物の薄膜と、酸化アルミニウムの薄膜との間に
、Tiと、O、N、Cからなる群より選んだ1秤量」−
の元素との化合物を1層もしくは2層以上、全膜厚で0
.1〜10μ被覆したことを特徴とする被覆窒化珪素焼
結体が提供される。
Furthermore, according to the present invention, between the thin film of the composite of silicon nitride and titanium nitride and the thin film of aluminum oxide, Ti and one weight selected from the group consisting of O, N, and C are disposed.
One or more layers of compounds with the elements, the total film thickness is 0.
.. A coated silicon nitride sintered body characterized by being coated with a coating of 1 to 10μ is provided.

本発明の被覆窒化珪素焼結体の窒化珪素と窒化チタンと
の複合物の薄膜および酸化アルミニウムの薄膜を形成す
る方法としては、例えば化学蒸着法(CVD法)および
化学輸送法(CVT法)がある。
Examples of methods for forming a thin film of a composite of silicon nitride and titanium nitride and a thin film of aluminum oxide of the coated silicon nitride sintered body of the present invention include chemical vapor deposition (CVD) and chemical transport (CVT). be.

作用 以下、本発明の被覆窒化珪素焼結体の各部の化学組成お
よび膜厚の限定理由につき説明する。
Function The reason for limiting the chemical composition and film thickness of each part of the coated silicon nitride sintered body of the present invention will be explained below.

■ 窒化珪素焼結体中の窒化珪素の含有量窒化珪素はき
わめて難焼結体であるため、酸化アルミニウム、酸化ジ
ルコニウム、酸化イツトリウム、酸化マグネシウムなど
の酸化物、窒化チタン、窒化アルミニウムなどの窒化物
からなる焼結助剤が不可欠である。窒化珪素の含有量が
60重量%以下では窒化珪素焼結体に特有の特性が得ら
れず、90重量%以上では焼結が不十分となる。
■ Content of silicon nitride in silicon nitride sintered body Silicon nitride is extremely difficult to sinter, so oxides such as aluminum oxide, zirconium oxide, yttrium oxide, and magnesium oxide, and nitrides such as titanium nitride and aluminum nitride are used. A sintering aid consisting of is essential. If the content of silicon nitride is less than 60% by weight, characteristics specific to a silicon nitride sintered body cannot be obtained, and if the content is more than 90% by weight, sintering becomes insufficient.

■ 窒化チタンと窒化珪素との複合物中の窒化チタンの
含有量 窒化チタンの含有量が5重量%以下では、酸化アルミニ
ウムとの接着強度が不十分となり、また95重量%以上
では窒化珪素焼結体との接着強度が不十分となり好まし
くない。
■ Content of titanium nitride in a composite of titanium nitride and silicon nitride If the content of titanium nitride is less than 5% by weight, the adhesive strength with aluminum oxide will be insufficient, and if it is more than 95% by weight, silicon nitride sintering will occur. This is not preferable because the adhesion strength to the body becomes insufficient.

■ 窒化チタンと窒化珪素との複合物の膜厚0.1μ以
下では、酸化アルミニウムと窒化珪素焼結体との間の接
着強度向上効果が認め難く、一方、10μ以上の膜厚の
被覆では効果が飽和するのでそれ以」二の厚さの被覆は
経済的に好ましくなく、また窒化珪素の特性を損うこと
となる。
■ If the film thickness of the composite of titanium nitride and silicon nitride is less than 0.1 μm, it is difficult to see the effect of improving the adhesive strength between aluminum oxide and silicon nitride sintered body, whereas the coating with a film thickness of 10 μm or more is not effective. A coating thicker than this is economically undesirable as the silicon nitride becomes saturated and the properties of the silicon nitride are impaired.

