JP2006324552A - Red semiconductor laser element and method of manufacturing the same - Google Patents

Red semiconductor laser element and method of manufacturing the same Download PDF

Info

Publication number
JP2006324552A
JP2006324552A JP2005147673A JP2005147673A JP2006324552A JP 2006324552 A JP2006324552 A JP 2006324552A JP 2005147673 A JP2005147673 A JP 2005147673A JP 2005147673 A JP2005147673 A JP 2005147673A JP 2006324552 A JP2006324552 A JP 2006324552A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
gainp
semiconductor laser
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005147673A
Other languages
Japanese (ja)
Inventor
Yozo Uchida
陽三 内田
Kenji Nakajima
健二 中島
Seiji Kawamoto
清時 河本
Hiroshi Kuchino
啓史 口野
Sumiyo Nakanishi
寿美代 中西
Kazuaki Okita
和明 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP2005147673A priority Critical patent/JP2006324552A/en
Publication of JP2006324552A publication Critical patent/JP2006324552A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-hetero structured red semiconductor laser element which has superior linearity in the optical output vs. current characteristic, while having high output power, and to provide a method of manufacturing the same. <P>SOLUTION: The red semiconductor laser element 10 comprises at least a first conductivity-type AlGaInP cladding layer 13, a GaInP active layer 17, and a second conductivity-type AlGaInP cladding layer 18, sequentially stacked on a GaAs semiconductor substrate 11. The semiconductor laser element also has a ridge 21, consisting of a ridged second conductivity-type AlGaInP clad layer 18', a second conductivity-type GaInP contact layer 19', and a second conductivity-type GaAs capping layer 20', stacked sequentially on the second conductivity-type AlGaInP clad layer 18. The side surfaces of the ridge 21 and the surface of the second conductivity-type AlGaInP clad layer 18 are covered by a first conductivity-type AlInP layer 23, a first conductivity-type GaAs current blocking layer 24, and a GaInP layer 25, stacked sequentially thereon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、DVD−Rなどの光情報端末機器等の光源として使用するための赤色半導体レーザ素子及びその製造方法に関し、特に高出力でありながら光出力−電流特性の直線性に優れたダブルへテロ構造の赤色半導体レーザ素子及びその製造方法に関する。   The present invention relates to a red semiconductor laser element for use as a light source for optical information terminal equipment such as a DVD-R and a method for manufacturing the same, and particularly to a double having excellent linearity of optical output-current characteristics while having high output. The present invention relates to a red semiconductor laser element having a terror structure and a method for manufacturing the same.

半導体レーザ素子は、小型軽量、高効率、高応答速度、広い波長選択性等の優れた特性を有していることから、光ディスク、光通信、レーザプリンタ等の分野への導入が盛んに進められており、特にDVD−Rなど高密度光ディスクの書き込みにはAlGaInP系の発振波長650nm領域の高出力赤色半導体レーザ素子が用いられている。   Semiconductor laser elements have excellent characteristics such as small size, light weight, high efficiency, high response speed, and wide wavelength selectivity, and therefore are actively being introduced into the fields of optical discs, optical communications, laser printers, etc. In particular, for writing on a high-density optical disk such as a DVD-R, an AlGaInP-based high-power red semiconductor laser element having an oscillation wavelength region of 650 nm is used.

このようなAlGaInP系の赤色半導体レーザ素子の一例としては、例えば図4に示したようなダブルへテロ構造を有する半導体レーザ素子が知られている(例えば、特許文献1参照)。この半導体レーザ素子50は、通常MOCVD(Metal Organic ChemicalVapor Deposition;有機金属気相成長)法、MBE(Molecular Beam Epitaxy;分子線エピタキシャル成長)法、または、HVPE(Hydride Vapor Phase Epitaxy)法などの結晶成長法を用い、以下の工程により作成されている。   As an example of such an AlGaInP red semiconductor laser element, for example, a semiconductor laser element having a double hetero structure as shown in FIG. 4 is known (see, for example, Patent Document 1). The semiconductor laser element 50 is usually formed by a crystal growth method such as MOCVD (Metal Organic Chemical Vapor Deposition), MBE (Molecular Beam Epitaxy), or HVPE (Hydride Vapor Phase Epitaxy). It is created by the following process.

