JPS61191089A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61191089A
JPS61191089A JP3204185A JP3204185A JPS61191089A JP S61191089 A JPS61191089 A JP S61191089A JP 3204185 A JP3204185 A JP 3204185A JP 3204185 A JP3204185 A JP 3204185A JP S61191089 A JPS61191089 A JP S61191089A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
region
semiconductor device
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3204185A
Other languages
Japanese (ja)
Inventor
Mototsugu Ogura
基次 小倉
Nobuyasu Hase
長谷 亘康
Yasuhito Takahashi
康仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3204185A priority Critical patent/JPS61191089A/en
Priority to US06/829,090 priority patent/US4747110A/en
Publication of JPS61191089A publication Critical patent/JPS61191089A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3413Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers comprising partially disordered wells or barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4037Edge-emitting structures with active layers in more than one orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To modulate each laser independently, in a monolithic, multiple-wave, semiconductor laser, by electrically isolating the same multiplex quantum-well layer, changing the shapes of the well layers locally, thereby emitting a plurality of desired different wavelengths of emitted light simply. CONSTITUTION:On an n<+>GaAs substrate 6, an nGaAs layer 7 as a buffer layer, an nGa1-yAlyAs layer as a clad layer 8, an MQW layer 9 as an active layer, a pGa1-yAlyAs layer as a clad layer 10, and a p<+>GaAs layer 11 as a cap layer are sequentially grown. After the epitaxial growth, a laser beam 14 and a laser beam 15 are locally projected. Thus the temperature is increased close to 1,000 deg.C. The annealing degrees in a region C and a region D are different. Then, protons 16 are implanted to the boundary between the region C and the region D from the surface. The proton-implanted region becomes an electrically isolating region 17. The active layer of each semiconductor laser is electrically independent and can be independently modulated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複数の異なる発振波長を有する多波長半導体レ
ーザおよびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multi-wavelength semiconductor laser having a plurality of different oscillation wavelengths and a method for manufacturing the same.

従来の技術 最近の光情報処理分野において、光ディスク等の光学的
記録再生装置に、データの書き込み、読み出し消去用の
半導体レーザが用いられる。そして、用途によシ、書き
込みの後すぐに読み出したい場合とか、消去しつつその
後に書き込み、読出しを行ないたい場合がおる。この場
合、書き込み用の半導体レーザ光の波長(λ1とする)
と読み出し用の波長(λ、とする)は異なるほうがよい
(λ1〉λR)。何故ならばこれらの半導体レーザは近
接して配置されているので、読み出し時に書き込み時の
信号が混ざることをさけるためであり、読み出し時の信
号を正確にするため、読み出し用レーザ光のスポット径
を小さくする(波長を短くする)ためでもある。
2. Description of the Related Art Recently, in the field of optical information processing, semiconductor lasers for writing, reading, and erasing data are used in optical recording and reproducing devices such as optical disks. Depending on the application, there may be cases where it is desired to read immediately after writing, or cases where it is desired to write and read after erasing. In this case, the wavelength of the semiconductor laser light for writing (assumed to be λ1)
It is better that the readout wavelength (λ) is different from the wavelength (λ1>λR). This is because these semiconductor lasers are placed close to each other, so to avoid mixing the writing signals during reading, and to make the reading signals accurate, the spot diameter of the reading laser beam must be adjusted. This is also to make it smaller (shorten the wavelength).

他には高品位テレビ画像を記録する場合にも、輝度信号
とカラー信号を別々のレーザ波長で書き込みたい要望が
おる。これらを考えうるに波長の異なる複数個の半導体
レーザを1チツプ化したい要望がますます強くなってき
ている。又大容量通信の光多重通信の光源としての要望
も強いものがある。
In addition, when recording high-definition television images, there is also a desire to write luminance signals and color signals using separate laser wavelengths. Considering these considerations, there is an increasingly strong desire to integrate a plurality of semiconductor lasers with different wavelengths into a single chip. There is also a strong demand for it as a light source for optical multiplex communications for large-capacity communications.