■ 酸化アルミニウムの膜厚 上記した如く、本発明は従来技術による酸化アルミニウ
ム被覆窒化珪素焼結体の性能向」−を図ることを目的と
している。本発明の被覆窒化珪素焼結体は、従来品に仕
べ酸化アルミニウムと窒化珪素焼結体との接着強度が著
しく向上しているので、酸化アルミニウムの膜厚が0.
1μあればその被覆効果は十分に認められる。一方、酸
化アルミニウムの膜厚が10μ以上の膜厚となると、切
削時に酸化アルミニウムの膜内での破壊が生じてしまう
ため好ましくない。
(2) Film Thickness of Aluminum Oxide As mentioned above, the purpose of the present invention is to improve the performance of the aluminum oxide-coated silicon nitride sintered body according to the prior art. The coated silicon nitride sintered body of the present invention has significantly improved adhesion strength between aluminum oxide and silicon nitride sintered body compared to conventional products, so that the film thickness of aluminum oxide is 0.5 mm.
If the thickness is 1μ, the coating effect is sufficiently recognized. On the other hand, if the aluminum oxide film has a thickness of 10 μm or more, it is not preferable because destruction occurs within the aluminum oxide film during cutting.

さらに、本発明の被覆窒化珪素焼結体における強度上昇
効果は、窒化チタンと窒化珪素の複合物膜と酸化アルミ
ニウム膜との中間に、チタンと、C,N、Oからなる群
より選んだ少なくとも1種の元素との化合物の1層もし
くは2層以上を中間にはさむと、より増進する。中間層
の膜厚は0.1μ以下ではその効果がなく、10μ以上
の膜厚では切削時に該中間膜内で破壊が生じるため好ま
しくない。
Furthermore, the strength increasing effect in the coated silicon nitride sintered body of the present invention is achieved by adding at least one material selected from the group consisting of titanium, C, N, and O between the titanium nitride/silicon nitride composite film and the aluminum oxide film. If one layer or two or more layers of a compound with one type of element are sandwiched between them, the improvement will be further improved. If the thickness of the intermediate layer is less than 0.1 μm, the effect will not be achieved, and if the thickness is more than 10 μm, destruction will occur within the intermediate film during cutting, which is not preferable.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 窒化珪素85重量%、酸化イツ) Uラム5重量%、酸
化ジルコニウム10重量%の混合粉末を、窒素圧1.5
気圧下、1800℃にて400Kg / cdの荷重の
下でホットプレスによって焼結した。得られた焼結体を
切断、研削加工して、型番S N G N432の切削
チップとした。
Example 1 A mixed powder of 85% by weight of silicon nitride, 5% by weight of Ulam, and 10% by weight of zirconium oxide was heated to a nitrogen pressure of 1.5.
Sintered by hot pressing at 1800 °C under atmospheric pressure and a load of 400 Kg/cd. The obtained sintered body was cut and ground to obtain a cutting tip having a model number SN GN432.

これらの試料チップを石英製真空容器内に装入、真空容
器内の炭素材を外部より高周波誘導加熱することによっ
て1400℃に加熱した。一方、この石英容器内に5i
C1,、TiC1,、N2、B2の混合気流をI X1
0’Paの圧力下3時間流した後、AlC1,,12、
C02の混合気流をI XIO’ Paの圧力下30分
間流した。
These sample chips were placed in a quartz vacuum container, and the carbon material in the vacuum container was heated to 1400° C. by high-frequency induction heating from the outside. On the other hand, in this quartz container, 5i
The mixed air flow of C1, TiC1, N2, B2 is I
After flowing for 3 hours under a pressure of 0'Pa, AlC1,,12,
A mixed gas flow of C02 was passed under a pressure of IXIO' Pa for 30 minutes.

冷却後試料を切断、断面をEPMAにて調べたところ、
窒化珪素70重量%と窒化チタン30重量%からなる複
合膜が2μ被覆され、その上に3μの酸化アルミニウム
薄膜が形成されていた。
After cooling, the sample was cut and the cross section was examined using EPMA.
A composite film consisting of 70% by weight of silicon nitride and 30% by weight of titanium nitride was coated with 2μ, and a thin aluminum oxide film of 3μ was formed thereon.

