JPS61185993A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS61185993A
JPS61185993A JP2550885A JP2550885A JPS61185993A JP S61185993 A JPS61185993 A JP S61185993A JP 2550885 A JP2550885 A JP 2550885A JP 2550885 A JP2550885 A JP 2550885A JP S61185993 A JPS61185993 A JP S61185993A
Authority
JP
Japan
Prior art keywords
region
semiconductor laser
layer
wavelength
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2550885A
Other languages
Japanese (ja)
Other versions
JPH0638538B2 (en
Inventor
Yasuhito Takahashi
康仁 高橋
Nobuyasu Hase
長谷 亘康
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2550885A priority Critical patent/JPH0638538B2/en
Priority to US06/829,090 priority patent/US4747110A/en
Publication of JPS61185993A publication Critical patent/JPS61185993A/en
Publication of JPH0638538B2 publication Critical patent/JPH0638538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multi-wavelength semiconductor laser device by a method wherein said device is constituted by a method that at least the first clad layer and two or more sorts of compound semiconductor thin films of different compositions are stacked alternatively to form three or more layers. CONSTITUTION:Steps are made on a substrate made of compound semiconductor such as GaAs by etching, and a thin film multilayer region 9, in which two or more sorts of compound semiconductors such as a buffer layer GaAs 7 and AlXGa1-X As layer 8 of the first clad layer are stacked alternatively to form three or more layers, the second clad layer 10 and a cap layer 11 are formed in turns. A p-type metallic electrode Au/Zn layer 12 at a flat region and an n-type metallic electrode An/Su layer 13 at the substrate side are provided respectively and they are cleaved vertically in difference in level direction then become a reflecting face. Growth speed of an epitaxial growth layer is slow down in order of an upper flat region, difference in level region and a lower flat region. Since layer thickness of quantum well layer comes to be thin in the above-state order, oscillation wavelength have relationship as follows, lambda3>lambda5>lambda4 provided that, oscillation wavelength at the upper flat region is lambda3, said wavelength at difference in level flat region is lambda5 and said wavelength at the lower flat region is lambda4. A multi-wavelength semiconductor laser device, whose wavelength is different at each region, is obtained. Thereby, desiable multi-wavelength laser fitting to photosensitivity can be formed easily.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光情報処理分野に用いられる半導体レーザ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a semiconductor laser device used in the field of optical information processing.

従来の技術 最近の光情報処理分野において、光ディスク等の4−蛍
藺貫己碍亜泳慈署グーデータの婁六込み−読み出し、消
去用の半導体レーザが用いられる。そして、用途により
、書き込みの後すぐに読み出したい場合とか、消去しつ
つその後に書き込み、読み出しを行ないたい場合がある
。この場合、書き込み用の半導体レーザ光の波長(λW
とする)と読み出し用の波長(λRとする)は異なる方
がよい(λW〉λR)。何故ならばこれらの半導体レー
ザは近接して配置されているので、読み出し時に書き込
み時の信号が混ざることをさけるためであり、読み出し
時の信号を正確にするため、読み出し用レーザ光のスポ
ット径を小さくする(波長を短くする)ためでもある。
2. Description of the Related Art In recent years in the field of optical information processing, semiconductor lasers have been used for reading and erasing data on optical disks and the like. Then, depending on the purpose, there are cases where it is desired to read immediately after writing, or cases where it is desired to write and read after erasing. In this case, the wavelength of the writing semiconductor laser light (λW
It is better that the reading wavelength (denoted as λR) is different from the reading wavelength (denoted as λW>λR). This is because these semiconductor lasers are placed close to each other, so to avoid mixing the writing signals during reading, and to make the reading signals accurate, the spot diameter of the reading laser beam must be adjusted. This is also to make it smaller (shorten the wavelength).

他には高品位テレビ画像を記録する場合にも、輝度信号
とカラー信号を別々のレーザ波長で書き込みたい要望が
ある。これらを考えうるに波長の異なる複数個の半導体
レーザを1チツプ化したい要望がますます強くなってき
ている。
In addition, when recording high-definition television images, there is a desire to write luminance signals and color signals using separate laser wavelengths. Considering these considerations, there is an increasingly strong desire to integrate a plurality of semiconductor lasers with different wavelengths into a single chip.