従来、この種の半導体レーザとして第5図に示すような
通常のダブルへテロ構造を2度積層し、上部のダブルへ
テロ構造の一部を除去して、下部のダブルへテロ構造に
対する半導体レーザ用の電極を形成したものがある( 
5hiro 5ak2Li :KleOtrOniC8
L8tt 、 18 (19B 2) 17.)。
Conventionally, in this type of semiconductor laser, normal double heterostructures as shown in FIG. 5 are stacked twice, and a part of the upper double heterostructure is removed to create a semiconductor laser for the lower double heterostructure. Some have electrodes formed for them (
5hiro 5ak2Li :KleOtrOniC8
L8tt, 18 (19B 2) 17. ).

ここで、活性層1に対して電極2.活性m3に対極 して電4が各々レーザ駆動用の電極となっている。Here, the active layer 1 is connected to the electrode 2. Opposite to active m3 The electrodes 4 each serve as an electrode for driving a laser.

電極5は共通電極であり、今、ム領域の半導体レーザを
駆動させると発振波長λ、のレーザ光が出射され、B領
域の半導体レーザを駆動させると発振波長λ2のレーザ
光が出射する仕組みになっていた。
Electrode 5 is a common electrode, and now when the semiconductor laser in the region B is driven, a laser beam with an oscillation wavelength λ is emitted, and when the semiconductor laser in the B region is driven, a laser beam with an oscillation wavelength λ2 is emitted. It had become.

発明が解決しようとする問題点 第5図ではA領域の電極材料(例えばAu / Zn 
)とB領域の電極材料(例えば人u / Sn )とは
異なるので少なくとも3度の電極形成工程を必要とし、
又番手導体レーザの活性領域が異なるエピタキシャル層
で構成される等プロセスが複雑になる難点があった。さ
らに電極4−5間を1つの半導体レーザとみた場合、電
極6の下の領域でのシート抵抗が大きくなるので、電極
2−5間の半導体レーザに比べ発振のしきい値電流が上
る等の特性が劣る問題が6った。
Problems to be Solved by the Invention In FIG. 5, the electrode material in area A (for example, Au/Zn
) and the electrode material of region B (e.g. U/Sn), so at least three electrode formation steps are required;
Another problem is that the process becomes complicated, such as the active region of the high-performance conductor laser being composed of different epitaxial layers. Furthermore, when considering the area between electrodes 4 and 5 as one semiconductor laser, the sheet resistance in the area below electrode 6 increases, so the threshold current for oscillation increases compared to the semiconductor laser between electrodes 2 and 5. There were 6 problems with poor characteristics.

問題点を解決するための手段 本発明は上記問題点を解決するため、多波長生層 導体レーザの活性層は同−成n域を電気的に分離して形
成し、しかも異なる発振波長を得るものである。すなわ
ち本発明は上記問題点を解決するため、化合物半導体基
板上に、第1の半導体層と、2元るるいは3元系以上の
組成の異なった2種類以上の化合物半導体薄膜を交互に
3層以上積み重ねて構成した薄膜多層の第2の半導体層
と、第3の半導体層を順次形成した積層構造を有し、上
記第2の半導体層中の薄膜の膜厚あるいは各薄膜境界領
域の形状が異なる複数領域を電気的に分離した多波長半
導体レーザを提供するものでおる。発振波長を変えるだ
めに、たとえば同一成長層領域を分けてレーザアニー〃
を施す。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms the active layer of a multi-wavelength biolayer conductor laser by electrically separating the same N region, and also obtains different oscillation wavelengths. It is something. That is, in order to solve the above-mentioned problems, the present invention alternately deposits a first semiconductor layer and two or more types of compound semiconductor thin films having different compositions, such as binary, ternary or more, on a compound semiconductor substrate. It has a laminated structure in which a second semiconductor layer and a third semiconductor layer are sequentially formed in a multi-layered thin film structure, and the thickness of the thin film in the second semiconductor layer or the shape of each thin film boundary region The present invention provides a multi-wavelength semiconductor laser in which a plurality of regions having different wavelengths are electrically separated. In order to change the oscillation wavelength, for example, the same growth layer region may be separated and laser annealed.
administer.