このようにして得た試料をAとし、比較のため市販の酸
化アルミニウム/炭化チタン焼結体試料(住人電気工業
■製N B90 S )をB1市販の窒化珪素焼結体試
料(住人電気工業@製N5IO)をC1市販の酸化アル
ミニウム被覆窒化珪素焼結体試料(日本特殊陶業■製5
P4)をDとし、下記の条件(1)で切削テストを行っ
た。
The sample obtained in this manner is designated as A, and for comparison, a commercially available aluminum oxide/titanium carbide sintered body sample (N B90 S manufactured by Sumiya Electric Industry Co., Ltd.) is designated as B1, a commercially available silicon nitride sintered body sample (Sumiden Electric Industry Co., Ltd.). C1 commercially available aluminum oxide coated silicon nitride sintered body sample (manufactured by Nippon Tokushu Toku Kogyo 5)
P4) was designated as D, and a cutting test was conducted under the following conditions (1).

切削条件(1)   被削材   FC25ホルダー 
 F NIIR−44A 切削速度  500m/min 送り    0.36mm/rev 切り込み  2mm (切削剤は使用せず) 試料A(本発明)は20分間切削してフランク摩耗が0
.12mmであったのに比べ、Bは20分間切削してフ
ランク摩耗が0.15mm、 Cは5分間切削してフラ
ンク摩耗が0゜32mmとなり、それ以上は切削不能と
なった。Dは20分間切削してフランク摩耗が0、29
mmであった。
Cutting conditions (1) Work material FC25 holder
F NIIR-44A Cutting speed 500m/min Feed 0.36mm/rev Depth of cut 2mm (no cutting agent used) Sample A (invention) had 0 flank wear after cutting for 20 minutes.
.. Compared to this, B had flank wear of 0.15 mm after 20 minutes of cutting, and flank wear of C had 0.32 mm of 5 minutes of cutting, beyond which it was no longer possible to cut. D has flank wear of 0.29 after cutting for 20 minutes.
It was mm.

次に下記の条件(2)で切削テストを行った。Next, a cutting test was conducted under the following conditions (2).

切削条件(2)   被削材   FC25ホルダー 
 FNIIR−44A 切削速度  500m/min 送り     0.36mm/rev 切り込み  2mm (水溶性切削剤使用) 試料Δは20分間切削してフランク摩耗が0.14mm
であったのに対し、Bは熱衝撃のため2分間で破損した
。Cは5分間切削してフランク摩耗が0.29mmでそ
れ以上は切削不能、Dは15分間切削してフランク摩耗
が0.34mmとなり、切削不能となった。これは、被
覆膜が剥離したためと考えられる。
Cutting conditions (2) Work material FC25 holder
FNIIR-44A Cutting speed: 500 m/min Feed: 0.36 mm/rev Depth of cut: 2 mm (using water-soluble cutting agent) Sample Δ was cut for 20 minutes and flank wear was 0.14 mm.
On the other hand, B broke in 2 minutes due to thermal shock. C was cut for 5 minutes, flank wear was 0.29 mm, and cutting was impossible beyond that, and D was cut for 15 minutes, flank wear was 0.34 mm, and cutting was impossible. This is considered to be because the coating film peeled off.

次に下記の切削条件(3)で切削テストを行った。Next, a cutting test was conducted under the following cutting conditions (3).

切削条件(3)   被削材   F C251010
0mmX200カツター  DNF4160R(12枚
刃)切削速度  500m/min 送り     2500m/min (0,209mm
/l)(水溶性切削使用) 試料Aは10分間切削して平均フランク摩耗(12のチ
ップの平均)が0.28mmであったのに対し、Bは4
2秒間で欠損のため使用不能、Cは10分間切削して平
均フランク摩耗が0.42mm、 Dも被覆膜が剥、離
したため平均フランク摩耗は0.45mmであった。
Cutting conditions (3) Work material F C251010
0mmX200 cutter DNF4160R (12 blades) Cutting speed 500m/min Feed 2500m/min (0,209mm
/l) (using water-soluble cutting) Sample A had an average flank wear (average of 12 tips) of 0.28 mm after 10 minutes of cutting, while B had an average flank wear of 4.
C was unusable due to breakage in 2 seconds, average flank wear was 0.42 mm after cutting for 10 minutes, and average flank wear of D was 0.45 mm due to peeling of the coating film.