従来、この種の半導体レーザとして第4図に示すような
通常のダブルへテロ構造を2度積層し、上部のダブルへ
テロ構造の一部を除去して、下部のダブルへテロ構造に
対する半導体レーザ用の電極を形成したものがある(S
hiro 5akai ; ElectranLcsL
eff、 1817(19B2))。
Conventionally, in this type of semiconductor laser, normal double heterostructures as shown in Fig. 4 are stacked twice, and a part of the upper double heterostructure is removed to create a semiconductor laser for the lower double heterostructure. There are some that have electrodes formed for them (S
hiro 5akai; ElectranLcsL
eff, 1817 (19B2)).

ここで、活性層1に対して電極5、活性層3に対して電
極4が各々レーザ駆動用の電極となっている。電極3は
共通電極であり、今人領域の半導体レーザを駆動させる
発振波長λ1のレーザ光が出射され、B領域の半導体レ
ーザを駆動させると発振波長λ2のレーザ光が出射され
る仕組になっていた。
Here, the electrode 5 for the active layer 1 and the electrode 4 for the active layer 3 serve as electrodes for laser driving. The electrode 3 is a common electrode, and is designed to emit a laser beam with an oscillation wavelength λ1 that drives the semiconductor laser in the current region, and to emit a laser beam with an oscillation wavelength λ2 when the semiconductor laser in the B region is driven. Ta.

発明が解決しようとする問題点 しかし、このような構造のものではA領域の電極4の材
料(例えばAu/Zn)とB領域の電極2の材料(Au
/Sn)とは異なるので少なくとも3度の電極形成工程
を必要とし、また各半導体レーザの活性領域が異なるエ
ピタキシャル層で構成される等のプロセスが複雑となる
難点があった。さらに、電極2,4間を半導体レーザの
活性領域とする半導体レーザは、P Fjl lnPに
おけるシート抵抗の影響から、電極2,5間を半導体レ
ーザの活性領域とする半導体レーザと比べて特性が劣る
問題があった0 そこで、本発明はこれらを解決すべく画期的な多波長半
導体レーザ装置を提供するものである。
Problems to be Solved by the Invention However, in such a structure, the material of the electrode 4 in the A region (for example, Au/Zn) and the material of the electrode 2 in the B region (Au/Zn) are different.
/Sn), it requires at least three electrode formation steps, and the process is complicated, such as the active region of each semiconductor laser being composed of a different epitaxial layer. Furthermore, a semiconductor laser whose active region is between electrodes 2 and 4 has inferior characteristics compared to a semiconductor laser whose active region is between electrodes 2 and 5 due to the influence of sheet resistance in P Fjl lnP. Therefore, the present invention provides an innovative multi-wavelength semiconductor laser device to solve these problems.

問題点を解決するための手段 上記問題点を解決する本発明の技術的な手段は、単一あ
るいは複数の段差構造を有する化合物半導体基板上に少
なくとも第1のクラッド層と、2元系あるいは3元系以
上の組成の異なった2種類以上の化合物半導体薄膜を交
互に3層以上積み重ねて構成した薄膜多層領域および第
2のクラッド層を形成し、発振波長の異なる複数個の半
導体レーザ装置を1回のエピタキシャル成長で形成でき
るようにするものである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to provide at least a first cladding layer on a compound semiconductor substrate having a single or multiple step structure, and a binary or ternary cladding layer. A thin film multilayer region and a second cladding layer are formed by alternately stacking three or more layers of two or more types of compound semiconductor thin films having different compositions at least in terms of the elemental system, and a plurality of semiconductor laser devices with different oscillation wavelengths are integrated into a single layer. This allows it to be formed by multiple epitaxial growth steps.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