作用 本発明は上記構成において、半導体レーザの活性層は多
重量子井戸層(touati −quantum We
l1層S MQW層)あるいは単一量子井戸層(Sin
gla−quantum wel1層:SQW層)で形
成されている。このMQWilは20A〜200人程度
の膜厚のウェル層とバリヤ層の交互の繰シ返しの薄膜多
層構造で構成されている。一般にこのMQWIでの発光
波長はウニ/l/層の形状や膜厚で決ってくるので、電
気的に分離された各MQW層のウェル層の形状や膜厚を
、エピタキシャル成長時のMQW層の形状をレーザアニ
ール等によシ局所アニ一μをすることにより変化させる
ことができ、このことによって各MQWilから出射す
るレーザ光の波長を変えることができるのである。
Function The present invention provides the above structure in which the active layer of the semiconductor laser is a multiple quantum well layer (touati-quantum well layer).
11 layer S MQW layer) or single quantum well layer (Sin
It is formed of a gla-quantum well 1 layer (SQW layer). This MQWil is composed of a thin film multilayer structure in which well layers and barrier layers are alternately repeated with a thickness of about 20A to 200A. Generally, the emission wavelength in this MQWI is determined by the shape and thickness of the layer, so the shape and thickness of the well layer of each electrically isolated MQW layer are determined by the shape and thickness of the MQW layer during epitaxial growth. can be changed by performing local annealing using laser annealing, etc., and thereby the wavelength of the laser light emitted from each MQWil can be changed.

実施例 第1図から第4図までを用いて本発明の詳細な説明する
。第1図はエピタキシャル成長により形成された本実施
例装置の積層構造を示している。
EXAMPLE The present invention will be explained in detail using FIGS. 1 to 4. FIG. 1 shows the laminated structure of the device of this embodiment formed by epitaxial growth.

今、半導体材料としてGa As系を例にとって説明す
る。まずn” GaムS基基板上上順次バッファ層とし
てのn Ga As層7、クラッド層8としてのn G
a 、−yムJy As 、活性層としてのMQWIs
、クラッド層10としてのpGa、−アムly As 
、そしてキャップ層としてのp+G11LムS層11を
成長させる。
Now, explanation will be given by taking GaAs-based semiconductor material as an example. First, an n"GaAs layer 7 as a buffer layer and an nG layer as a cladding layer 8 are formed on an n" GaM S substrate.
a, -yMJyAs, MQWIs as active layer
, pGa as cladding layer 10, -Amly As
, and a p+G11L S layer 11 as a cap layer is grown.

尚、半導体レーザとしての電極は省略している。Note that electrodes as a semiconductor laser are omitted.

第2図は第1図のMQW層9の拡大図である。FIG. 2 is an enlarged view of the MQW layer 9 in FIG.

MQW層9は、バリヤ層として例えばGa、−アAlア
ムS層12 Cx<y)sつz、u層として例えばGa
 As層13が20人〜200人程度の薄膜で交互に繰
シ返して構成されている。
The MQW layer 9 has a barrier layer of, for example, Ga, -Al, an S layer (12Cx<y)sz, and a u layer of, for example, Ga.
The As layer 13 is constituted by alternately repeating thin films of about 20 to 200 layers.