実施例2 窒化珪素80重量%、窒化チタン14重量%、酸化イツ
トリウム6重量%の混合粉末を型押ししたのち、窒素圧
9.5気圧で、1900℃にて焼結したのち、研削加工
して、型番S N G N432の切削チップを作成し
た。
Example 2 A mixed powder of 80% by weight silicon nitride, 14% by weight titanium nitride, and 6% by weight yttrium oxide was embossed, sintered at 1900°C under a nitrogen pressure of 9.5 atm, and then ground. , a cutting tip with model number SNGN432 was created.

このチップに実施例1と同様の方法で窒化チタンと窒化
珪素との複合膜を2μ被覆したのち、冷却後とり出した
This chip was coated with 2μ of a composite film of titanium nitride and silicon nitride in the same manner as in Example 1, and then taken out after cooling.

しかるのち、ステンレス製真空容器内に装入、950℃
にてH2、AlCl2、CO2混合気流I XIO3P
aの圧力のもとで、酸化アルミニウムの膜厚が0.02
μ、0.2μ、2μ、20μの試料を作成した。それぞ
れのチップをE、F、G、Hとし、実施例1の切削条件
(1)にて切削試験を行なったところ、Eは6分間、F
は14分間、Gは19分間切削出来たが、Hは被覆層の
剥離のため48秒間しか切削出来なかった。
After that, it was charged into a stainless steel vacuum container and heated to 950℃.
At H2, AlCl2, CO2 mixed gas flow I XIO3P
Under a pressure of a, the film thickness of aluminum oxide is 0.02
Samples of μ, 0.2μ, 2μ, and 20μ were prepared. A cutting test was conducted using the chips E, F, G, and H under the cutting conditions (1) of Example 1.
It could be cut for 14 minutes, G for 19 minutes, but H could only be cut for 48 seconds due to peeling of the coating layer.

実施例3 実施例2と同様の窒化珪素焼結体に、第3表に示す種々
の中間層を被覆したのち、酸化アルミニウムを3μ被覆
した。これ等のチップを実施例1の切削条件(1)にて
切削テストを行なった結果を第3表にあわせ示す。
Example 3 The same silicon nitride sintered body as in Example 2 was coated with various intermediate layers shown in Table 3, and then coated with 3μ of aluminum oxide. Table 3 shows the results of a cutting test conducted on these chips under the cutting conditions (1) of Example 1.

G 実施例4 実施例2と同様の窒化珪素焼結体に、実施例1と同様の
窒化珪素と窒化チタンとの複合膜を2μ被覆後、炭化チ
タンを2μ、窒化チタンを2μ、炭窒化チタンを2μ、
酸炭化チタンを2μ被覆したのちに酸化アルミニウムを
1,5μ被覆したチップをそれぞれS、T、U、Vとし
、実施例1の切削条件3)にて切削テストを行なった。
G Example 4 A silicon nitride sintered body similar to Example 2 was coated with 2μ of a composite film of silicon nitride and titanium nitride similar to Example 1, and then coated with 2μ of titanium carbide, 2μ of titanium nitride, and titanium carbonitride. 2μ,
Chips coated with 2μ of titanium oxycarbide and then coated with 1.5μ of aluminum oxide were designated S, T, U, and V, respectively, and cutting tests were conducted under the cutting conditions 3) of Example 1.

Sは5分間切削して平均フランク摩耗が0.19mm、
Tは5分間切削して平均フランク摩耗が0.16mm、
Uは5分間切削して平均フランク摩耗が0.22mm、
■は5分間切削して平均フランク摩耗がり、 14n+
m、であった。
S has an average flank wear of 0.19 mm after cutting for 5 minutes.
T was cut for 5 minutes and the average flank wear was 0.16 mm.
U was cut for 5 minutes and the average flank wear was 0.22 mm.
■ Average flank wear after cutting for 5 minutes, 14n+
It was m.