発明者らは、研究の結果、段差構造を有する基板上にエ
ピタキシャル成長した場合、平坦領域および段差領域に
おいて成長速度が異なることを見出層の層厚が異なるこ
とになるのである。この現象は、従来のダブルへテロ構
造レーザの発振波長にはほとんど影響を及ぼさない程度
であるが、超薄膜を交互に積み重ねた単一量子井戸(S
inyj!e−quantum well 、 5QW
)型レーザあるいは多重量子井戸(mu l t L 
−quantum we l 1 、 MOW )型レ
ーザにおいては、超薄膜である量子井戸層の膜厚が異な
ることになり、これらの量子井戸型レーザの発振波長は
この量子井戸層の膜厚に依存するので発振波長が各領域
ごとに異なってくる。この結果、−回の成長工程で発振
波長が異なる多波長半導体レーザ装置が実現されること
になる。
As a result of research, the inventors found that when epitaxial growth is performed on a substrate having a step structure, the growth rate is different in the flat region and the step region, which results in a difference in the layer thickness of the layer. This phenomenon has almost no effect on the oscillation wavelength of conventional double heterostructure lasers, but it does
inyj! e-quantum well, 5QW
) type laser or multiple quantum well (mult L)
-quantum wel 1, MOW) type lasers, the thickness of the quantum well layer, which is an ultra-thin film, differs, and the oscillation wavelength of these quantum well type lasers depends on the thickness of this quantum well layer. The oscillation wavelength differs for each region. As a result, a multi-wavelength semiconductor laser device with different oscillation wavelengths can be realized in - times of growth steps.

実施例 以下、本発明の実施例を第1図〜第3図面にもとづいて
説明する。本発明の第1の実施例を示す第1図において
、GaAg等化合物半導体基板6をエツチングによって
段差を設け、バッファ層GaAs7、第1のクラッド層
である。A ft エG a 1− rAs (!=0
.4)層8と膜厚が10〜200人の組成の恩な、L2
種預坦トの什介物半漢体を交互に3層N上棟み重ねた薄
膜多層領域、たとえばA2アGa1−アAs(y =o
、3)層とGaAs層で構成される薄膜多層領域(SQ
W層またはMQW層)9、第2のクラッド層であるAX
 xGa 1xAg (x ” O−4)層10、キャ
ップ層GaAs 11を順次エピタキシャル成長法によ
り形成する。第1および第2のクラッド層8.1oの半
導体の禁制帯幅は、薄膜多層領域の最も広い禁制帯幅と
同じか、それ以上広いものである。段差領域はプロトン
照射あるいはエツチングによる該当領域の除去あるいは
前記エツチング除去領域に窒化シリコンあるいは酸化シ
リコンあるいはポリイミドを埋めることにより電気的絶
縁分離領域14とし、平坦領域を半導体レーザの活性領
域として用いる。平坦領域にはP型金属電極たとえばA
 u/Z n層12、基板側にはn型金属電極たとえば
An/Snn/S金層れぞれ設は段差方向に垂直に襞間
して反射面とすることにより第1図に示すような半導体
レーザ装置となる。
Embodiments Hereinafter, embodiments of the present invention will be described based on FIGS. 1 to 3. In FIG. 1 showing a first embodiment of the present invention, a GaAg or other compound semiconductor substrate 6 is etched to provide a step, which is a buffer layer GaAs 7 and a first cladding layer. A ft EG a 1- rAs (!=0
.. 4) L2, thanks to the composition of layer 8 and film thickness of 10 to 200 people
A thin film multilayer region in which 3 layers of seed deposits are alternately stacked, for example, A2A Ga1-AAs (y = o
, 3) thin film multilayer region (SQ
W layer or MQW layer) 9, second cladding layer AX
The xGa 1xAg (x '' O-4) layer 10 and the cap layer GaAs 11 are sequentially formed by an epitaxial growth method.The forbidden band width of the semiconductor of the first and second cladding layers 8.1o is the widest forbidden band width of the thin film multilayer region. The stepped region is made into an electrically insulating isolation region 14 by removing the corresponding region by proton irradiation or etching, or by filling the etched region with silicon nitride, silicon oxide, or polyimide; The flat region is used as the active region of the semiconductor laser.The flat region has a P-type metal electrode such as A
The u/Z n layer 12 and the n-type metal electrodes, such as An/Snn/S gold layers, are provided on the substrate side by forming folds perpendicular to the step direction to form a reflective surface, as shown in Fig. 1. It becomes a semiconductor laser device.