第3図に本実施例の断面構造を示している。但し、電極
は省略しである。まず第1図のようなエピタキシャル成
長後、局所的にレーザビーム14、レーザビーム15を
照射する。レーザとして、例えば出力6WのYAGレー
ザを用いる。スポット径として6μm程度にはしぼるこ
とができ数m5ecのオーダーでSc亀nning 5
peedを変えることによシ、レーザビーム14と16
のレーザビーム強度は変化させることができる。今、表
面から活性層としてのMQW層9までは1μm〜2μm
であるから、この強度で約1000℃近くまで十分昇温
できることになる。こうすることによシ領域Cと領域り
のレーザアニーpのされ方が異なることになる。次に領
域Cと領域りの境界において、表面からプロトン16を
例えば、300 KeVで照射すると約2μmまで打ち
込むことができ、このプロトン照射領域が電気的な分離
領域17となる。
FIG. 3 shows the cross-sectional structure of this embodiment. However, the electrodes are omitted. First, after epitaxial growth as shown in FIG. 1, laser beams 14 and 15 are locally irradiated. For example, a YAG laser with an output of 6 W is used as the laser. The spot diameter can be narrowed down to about 6 μm, and the spot diameter can be reduced to about 6 μm.
By changing the speed, laser beams 14 and 16
The laser beam intensity of can be varied. Now, the distance from the surface to the MQW layer 9 as the active layer is 1 μm to 2 μm.
Therefore, it is possible to sufficiently raise the temperature to nearly 1000° C. with this strength. By doing this, the way the laser annealing is performed in the region C and the region P is different. Next, when protons 16 are irradiated from the surface at, for example, 300 KeV at the boundary between the region C and the region C, it is possible to implant the protons 16 to a depth of approximately 2 μm, and this proton irradiation region becomes an electrically isolated region 17.

ところでレーザアニーμされたMQWN9は、第4図で
示すように、第4図の左側(2L)の結晶成長後のシャ
ープな伝導帯のバンド構造にくらべ、右側(b)のよう
なウェル層13とバリヤ層12の境界がゆるやかになる
。これはレーザアニーμのエネルギーにより構成元素が
勤いたためである。レーザアニー〃の強度を変えること
によりこの形状を変えることができる。第4図の中に電
子の量子準位を示しであるが、形状がくずれることによ
り量子準位は上る傾向にるる。それ故、レーザアニール
量を変化させることによシ、領域Cからはλ。
By the way, as shown in FIG. 4, the laser annealed MQWN9 has a sharp conduction band structure after crystal growth on the left side (2L) of FIG. The boundary between the barrier layer 12 becomes gentle. This is because the constituent elements were worked up by the energy of the laser annealing μ. This shape can be changed by changing the intensity of laser annealing. Figure 4 shows the quantum level of electrons, and as the shape collapses, the quantum level tends to rise. Therefore, by changing the amount of laser annealing, λ can be reduced from region C.

の発光波長が、領域りからはλ4の発光波長が出射させ
ることができる。発光波長の差Δλとしては数jonm
程度は十分に得ることができる。今、多波長レーザとし
て、3種類以上の発光波長がほしい場合について2つの
領域を代表して述べたが、2波長でよい場合は第3図に
おいては、例えば片方の領域だけをレーザアニールを施
し、もう一方は結晶成長後のそのままの構造を用いてよ
いことはいうまでもない。領域CとDを電気的に分離す
るのはレーザアニール処理後行なってもよいし、レーザ
アニール前に行なってもよい。分離方法としては、前述
のプロトン照射の他に、エッチ、ングで分離領域17に
相当する領域を除去してもよいし、エツチング除去後、
Si3N4膜やSin、、膜やポリイミツド膜等を埋め
込んでもよい。MQW層9の形成には有機金属気相成長
法(MoCVD法)や分子線エピタキシー法(MBK法
)で行なうのがよい。各半導体レーザの活性層は電気的
に独立しており、独立に駆動電極を設ければ独立に変調
できる。
An emission wavelength of λ4 can be emitted from the region. The difference in emission wavelength Δλ is several nm
You can get enough. Now, as a multi-wavelength laser, when three or more types of emission wavelengths are desired, we have described two areas as representatives, but if two wavelengths are sufficient, in Figure 3, for example, laser annealing is applied to only one area. , it goes without saying that the other structure may be used as it is after crystal growth. Electrical separation of regions C and D may be performed after the laser annealing process or may be performed before the laser annealing process. As a separation method, in addition to the above-mentioned proton irradiation, the region corresponding to the separation region 17 may be removed by etching, or after removal by etching,
A Si3N4 film, a Sin film, a polyimide film, or the like may be buried. The MQW layer 9 is preferably formed by metal organic chemical vapor deposition (MoCVD) or molecular beam epitaxy (MBK). The active layers of each semiconductor laser are electrically independent, and can be independently modulated by providing independent drive electrodes.