すなわち、GaAs基板51上に、第1導電型GaInPバッファ層52、第1導電型AlGaInPクラッド層53、アンドープAlGaInP光ガイド層54、GaInP歪量子井戸(TQW)活性層55、アンドープAlGaInP光ガイド層56、第2導電型AlGaInPクラッド層57及び第2導電型GaInPコンタクト層58を順次エピタキシャル積層し、エッチングにより第2導電型AlGaInPクラッド層57上にリッジ(導波路)部60を形成する。このうち、アンドープAlGaInP光ガイド層54、GaInP歪量子井戸(TQW)活性層55及びアンドープAlGaInP光ガイド層56からなる部分は一般にGaInP活性層ともいわれる。   That is, on the GaAs substrate 51, a first conductivity type GaInP buffer layer 52, a first conductivity type AlGaInP cladding layer 53, an undoped AlGaInP light guide layer 54, a GaInP strained quantum well (TQW) active layer 55, and an undoped AlGaInP light guide layer 56. Then, the second conductivity type AlGaInP clad layer 57 and the second conductivity type GaInP contact layer 58 are sequentially epitaxially laminated, and a ridge (waveguide) portion 60 is formed on the second conductivity type AlGaInP clad layer 57 by etching. Of these, the portion composed of the undoped AlGaInP light guide layer 54, the GaInP strained quantum well (TQW) active layer 55, and the undoped AlGaInP light guide layer 56 is generally referred to as a GaInP active layer.

その後に、エッチングにより取り除いた部分に第1導電型GaAs電流ブロック層61の埋め込み成長を行い、さらに第1導電型GaAs電流ブロック層61及び第2導電型GaInPコンタクト層58上に第2導電型GaAsキャップ層59を積層し、この第2導電型GaAsキャップ層59の表面に第2導電側電極62を、また、GaAs基板51の底部に第1導電側電極63をそれぞれ設けた構成を有している。   Thereafter, the first conductivity type GaAs current block layer 61 is embedded and grown in the portion removed by etching, and the second conductivity type GaAs is formed on the first conductivity type GaAs current block layer 61 and the second conductivity type GaInP contact layer 58. A cap layer 59 is laminated, and a second conductive side electrode 62 is provided on the surface of the second conductivity type GaAs cap layer 59, and a first conductive side electrode 63 is provided on the bottom of the GaAs substrate 51. Yes.

この半導体レーザ素子50は、第2導電型AlGaInPクラッド層57と第1導電型GaAs電流ブロック層61の界面及び第2導電型GaInPコンタクト層58と第2導電型GaAsキャップ層59の界面において良好な結晶性が得られないことが見出されている。これは、V族元素がP(リン)であるIII−V族化合物半導体からなる第2導電型AlGaInPクラッド層57の上にV族元素がPとは異なるAs(ヒ素)であるIII−V族化合物半導体からなる第1導電型GaAs電流ブロック層61を連続的に形成しないでエッチング後における別の工程で形成するため、及び、V族の元素がPのIII−V族化合物半導体からなる第2導電型GaInPコンタクト層58の上にV族の元素がAsのIII−V族化合物半導体からなる第2導電型GaAsキャップ層59を非連続的に形成するためである。このように界面における結晶性が損なわれると、レーザ発光に寄与しない無効電流が増大し、結果として素子の歩留り低下を招くという問題点が存在する。   This semiconductor laser device 50 is good at the interface between the second conductivity type AlGaInP cladding layer 57 and the first conductivity type GaAs current blocking layer 61 and at the interface between the second conductivity type GaInP contact layer 58 and the second conductivity type GaAs cap layer 59. It has been found that no crystallinity can be obtained. This is because the group V element is As (arsenic) different from P on the second conductivity type AlGaInP cladding layer 57 made of a group III-V compound semiconductor whose group V element is P (phosphorus). In order to form the first conductive type GaAs current blocking layer 61 made of a compound semiconductor in a separate process after etching without continuously forming the second conductive type GaAs current blocking layer 61, and a second group consisting of a III-V group compound semiconductor in which the V group element is P. This is because the second conductivity type GaAs cap layer 59 made of a III-V group compound semiconductor whose group V element is As is formed discontinuously on the conductivity type GaInP contact layer 58. Thus, when the crystallinity at the interface is impaired, the reactive current that does not contribute to the laser emission increases, resulting in a problem that the yield of the device is reduced.