前述したようにエピタキシャル成長層の成長速度が上部
平坦領域9段差領域、下部平坦領域の順で遅くなり結果
的には第3図に示すように、この順で量子井戸層の層厚
が薄くなるため、発振波長は上部平坦領域における発振
波長λ3〉段差領域における発振波長λ5〉下部平坦領
域における発振波長λ4なる関係になり、各領域で波長
の異なった多波長半導体レーザ装置が得られる。第11
図に示す半導体レーザ装置は段差領域を電気的絶縁分離
領域として用いているので、発振波長はλ3゜λ の2
種類となる。
As mentioned above, the growth rate of the epitaxial growth layer slows down in the order of the upper flat region 9 step region and the lower flat region, and as a result, the thickness of the quantum well layer becomes thinner in this order, as shown in Figure 3. The oscillation wavelengths have the following relationship: oscillation wavelength λ3 in the upper flat region> oscillation wavelength λ5 in the stepped region> oscillation wavelength λ4 in the lower flat region, and a multi-wavelength semiconductor laser device having different wavelengths in each region is obtained. 11th
The semiconductor laser device shown in the figure uses the step region as an electrically insulating isolation region, so the oscillation wavelength is λ3゜λ2.
Become a type.

この発明の第2の実施例を第2図に基づいて述べる。エ
ピタキシャル成長層の構成は第1の実施例と同じである
が、平坦領域9段差領域共に半導体レーザの活性領域と
し、各領域の境界近傍を第1の実施例と同様な方法で電
気的に絶縁分離し、電極を形成する。この実施例では、
単一段差に対して、−回のエピタキシャル成長で3種類
の波長の異なった半導体レーザができることになる。更
に複数の段差を形成した基板上に本発明の構成を適用す
れば更に多波長の半導体レーザが一度に形成できること
は明らかである。
A second embodiment of the invention will be described based on FIG. The structure of the epitaxial growth layer is the same as in the first embodiment, but both the flat region and the nine step regions are used as active regions of the semiconductor laser, and the vicinity of the boundaries of each region are electrically insulated and isolated using the same method as in the first embodiment. and form an electrode. In this example,
For a single step, three types of semiconductor lasers with different wavelengths can be produced by - times of epitaxial growth. Furthermore, it is clear that by applying the structure of the present invention to a substrate on which a plurality of steps are formed, semiconductor lasers with even more wavelengths can be formed at the same time.

第1.第2の実施例に示す半導体レーザ装置はAn、G
a1−、As / GaAg 系はもちろんのことIn
GaAsP / InP系に対しても適用できる。第2
の実施例において、段差領域における出射パターンは段
差の角度を自由に変えられるので、例えば、直角段差で
は平坦領域における出射パターンに対し、段差領域では
90°回転した出射バター/も容易に得られる0又、薄
膜多層領域等は有機金属気相成長法(M OCV D 
: meta l organic chemical
vopor deposition)で形成してもよイ
シ、他の形成可能である。
1st. The semiconductor laser device shown in the second embodiment has An, G
a1-, As/GaAg system as well as In
It can also be applied to GaAsP/InP systems. Second
In this embodiment, since the angle of the step can be freely changed for the emission pattern in the step area, for example, in the case of a right-angled step, an emission pattern rotated by 90 degrees can be easily obtained in the step area compared to the emission pattern in the flat area. In addition, thin film multilayer regions, etc. are formed using metal organic chemical vapor deposition (MOCVD).
: metal organic chemical
It may be formed by a vopor deposition, or other forms are possible.

発明の効果 以上のように、本発明によれば、複数個の発振波長の異
なる半導体レーザが1チツプ上に容易に形成できるので
光ディスク等のレーザアレイに応用でき、しかもレーザ
アレイが1回のエピタキシャル成長工程で形成できるの
で、作製プロセスが簡単でしかも極めて優れた特性のレ
ーザアレイが再現性よく作られる。また、発振波長が活
性領域である薄膜多層領域の膜厚制御で自由にコントロ
ールできるので、感光体材料の感光特性に合った所望の
多波長半導体レーザが容易に形成でき、これらの多波長
半導体レーザを用いた光情報処理システムに大きく貢献
できる。
Effects of the Invention As described above, according to the present invention, a plurality of semiconductor lasers with different oscillation wavelengths can be easily formed on one chip, so it can be applied to laser arrays for optical disks, etc., and moreover, the laser array can be formed by one epitaxial growth. Since it can be formed in a process, the manufacturing process is simple and laser arrays with extremely excellent characteristics can be manufactured with good reproducibility. In addition, since the oscillation wavelength can be freely controlled by controlling the thickness of the thin film multilayer region that is the active region, it is easy to form a desired multi-wavelength semiconductor laser that matches the photosensitive characteristics of the photoreceptor material, and these multi-wavelength semiconductor lasers It can greatly contribute to optical information processing systems using