発明の効果 本発明の半導体装置によれば、モノリシックな多波長半
導体レーザの構造において、同一の多重量子井戸層を電
気的に分離し、たとえばレーザアニールによシ局所的に
井戸層の形状を変えることにより、簡単に所望の複数の
異なる発光波長を出射し、かつ各半導体レーザを独立に
変調できる半導体レーザを提供できるものである。1.
3μm帯の長波長レーザに本発明を適用すると光多重通
信にも応用できる。光情報処理の分野においては高密度
高速転送が可能な光学的記録再生装置が要望されており
、半導体レーザはよシ短波長化が望まれているが、本発
明はGIL、−8ム1xAs / GaAs系に限らず
、I n 、−x GaxAs y p+ −y/ I
 u p系。
Effects of the Invention According to the semiconductor device of the present invention, in the structure of a monolithic multi-wavelength semiconductor laser, identical multiple quantum well layers can be electrically separated and the shape of the well layer can be locally changed by, for example, laser annealing. As a result, it is possible to provide a semiconductor laser which can easily emit a plurality of desired different emission wavelengths and which can independently modulate each semiconductor laser. 1.
If the present invention is applied to a long wavelength laser in the 3 μm band, it can also be applied to optical multiplex communication. In the field of optical information processing, there is a demand for optical recording and reproducing devices capable of high-density, high-speed transfer, and semiconductor lasers are desired to have shorter wavelengths. Not limited to GaAs systems, I n , -x GaxAs y p+ -y/I
Up system.

I n 1− X GaxAs、 p + −y/ I
n 1− z Gaxp / Ga As系。
I n 1- X GaxAs, p + -y/ I
n1-zGaxp/GaAs system.

(A4xGa j −z )y In j −y p 
/ Ga hs系等にも適用可能で、モノリシック多波
長レーザの実用化に大きく貢献するものである。
(A4xGa j −z )y In j −y p
/Gahs system, etc., and will greatly contribute to the practical application of monolithic multi-wavelength lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例のエピタキシャ
ル成長基板を説明するための図、第2図は同半導体装置
の主要部の拡大図、第3図は本発明の一実施例の半導体
レーザの断面図、第4図は局所アニーμによる伝導帯の
形状変化の説明をするための図、第5図は従来の半導体
レーザの説明をするための図である。 6・・・・・・n”GaムS基板、7・・・・・・HG
a As層、8゜1o・・・−・・クラッド層、9・・
・・・・MQW活性層、12・・・・・・バリヤ層、1
3・・・・・・ウェル層、14,15・・・・・・レー
ザビーム、16・・・・・・プロトン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第 4 図
FIG. 1 is a diagram for explaining an epitaxial growth substrate of an embodiment of a semiconductor device of the present invention, FIG. 2 is an enlarged view of the main part of the semiconductor device, and FIG. 3 is a semiconductor laser of an embodiment of the present invention. FIG. 4 is a diagram for explaining the shape change of the conduction band due to local annealing μ, and FIG. 5 is a diagram for explaining the conventional semiconductor laser. 6...n"Gamus board, 7...HG
a As layer, 8゜1o... cladding layer, 9...
...MQW active layer, 12 ... Barrier layer, 1
3... Well layer, 14, 15... Laser beam, 16... Proton. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (10)