一方、このような従来技術の問題点を解決した化合物半導体レーザ素子が下記特許文献2に開示されている。ここで、下記特許文献2に開示されている半導体レーザ素子70を図5を用いて説明するが、図5においては図4に示した半導体レーザ素子50と同一の構成部分には同じ参照符号を付与してその詳細な説明は省略する。   On the other hand, a compound semiconductor laser device that solves such problems of the prior art is disclosed in Patent Document 2 below. Here, a semiconductor laser device 70 disclosed in the following Patent Document 2 will be described with reference to FIG. 5. In FIG. 5, the same reference numerals are given to the same components as those of the semiconductor laser device 50 shown in FIG. A detailed description thereof will be omitted.

下記特許文献2に開示されている半導体レーザ素子70が上述の半導体レーザ素子50と構成が相違している点は、
(a)第2導電型AlGaInPクラッド層57と第1導電型GaAs電流ブロック層61との間に第2導電型GaInP層65を導入することにより、第2導電型AlGaInPクラッド層57のV族元素と導入された第2導電型GaInP層65のV族元素が同じPからなるようにするとともに、第2導電型AlGaInPクラッド層57のIII族元素と導入された第2導電型GaInP層65のIII族元素が同じGaからなるようにすることで両者間の結晶性を良好に保ち、
(b)第2導電型GaInPコンタクト層58と第2導電型GaAsキャップ層59との間に第2導電型GaInP層66を導入することにより、第2導電型GaInPコンタクト層58のV族元素と導入された第2導電型GaInP層66のV族元素とが同じPからなるようにするとともに、第2導電型GaAsキャップ層59のIII族元素と導入された第2導電型GaInP層66のIII族元素が同じGaからなるようにし、これに加えて導入された第2導電型GaInP層66と第2導電型GaAsキャップ層59とを連続プロセスで形成することで両者間の結晶性を良好に保ち、
(c)第1導電型GaAs電流ブロック層61と第2導電型GaAsキャップ層59の間に第2導電型GaInP層67と第2導電型GaInP層66とを介在させ、第1導電型GaAs電流ブロック層61と第2導電型GaInP層67とは連続プロセスで形成し、また第2導電型GaInP層66と第2導電型GaAsキャップ層59とも連続プロセスで形成することにより、第2導電型GaInP層66及び第2導電型GaAsキャップ層59の結晶性が良好となるようにしたものである、
特開平05−041560号公報(特許請求の範囲、段落[0014]〜[0019]、図1〜図4) 特開平07−022703号公報(特許請求の範囲、段落[0004]〜[0005]、[0014]〜[0015]、図5)
The semiconductor laser element 70 disclosed in the following Patent Document 2 is different in configuration from the semiconductor laser element 50 described above.
(A) By introducing the second conductivity type GaInP layer 65 between the second conductivity type AlGaInP cladding layer 57 and the first conductivity type GaAs current blocking layer 61, the group V element of the second conductivity type AlGaInP cladding layer 57 The group V element of the introduced second conductivity type GaInP layer 65 is made of the same P, and the group III element of the second conductivity type AlGaInP cladding layer 57 and the group III element of the introduced second conductivity type GaInP layer 65 Keeping the crystallinity between the two good by making the group elements consist of the same Ga,
(B) By introducing the second conductivity type GaInP layer 66 between the second conductivity type GaInP contact layer 58 and the second conductivity type GaAs cap layer 59, the V group element of the second conductivity type GaInP contact layer 58 and The introduced group V element of the second conductivity type GaInP layer 66 is made of the same P, and the group III element of the second conductivity type GaAs cap layer 59 and the introduced group III element of the second conductivity type GaInP layer 66 are made III. The group element is made of the same Ga, and in addition to this, the introduced second conductivity type GaInP layer 66 and the second conductivity type GaAs cap layer 59 are formed by a continuous process, so that the crystallinity between the two is improved. Keep
(C) The second conductivity type GaInP layer 67 and the second conductivity type GaInP layer 66 are interposed between the first conductivity type GaAs current blocking layer 61 and the second conductivity type GaAs cap layer 59, thereby providing a first conductivity type GaAs current. The block layer 61 and the second conductivity type GaInP layer 67 are formed by a continuous process, and the second conductivity type GaInP layer 66 and the second conductivity type GaAs cap layer 59 are also formed by a continuous process, whereby the second conductivity type GaInP layer is formed. The crystallinity of the layer 66 and the second conductivity type GaAs cap layer 59 is improved.
Japanese Patent Laid-Open No. 05-041560 (claims, paragraphs [0014] to [0019], FIGS. 1 to 4) JP 07-027033 (Claims, paragraphs [0004] to [0005], [0014] to [0015], FIG. 5)