発明の効果 以上に説明の如くは、本発明は酸化アルミニウム被覆窒
化珪素焼結体の窒化珪素と酸化アルミニウム被覆との接
着強度を改善することを目的とし、それらの間に窒化珪
素と窒化チタンとの複合物膜を介在せしめることにより
達成したものである。
As explained above, the present invention aims to improve the adhesive strength between silicon nitride and aluminum oxide coating of an aluminum oxide-coated silicon nitride sintered body, and to improve the adhesive strength between silicon nitride and titanium nitride between them. This was achieved by interposing a composite film.

本発明により窒化珪素焼結体の表面被覆の接着強度は大
幅に改善され、耐欠損性および耐摩耗性に優れ、長寿命
の切削チップとして好適に使用できる被覆窒化珪素焼結
体を提供することに成功したものである。
To provide a coated silicon nitride sintered body that has significantly improved adhesive strength of the surface coating of the silicon nitride sintered body, has excellent chipping resistance and wear resistance, and can be suitably used as a long-life cutting tip. It was a success.

さらに、実施例4に示す如く、窒化珪素と窒化チタンと
の複合物膜と、酸化アルミニウム被覆とのあいだにTi
と、O、N、Cからなる群より選んだ1種以」−の元素
との化合物の薄膜を形成するとさらに耐摩耗性が改善さ
れる。
Furthermore, as shown in Example 4, Ti was added between the composite film of silicon nitride and titanium nitride and the aluminum oxide coating.
By forming a thin film of a compound of and one or more elements selected from the group consisting of O, N, and C, the wear resistance is further improved.

Claims (6)

【特許請求の範囲】[Claims] (1)窒化珪素を60〜99重量%含有した窒化珪素焼
結体と、その表面に形成された窒化珪素と窒化チタンと
の複合物にて、窒化チタンを5〜95重量%含む0.1
〜10μの厚さの薄膜と、さらに該複合物薄膜の上に形
成された厚さ0.1〜10μの酸化アルミニウムの薄膜
とを有することを特徴とする被覆窒化珪素焼結体。
(1) A silicon nitride sintered body containing 60 to 99% by weight of silicon nitride, and a composite of silicon nitride and titanium nitride formed on the surface of the 0.1 sintered body containing 5 to 95% by weight of titanium nitride.
A coated silicon nitride sintered body comprising a thin film having a thickness of ~10μ and a thin film of aluminum oxide having a thickness of 0.1 to 10μ formed on the composite thin film.
(2)該窒化珪素焼結体は、さらに酸化アルミニウム、
酸化ジルコニウム、酸化イットリウム、酸化マグネシウ
ムなどの酸化物、窒化チタン、窒化アルミニウムなどの
窒化物の少なくとも1種を含むことを特徴とする特許請
求の範囲第1項記載の被覆窒化珪素焼結体。
(2) The silicon nitride sintered body further includes aluminum oxide,
The coated silicon nitride sintered body according to claim 1, characterized in that it contains at least one of oxides such as zirconium oxide, yttrium oxide, and magnesium oxide, and nitrides such as titanium nitride and aluminum nitride.
(3)上記の窒化珪素と窒化チタンとの複合物の薄膜お
よび酸化アルミニウムの薄膜は、化学蒸着法または化学
輸送法によって形成されたことを特徴とする特許請求の
範囲第1項または第2項記載の被覆窒化珪素焼結体。
(3) Claims 1 or 2, characterized in that the thin film of the composite of silicon nitride and titanium nitride and the thin film of aluminum oxide are formed by a chemical vapor deposition method or a chemical transport method. The coated silicon nitride sintered body described above.
(4)窒化珪素を60〜99重量%含有した窒化珪素焼
結体と、その表面に形成された窒化珪素と窒化チタンと
の複合物にて、窒化チタンを5〜95重量%含む0.1
〜10μの厚さの薄膜と、さらに該複合物薄膜の上に形
成されたTiと、O、N、Cからなる群より選んだ1種
以上の元素との化合物の1層または2層以上であって、
それらの全膜厚で0.1〜10μの薄膜と、さらにその
上に形成された厚さ0.1〜10μの酸化アルミニウム
の薄膜とを有することを特徴とする被覆窒化珪素焼結体
(4) A silicon nitride sintered body containing 60 to 99% by weight of silicon nitride and a composite of silicon nitride and titanium nitride formed on the surface of the sintered body containing 5 to 95% by weight of titanium nitride.
A thin film with a thickness of ~10μ, and one or more layers of a compound of Ti and one or more elements selected from the group consisting of O, N, and C formed on the composite thin film. There it is,
A coated silicon nitride sintered body characterized by having a thin film having a total thickness of 0.1 to 10 μm and a thin film of aluminum oxide having a thickness of 0.1 to 10 μm formed thereon.
(5)該窒化珪素焼結体は、さらに酸化アルミニウム、
酸化ジルコニウム、酸化イットリウム、酸化マグネシウ
ムなどの酸化物、窒化チタン、窒化アルミニウムなどの
窒化物の少なくとも1種を含むことを特徴とする特許請
求の範囲第4項記載の被覆窒化珪素焼結体。
(5) The silicon nitride sintered body further includes aluminum oxide,
The coated silicon nitride sintered body according to claim 4, which contains at least one of oxides such as zirconium oxide, yttrium oxide, and magnesium oxide, and nitrides such as titanium nitride and aluminum nitride.
(6)上記の窒化珪素と窒化チタンとの複合物の薄膜、
Tiと、O、N、Cからなる群より選んだ1種以上の元
素との化合物の薄膜および酸化アルミニウムの薄膜は、
化学蒸着法または化学輸送法によって形成されたことを
特徴とする特許請求の範囲第4項または第5項記載の被
覆窒化珪素焼結体。
(6) a thin film of the above-mentioned composite of silicon nitride and titanium nitride;
The thin film of a compound of Ti and one or more elements selected from the group consisting of O, N, and C and the thin film of aluminum oxide are
The coated silicon nitride sintered body according to claim 4 or 5, characterized in that it is formed by a chemical vapor deposition method or a chemical transport method.
JP60025859A 1985-02-13 1985-02-13 Coated silicon nitride sintered body Pending JPS61186276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025859A JPS61186276A (en) 1985-02-13 1985-02-13 Coated silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025859A JPS61186276A (en) 1985-02-13 1985-02-13 Coated silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61186276A true JPS61186276A (en) 1986-08-19