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における半導体レーザ装
置の構成を示す図、第2図は本発明の第2の実施例にお
ける半導体レーザ装置の構成を示す図、第3図は平坦領
域、段差領域の各領域における薄膜多層領域の層厚と発
振波長との関係を説明するだめの図、第4図は従来の多
波長半導体レーザ装置の構成を示す図である。 6・・・・・・n型GaAs基板、8・・・・・・第1
グランド層、9・・・・・・SQWまたはMQW層、1
o・・・・・・第2グランド層、1ぜ・電極、14・・
・・・・電気的絶縁分離領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 13t@ 第3図
FIG. 1 is a diagram showing the configuration of a semiconductor laser device according to a first embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a semiconductor laser device according to a second embodiment of the present invention, and FIG. 3 is a diagram showing a flat area. FIG. 4 is a diagram showing the structure of a conventional multi-wavelength semiconductor laser device. FIG. 6...N-type GaAs substrate, 8...First
Ground layer, 9... SQW or MQW layer, 1
o...Second ground layer, 1ze electrode, 14...
...Electrical insulation isolation area. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 13t @ Figure 3

Claims (6)

【特許請求の範囲】[Claims] (1)単一あるいは複数の段差構造を有する化合物半導
体基板上に、少なくとも第1のクラッド層と2元系ある
いは3元系以上の組成の異なった2種類以上の化合物半
導体薄膜を交互に3層以上積み重ねて構成した薄膜多層
領域および第2のクラッド層を形成し、上記第1、第2
のクラッド層の半導体の禁制帯幅が上記薄膜多層領域の
半導体の最も広い禁制帯幅と同じか、それ以上に広いこ
とを特徴とする半導体レーザ装置。
(1) Three layers of at least a first cladding layer and two or more types of compound semiconductor thin films with different compositions such as binary or ternary or more are alternately formed on a compound semiconductor substrate having a single or multiple step structure. A thin film multilayer region and a second cladding layer configured by stacking the above are formed, and the first and second
A semiconductor laser device characterized in that the forbidden band width of the semiconductor in the cladding layer is equal to or wider than the widest forbidden band width of the semiconductor in the thin film multilayer region.
(2)段差領域を電気的絶縁分離領域とし、段差領域以
外の平担領域を半導体レーザの活性領域とすることを特
徴とする特許請求の範囲第1項記載の半導体レーザ装置
(2) The semiconductor laser device according to claim 1, wherein the stepped region is used as an electrically insulating isolation region, and the flat region other than the stepped region is used as an active region of the semiconductor laser.
(3)段差領域及び段差領域以外の平担領域をともに半
導体レーザの活性領域とし、各領域の境界近傍を電気的
に絶縁分離することを特徴とする特許請求の範囲第1項
記載の半導体レーザ装置。
(3) The semiconductor laser according to claim 1, characterized in that both the stepped region and the flat region other than the stepped region are used as active regions of the semiconductor laser, and the vicinity of the boundary of each region is electrically insulated and isolated. Device.
(4)電気的絶縁分離は、プロトン照射あるいは電気絶
縁分離領域に該当する半導体領域のエッチングによる除
去あるいはエッチング除去領域に窒化シリコンあるいは
酸化シリコンあるいはポリイミドを埋めることにより行
なわれることを特徴とする特許請求の範囲第2項または
第3項記載の半導体レーザ装置。
(4) A patent claim characterized in that the electrical insulation isolation is performed by proton irradiation or removal by etching of the semiconductor region corresponding to the electrical insulation isolation region, or by filling the etched removal region with silicon nitride, silicon oxide, or polyimide. The semiconductor laser device according to the range 2 or 3.
(5)段差構造を有する化合物半導体基板は、GaAs
基板であることを特徴とする特許請求の範囲第1項記載
の半導体レーザ装置。
(5) The compound semiconductor substrate having a step structure is made of GaAs.
The semiconductor laser device according to claim 1, wherein the semiconductor laser device is a substrate.
(6)薄膜多層領域は有機金属気相成長法で形成するこ
とを特徴とする特許請求の範囲第1項記載の半導体レー
ザ装置。
(6) The semiconductor laser device according to claim 1, wherein the thin film multilayer region is formed by metal organic vapor phase epitaxy.
JP2550885A 1985-02-13 1985-02-13 Multi-wavelength semiconductor laser device Expired - Lifetime JPH0638538B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2550885A JPH0638538B2 (en) 1985-02-13 1985-02-13 Multi-wavelength semiconductor laser device
US06/829,090 US4747110A (en) 1985-02-13 1986-02-13 Semiconductor laser device capable of emitting laser beams of different wavelengths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2550885A JPH0638538B2 (en) 1985-02-13 1985-02-13 Multi-wavelength semiconductor laser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5274187A Division JPH088218B2 (en) 1993-11-02 1993-11-02 Method for forming compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS61185993A true JPS61185993A (en) 1986-08-19
JPH0638538B2 JPH0638538B2 (en) 1994-05-18