上記特許文献2に開示されている半導体レーザ素子70は、第2導電型AlGaInPクラッド層57と第1導電型GaAs電流ブロック層61との間に第2導電型GaInP層65をエピタキシャル成長させることにより第1導電型GaAs電流ブロック層61の結晶性を高め(上記(a)参照)、さらに、第1導電型GaAs電流ブロック層61と第2導電型GaAsキャップ層59の間に第2導電型GaInP層67と第2導電型GaInP層66とを介在させ、第1導電型GaAs電流ブロック層61と第2導電型GaInP層67とは連続プロセスで形成し、また第2導電型GaInP層66と第2導電型GaAsキャップ層59とも連続プロセスで形成することにより、第2導電型GaInP層66及び第2導電型GaAsキャップ層59の結晶性が良好となるようにしている(上記(c)参照)が、この導入された第2導電型GaInP層65、66及び67は第1導電型GaAs電流ブロック層61と格子整合する組成のものを使用する必要がある。   In the semiconductor laser device 70 disclosed in Patent Document 2, the second conductivity type GaInP layer 65 is epitaxially grown between the second conductivity type AlGaInP cladding layer 57 and the first conductivity type GaAs current blocking layer 61. The crystallinity of the first conductivity type GaAs current block layer 61 is increased (see (a) above), and the second conductivity type GaInP layer is further interposed between the first conductivity type GaAs current block layer 61 and the second conductivity type GaAs cap layer 59. 67 and the second conductivity type GaInP layer 66 are interposed, and the first conductivity type GaAs current blocking layer 61 and the second conductivity type GaInP layer 67 are formed by a continuous process, and the second conductivity type GaInP layer 66 and the second conductivity type GaInP layer 66 By forming the conductive type GaAs cap layer 59 in a continuous process, the second conductive type GaInP layer 66 and the second conductive type GaAs cap layer 59 are formed. The crystallinity of the gate layer 59 is improved (see (c) above), but the introduced second conductivity type GaInP layers 65, 66 and 67 are the same as the first conductivity type GaAs current blocking layer 61 and the lattice. It is necessary to use a matching composition.

しかしながら、第1導電型GaAs電流ブロック層61に格子整合させるための第2導電型GaInPの組成では、レーザ光の吸収が十分ではないためにファーフィールドパターンが乱れ、理想的な波形が得られないため、リップル等の不良が生じるという問題がある。   However, in the composition of the second conductivity type GaInP for lattice matching with the first conductivity type GaAs current blocking layer 61, the far field pattern is disturbed due to insufficient absorption of the laser beam, and an ideal waveform cannot be obtained. Therefore, there is a problem that defects such as ripples occur.

そこで、本発明は係る問題点を解決するためになされたものであり、特に結晶性の低い電流ブロック層を保護してレーザ光の光吸収が大きくなるようにし、キンクが小さい高出力の赤色半導体レーザ素子及びその製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve such problems, and in particular, protects a current blocking layer having low crystallinity so as to increase the light absorption of laser light, and a high-output red semiconductor with a small kink. It is an object of the present invention to provide a laser element and a manufacturing method thereof.

本発明の上記第1の目的は以下の構成により達成し得る。すなわち、請求項1の赤色半導体レーザ素子の発明は、GaAs半導体基板上に少なくとも第1導電型AlGaInPクラッド層、GaInP活性層、第2導電型AlGaInPクラッド層が順次積層され、前記第2導電型AlGaInPクラッド層上に順次積層されたリッジ状の第2導電型AlGaInPクラッド層、第2導電型GaInPコンタクト層及び第2導電型GaAsキャップ層からなるリッジ部を備えた赤色半導体レーザ素子において、前記リッジ部の側面及び第2導電型AlGaInPクラッド層表面は順次積層された第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層で被覆されていることを特徴とする。   The first object of the present invention can be achieved by the following configuration. That is, according to the first aspect of the present invention, at least a first conductivity type AlGaInP cladding layer, a GaInP active layer, and a second conductivity type AlGaInP cladding layer are sequentially laminated on a GaAs semiconductor substrate, and the second conductivity type AlGaInP In the red semiconductor laser device having a ridge portion comprising a ridge-shaped second conductivity type AlGaInP clad layer, a second conductivity type GaInP contact layer, and a second conductivity type GaAs cap layer sequentially stacked on the clad layer, the ridge portion The side surface and the surface of the second conductivity type AlGaInP clad layer are covered with a first conductivity type AlInP layer, a first conductivity type GaAs current blocking layer and a GaInP layer which are sequentially stacked.