【特許請求の範囲】[Claims] (1)化合物半導体基板上に、第1の半導体層と、2元
あるいは3元系以上の組成の異なった2種類以上の化合
物半導体薄膜を交互に3層以上積み重ねて形成した薄膜
多層の第2の半導体層と、第3の半導体層を順次形成し
た積層構造を有し、上記第2の半導体層中の薄膜の膜厚
あるいは各薄膜境界領域の形状が異なる複数領域を電気
的に分離していることを特徴とする半導体装置。
(1) A second thin film multilayer formed by alternately stacking a first semiconductor layer and three or more layers of two or more types of compound semiconductor thin films having different compositions, such as binary or ternary or more, on a compound semiconductor substrate. The semiconductor layer has a laminated structure in which a semiconductor layer of A semiconductor device characterized by:
(2)第1及び第3の半導体層の禁制帯幅が薄膜多層の
第2の半導体層の半導体の最も広い禁制帯にくらべ、同
じかそれ以上広いことを特徴とする特許請求の範囲第(
1)項に記載の半導体装置。
(2) The forbidden band width of the first and third semiconductor layers is equal to or wider than the widest forbidden band of the semiconductor of the second semiconductor layer of the thin film multilayer.
The semiconductor device according to item 1).
(3)半導体装置が発振波長の異なる多波長半導体レー
ザであることを特徴とする特許請求の範囲第(1)項に
記載の半導体装置。
(3) The semiconductor device according to claim (1), wherein the semiconductor device is a multi-wavelength semiconductor laser with different oscillation wavelengths.
(4)化合物半導体基板はGaAsであり、他の領域の
半導体はGaAsとGa_1_−_xAl_xAs(0
≦x≦1)であることを特徴とする特許請求の範囲第(
1)項に記載の半導体装置。
(4) The compound semiconductor substrate is GaAs, and the semiconductors in other regions are GaAs and Ga_1_-_xAl_xAs(0
≦x≦1).
The semiconductor device according to item 1).
(5)化合物半導体基板上に、第1の半導体層と、2元
あるいは3元素以上の組成の異なった2種類以上の化合
物半導体薄膜を交互に3層以上積み重ねて構成した薄膜
多層の第2の半導体層と、第3の半導体層とを順次形成
した積層構造を有し、上記第1の半導体層側から少なく
とも上記薄膜多層の第2の半導体層の第3の半導体層側
端部に届く領域まで上記化合物半導体基板上の一部ある
いは全体にわたって局所アニールを施し、上記局所アニ
ール量を上記化合物半導体基板上で少なくとも2領域以
上で異ならせると共に、上記各局所アニール領域を電気
的に分離することを特徴とする半導体装置の製造方法。
(5) A second thin film multilayer formed by alternately stacking the first semiconductor layer and three or more compound semiconductor thin films of two or more types with different compositions of two or three or more elements on a compound semiconductor substrate. A region having a laminated structure in which a semiconductor layer and a third semiconductor layer are sequentially formed, and reaching from the first semiconductor layer side to at least the third semiconductor layer side end of the second semiconductor layer of the thin film multilayer. Locally annealing is performed on a part or the entirety of the compound semiconductor substrate until the amount of local annealing is applied to at least two regions on the compound semiconductor substrate, and each of the local annealing regions is electrically isolated. A method for manufacturing a featured semiconductor device.
(6)局所アニールがレーザーアニールで行なわれるこ
とを特徴とする特許請求の範囲第(5)項に記載の半導
体装置の製造方法。
(6) The method for manufacturing a semiconductor device according to claim (5), wherein the local annealing is performed by laser annealing.
(7)局所アニール量がレーザーのパワーや照射量で制
御されることを特徴とする特許請求の範囲第(6)項に
記載の半導体装置の製造方法。
(7) The method for manufacturing a semiconductor device according to claim (6), wherein the amount of local annealing is controlled by the power and irradiation amount of the laser.
(8)電気的分離が局所アニール処理の後に行なわれる
ことを特徴とする特許請求の範囲第(5)項に記載の半
導体装置の製造方法。
(8) The method for manufacturing a semiconductor device according to claim (5), wherein the electrical isolation is performed after local annealing treatment.
(9)電気的分離は、プロトン照射あるいは前記電気的
分離領域に該当する半導体層のエッチングによる除去あ
るいは前記エッチング除去領域に窒化シリコンあるいは
酸化シリコンあるいはポリイミドを埋めることにより行
なうことを特徴とする特許請求の範囲第(5)項に記載
の半導体装置の製造方法。
(9) A patent claim characterized in that the electrical isolation is performed by proton irradiation, removal by etching of the semiconductor layer corresponding to the electrical isolation region, or by filling the etched removal region with silicon nitride, silicon oxide, or polyimide. A method for manufacturing a semiconductor device according to item (5).
(10)薄膜多層領域は有機金属気相成長法で形成する
ことを特徴とする特許請求の範囲第(5)項に記載の半
導体装置の製造方法。
(10) The method for manufacturing a semiconductor device according to claim (5), wherein the thin film multilayer region is formed by metal organic vapor phase epitaxy.
JP3204185A 1985-02-13 1985-02-20 Semiconductor device and manufacture thereof Pending JPS61191089A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3204185A JPS61191089A (en) 1985-02-20 1985-02-20 Semiconductor device and manufacture thereof
US06/829,090 US4747110A (en) 1985-02-13 1986-02-13 Semiconductor laser device capable of emitting laser beams of different wavelengths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204185A JPS61191089A (en) 1985-02-20 1985-02-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61191089A true JPS61191089A (en) 1986-08-25