Family

ID=12177540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025859A Pending JPS61186276A (en) 1985-02-13 1985-02-13 Coated silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61186276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897916A (en) * 1994-09-05 1999-04-27 Ngk Insulators, Ltd. Process for production of coated ceramic member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897916A (en) * 1994-09-05 1999-04-27 Ngk Insulators, Ltd. Process for production of coated ceramic member

Similar Documents

Publication Publication Date Title
CA2327092C (en) Coated pcbn cutting tools
US4830930A (en) Surface-refined sintered alloy body and method for making the same
EP0113660B1 (en) Nitride based cutting tool
JPS5934156B2 (en) Alumina-coated aluminum nitride sintered body
JPS6011288A (en) Surface coated sialon-base ceramic tool member
EP0247630A2 (en) Material for cutting tools, use of same and cutting tools
JPS60162782A (en) Coated hard alloy tool
JPH0196083A (en) Surface-coated cubic boron nitride based material sintered under superhigh pressure to be used for cutting tool
JPS61186276A (en) Coated silicon nitride sintered body
JPH0230406A (en) Cutting tool made of surface-coated tungsten carbide radical cemented carbide
EP0198464B1 (en) Coated silicon nitride cutting tool and process for making
JPH01212290A (en) Cutting tool material
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JPS6213430B2 (en)
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
KR20000047918A (en) Sintered Body Having High Hardness and High Strength
JPS6039001A (en) Cutting tool material and its manufacturing method
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JP3107168B2 (en) Coated silicon nitride sintered body for tools
JPS631278B2 (en)
JPS5867858A (en) Coated sintered hard alloy member
JP3147511B2 (en) Alumina sintered body for tools
JPS6411595B2 (en)
JPS6111724B2 (en)
JPS5925972A (en) Coated hard member