また、請求項2に係る発明は、請求項1に記載の赤色半導体レーザ素子において、前記GaInP層は、組成がGaxIn(1-x)P(ただし、x=0.42〜0.48)であり、前記第1導電型GaAs電流ブロック層とは格子不整合状態にあることを特徴とする。この際、x=0.42〜0.48の範囲を外れるとレーザ光の吸収が十分ではないために理想的な波形が得られず、リップル等の不良が生じるので好ましくない。 The invention according to claim 2 is the red semiconductor laser device according to claim 1, wherein the GaInP layer has a composition of Ga x In (1-x) P (where x = 0.42 to 0.48). And is in a lattice mismatch state with the first conductivity type GaAs current blocking layer. At this time, if it is out of the range of x = 0.42 to 0.48, the absorption of the laser beam is not sufficient, so that an ideal waveform cannot be obtained and defects such as ripples are generated, which is not preferable.

また、請求項3の発明は、請求項1又は2に記載の赤色半導体レーザ素子において、前記リッジ部の両側には前記リッジ部と同一層構造のサポート部が設けられ、前記サポート部の表面及び前記リッジ部と対向する側の側面も第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層で順次被覆されていることを特徴とする。   According to a third aspect of the present invention, in the red semiconductor laser device according to the first or second aspect, support portions having the same layer structure as the ridge portion are provided on both sides of the ridge portion, and the surface of the support portion and The side surface facing the ridge portion is also covered with a first conductivity type AlInP layer, a first conductivity type GaAs current blocking layer, and a GaInP layer sequentially.

さらに本発明の第2の目的は以下の製造方法により達成し得る。すなわち、請求項4の赤色半導体レーザ素子の製造方法の発明は、少なくとも以下の(1)〜(3)の工程を有することを特徴とする。
(1)半導体基板上に少なくとも第1導電型AlGaInPクラッド層、GaInP活性層、第2導電型AlGaInPクラッド層、第2導電型GaInP層、及び、第2導電型GaAs層を連続的に順次積層して赤色ダブルへテロ用積層構造を形成し、次いで、
(2)前記第2導電型AlGaInPクラッド層の途中までリッジ状にエッチングすることにより、順次第2導電型AlGaInPクラッド層、第2導電型GaInPコンタクト層及び第2導電型GaAsキャップ層からなるリッジ部を形成し、さらに、
(3)前記リッジ部の側面及び第2導電型AlGaInPクラッド層の表面に順次第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層を連続的に被覆する。
Furthermore, the second object of the present invention can be achieved by the following production method. That is, the invention of a method for manufacturing a red semiconductor laser device according to claim 4 is characterized by having at least the following steps (1) to (3).
(1) At least a first conductivity type AlGaInP cladding layer, a GaInP active layer, a second conductivity type AlGaInP cladding layer, a second conductivity type GaInP layer, and a second conductivity type GaAs layer are sequentially and sequentially stacked on a semiconductor substrate. To form a red double hetero laminated structure,
(2) A ridge portion comprising a second conductivity type AlGaInP clad layer, a second conductivity type GaInP contact layer, and a second conductivity type GaAs cap layer by etching in a ridge shape partway through the second conductivity type AlGaInP clad layer. Further,
(3) The first conductivity type AlInP layer, the first conductivity type GaAs current blocking layer, and the GaInP layer are successively coated on the side surface of the ridge portion and the surface of the second conductivity type AlGaInP cladding layer.

また、請求項5の発明は、請求項4に記載の赤色半導体レーザ素子の製造方法において、前記GaInP層は、組成をGaxIn(1-x)P(ただし、x=0.42〜0.48)とし、前記第1導電型GaAs電流ブロック層と格子不整合状態としたことを特徴とする。 According to a fifth aspect of the present invention, in the method for manufacturing a red semiconductor laser device according to the fourth aspect, the GaInP layer has a composition of Ga x In (1-x) P (where x = 0.42 to 0). 48), and in a lattice mismatch with the first conductivity type GaAs current blocking layer.