Family

ID=12168000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2550885A Expired - Lifetime JPH0638538B2 (en) 1985-02-13 1985-02-13 Multi-wavelength semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0638538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235592A (en) * 1985-08-09 1987-02-16 Omron Tateisi Electronics Co Quantum well semiconductor laser
JPS63278290A (en) * 1987-05-08 1988-11-15 Mitsubishi Electric Corp Semiconductor laser and its use
JPH01155675A (en) * 1987-12-14 1989-06-19 Canon Inc Semiconductor laser device
US4925811A (en) * 1986-10-23 1990-05-15 L'etat Francais Represente Par Le Ministre Des Postes Et Telecommunications - Centre National D'etudes Des Telecommunications Method of manufacturing a semiconductor structure suitable for producing a multi-wavelength laser effect
JPH06224522A (en) * 1993-11-02 1994-08-12 Matsushita Electric Ind Co Ltd Epitaxial growth method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235592A (en) * 1985-08-09 1987-02-16 Omron Tateisi Electronics Co Quantum well semiconductor laser
US4925811A (en) * 1986-10-23 1990-05-15 L'etat Francais Represente Par Le Ministre Des Postes Et Telecommunications - Centre National D'etudes Des Telecommunications Method of manufacturing a semiconductor structure suitable for producing a multi-wavelength laser effect
JPS63278290A (en) * 1987-05-08 1988-11-15 Mitsubishi Electric Corp Semiconductor laser and its use
JPH01155675A (en) * 1987-12-14 1989-06-19 Canon Inc Semiconductor laser device
JPH06224522A (en) * 1993-11-02 1994-08-12 Matsushita Electric Ind Co Ltd Epitaxial growth method

Also Published As

Publication number Publication date
JPH0638538B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
CN100423262C (en) Light emitting device
CN100440655C (en) Semiconductor laser diode and method for manufacturing the same
EP0963017B1 (en) Semiconductor emission element and method of manufacturing same
JPH10190135A (en) Semiconductor device
US4747110A (en) Semiconductor laser device capable of emitting laser beams of different wavelengths
EP0180479B1 (en) Light-emitting diode array
US5436193A (en) Method of fabricating a stacked active region laser array
JPS61185993A (en) Semiconductor laser device
US6919217B2 (en) Semiconductor laser device fabricating method
JP3755178B2 (en) Semiconductor laser
JP3307186B2 (en) Jig for semiconductor surface treatment
JPH06338634A (en) Semiconductor light-emitting element array
US6567449B1 (en) Semiconductor laser and method for manufacturing the same
JPH06132610A (en) Semiconductor laser array element and manufacture thereof
JPS61242089A (en) Semiconductor laser device
US20030197204A1 (en) Semiconductor laser device and fabricating method therefor
JPS61191089A (en) Semiconductor device and manufacture thereof
JP2708796B2 (en) Method for manufacturing multifunctional multibeam semiconductor laser
JPH06224522A (en) Epitaxial growth method
JPH11251679A (en) Semiconductor laser
JP2000138417A (en) Multi-beam laser diode
JPH06244496A (en) Multibeam semiconductor laser device
JPH05235480A (en) Multi-beam semiconductor laser and manufacture thereof
JPH0613715A (en) Edge light emitting element and manufacture thereof
JPH0614576B2 (en) Method for manufacturing semiconductor device