Family

ID=12347780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204185A Pending JPS61191089A (en) 1985-02-13 1985-02-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61191089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119591A (en) * 1986-10-09 1988-05-24 アモコ・コーポレーション Method of mixing layer structure composed of thin solid films selectively
JPS63200587A (en) * 1987-02-17 1988-08-18 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119591A (en) * 1986-10-09 1988-05-24 アモコ・コーポレーション Method of mixing layer structure composed of thin solid films selectively
JPS63200587A (en) * 1987-02-17 1988-08-18 Matsushita Electric Ind Co Ltd Semiconductor laser array device

Similar Documents

Publication Publication Date Title
JP3950878B2 (en) Multi-wavelength semiconductor laser and manufacturing method thereof
US5386428A (en) Stacked active region laser array for multicolor emissions
JP5194055B2 (en) Multiwavelength laser array fabricated by flip-chip bonding.
JP3619155B2 (en) Surface emitting laser device, manufacturing method thereof, and driving method thereof
US7606281B2 (en) Method of producing multi-wavelength semiconductor laser device
US4747110A (en) Semiconductor laser device capable of emitting laser beams of different wavelengths
JPH1093200A (en) Loss waveguide type semiconductor laser
US7374959B2 (en) Two-wavelength semiconductor laser device and method of manufacturing the same
JP3093547B2 (en) Optical integrated circuit and method of manufacturing the same
JPS61191089A (en) Semiconductor device and manufacture thereof
US6967119B2 (en) Semiconductor laser device and method of fabricating the same
US6567449B1 (en) Semiconductor laser and method for manufacturing the same
JPH0638538B2 (en) Multi-wavelength semiconductor laser device
JP3814880B2 (en) Semiconductor device and manufacturing method thereof
JP3726398B2 (en) Semiconductor device
US7120182B2 (en) Densely-packed light emitters with layered semiconductor structure and methods of making the light emitters
JP2001144373A (en) Method of manufacturing semiconductor laser
JPH0629618A (en) Multibeam semiconductor laser and manufacturing method thereof
JPH0511677B2 (en)
JP2006324552A (en) Red semiconductor laser element and method of manufacturing the same
JP2953177B2 (en) Multi-beam semiconductor laser and method of manufacturing the same
JPH0138390B2 (en)
JPWO2005088790A1 (en) Semiconductor laser device and manufacturing method thereof
JP2000244073A (en) Multi-wavelength integrated semiconductor laser device
JPH05235480A (en) Multi-beam semiconductor laser and manufacture thereof