また、請求項6の発明は、請求項4又は5に記載の赤色半導体レーザ素子の製造方法において、前記(2)の工程において同時に前記リッジ部の両側にサポート部を形成し、前記(3)の工程において前記サポート部の表面及び前記リッジ部と対向する側の側面も同時に順次第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層を連続的に被覆したことを特徴とする。   According to a sixth aspect of the present invention, in the method for manufacturing a red semiconductor laser device according to the fourth or fifth aspect, support portions are formed on both sides of the ridge portion at the same time in the step (2), and the (3) In the step, the first conductive type AlInP layer, the first conductive type GaAs current blocking layer, and the GaInP layer are successively coated on the surface of the support portion and the side surface facing the ridge portion at the same time. .

本発明は上記の構成を備えることにより、以下に述べるような優れた効果を奏する。すなわち、請求項1の発明によれば、第1導電型GaAs電流ブロック層上に設けられたGaInP層は、赤色半導体レーザ素子が発色する波長帯の光を効率よく吸収し、かつ結晶性の低いGaAs電流ブロック層が化学薬品によって浸食されるのを保護することができるため、製造歩留まりがよく、しかもキンク等の特性が良好な高出力型の赤色半導体レーザ素子が得られる。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the first aspect of the present invention, the GaInP layer provided on the first conductivity type GaAs current blocking layer efficiently absorbs light in the wavelength band where the red semiconductor laser element develops color and has low crystallinity. Since the GaAs current blocking layer can be protected from being eroded by chemicals, a high output type red semiconductor laser device having a good manufacturing yield and good characteristics such as kink can be obtained.

また、請求項2の発明によれば、特に請求項1の発明の効果を顕著に奏することができる赤色半導体レーザ素子が得られる。   Further, according to the invention of claim 2, a red semiconductor laser element capable of remarkably exhibiting the effect of the invention of claim 1 is obtained.

また、請求項3の発明によれば、サポート部はリッジ部の保護部材としても機能するから、製造時にリッジ部の破損が少なくなり、製造歩留まりが良好な赤色半導体レーザ素子が得られる。加えて、請求項3の発明によれば、サポート部はリッジ部に比べると表面の面積が大きいので、特に赤色半導体レーザ素子をジャンクションダウン方式でサブマウントに取り付けることができるから、冷却効率が向上するために信頼性が非常に高くなる。   According to the invention of claim 3, since the support portion also functions as a protection member for the ridge portion, the ridge portion is less damaged at the time of manufacturing, and a red semiconductor laser device having a good manufacturing yield can be obtained. In addition, according to the invention of claim 3, since the support portion has a surface area larger than that of the ridge portion, the red semiconductor laser element can be attached to the submount by the junction down method, so that the cooling efficiency is improved. To be very reliable.

さらに、請求項4〜6の赤色半導体レーザ素子の製造方法の発明によれば、請求項1〜3の発明の効果を奏する赤色半導体レーザ素子を容易に製造することができるようになる。   Furthermore, according to the invention of the method for manufacturing a red semiconductor laser device according to claims 4 to 6, the red semiconductor laser device having the effects of the inventions of claims 1 to 3 can be easily manufactured.

以下、本発明を実施するための最良の形態を実施例及び図1及び図2を用いて詳細に説明するが、以下に述べた実施例は、本発明の技術思想を具体化するための赤色半導体レーザ素子及びその製造方法を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。なお、図1は、実施例に係る製造工程の途中の赤色半導体レーザ素子の断面図であり、図2は電極を設ける前の赤色半導体レーザ素子の断面図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the embodiment and FIGS. 1 and 2. The embodiment described below is a red color for embodying the technical idea of the present invention. The semiconductor laser device and the manufacturing method thereof are illustrated, and the present invention is not intended to be specified in this embodiment. The present invention is not limited to the technical ideas shown in the claims. It can be equally applied to those that have been changed. 1 is a cross-sectional view of the red semiconductor laser device in the middle of the manufacturing process according to the embodiment, and FIG. 2 is a cross-sectional view of the red semiconductor laser device before the electrode is provided.

実施例1に係る半導体レーザ素子としては、第1導電型をn型としたAlGaInP系赤色半導体レーザ素子10を以下に示す工程(1)〜(3)を経て作製した。
(1)第1エピタキシャル成長工程、
まず、図1に示すように、減圧MOCVD法を用い、GaAs基板11上に、n型GaInPバッファ層12、n型AlGaInP第1クラッド層13、アンドープAlGaInP光ガイド層14と歪量子井戸(TQW)活性層15とアンドープAlGaInP光ガイド層16とからなるGaInP活性層17、p型AlGaInPクラッド層18、p型GaInPコンタクト層19及びp型GaAsキャップ層20を順次連続的に積層することにより、赤色ダブルへテロ用積層構造を形成した。なお、以上の例では、n型半導体層はSiドープにより、また、p型半導体層はZnドープにより製造した。
(2)エッチング工程
次にSiO2膜を蒸着し、フォトリソグラフィーによりSiO2膜を加工し、それをマスクとしてp型AlGaInPクラッド層18の途中までエッチングすることにより、p型AlGaInPクラッド層18の表面に、幅約2.50μmのリッジ状のp型AlGaInPクラッド層18’、n型GaInPコンタクト層19’及びn型GaAsキャップ層20’とからなるリッジ部21と、そのリッジ部21の両側にサポート部22を形成した。なお、サポート部22の形成は任意であるが、製造時に細いリッジ部21の保護部材として作用するし、しかも、できあがった赤色半導体レーザ素子をサブマウントを介して保持体にて保持させて冷却効率を上げる、いわゆるジャンクションダウン方式を適用する際に有用であるので、設けておいた方がよい。
(3)その後、図2に示すように、再度減圧MOCVD法により前記エッチング工程で取り除いた部分及びサポート部22の表面に順次膜厚0.45μmのn型AlxIn(1-x)Pからなるn型AlInP層23(ただし、x=0.51)、膜厚0.55μmのn型GaAs電流ブロック層24及び膜厚0.35μmのGaxIn(1-x)PからなるGaInP層25(ただし、x=0.44)を連続的に被覆し、図2に示した電極形成前の赤色半導体レーザ素子10を作製した。
As the semiconductor laser device according to Example 1, an AlGaInP red semiconductor laser device 10 having a first conductivity type of n-type was manufactured through the following steps (1) to (3).
(1) First epitaxial growth step,
First, as shown in FIG. 1, an n-type GaInP buffer layer 12, an n-type AlGaInP first cladding layer 13, an undoped AlGaInP light guide layer 14, and a strained quantum well (TQW) are formed on a GaAs substrate 11 by using a low pressure MOCVD method. A red double layer is formed by sequentially laminating a GaInP active layer 17 composed of an active layer 15 and an undoped AlGaInP light guide layer 16, a p-type AlGaInP cladding layer 18, a p-type GaInP contact layer 19 and a p-type GaAs cap layer 20. A layered structure for hetero was formed. In the above example, the n-type semiconductor layer was manufactured by Si doping, and the p-type semiconductor layer was manufactured by Zn doping.
(2) etching process then depositing a SiO 2 film, processing the SiO 2 film by photolithography by etching up to the middle of the p-type AlGaInP cladding layer 18 as a mask, the surface of the p-type AlGaInP cladding layer 18 Further, a ridge portion 21 composed of a ridge-shaped p-type AlGaInP cladding layer 18 ′ having a width of about 2.50 μm, an n-type GaInP contact layer 19 ′ and an n-type GaAs cap layer 20 ′, and supports on both sides of the ridge portion 21. Part 22 was formed. The formation of the support portion 22 is optional, but it acts as a protective member for the thin ridge portion 21 during manufacture, and the resulting red semiconductor laser element is held by a holding body via a submount to provide cooling efficiency. This is useful when applying the so-called junction down method, so it is better to provide it.
(3) Thereafter, as shown in FIG. 2, the n-type Al x In (1-x) P having a film thickness of 0.45 μm is successively formed on the surface of the support portion 22 and the portion removed by the low pressure MOCVD method again. An n-type AlInP layer 23 (x = 0.51), an n-type GaAs current blocking layer 24 having a thickness of 0.55 μm, and a GaInP layer 25 made of Ga x In (1-x) P having a thickness of 0.35 μm. (However, x = 0.44) was continuously covered, and the red semiconductor laser device 10 before electrode formation shown in FIG. 2 was produced.

次いで、常法によりリッジ部22のp型GaAsキャップ層20’の表面及びGaAs基板11の裏面に電極を形成して赤色半導体レーザ素子を作製した。得られた赤色半導体レーザ素子は、発振波長655nmであり、低出力領域から高出力領域まで直線性が非常に良好で、キンクが小さい赤色半導体レーザ素子であった。   Subsequently, an electrode was formed on the front surface of the p-type GaAs cap layer 20 ′ of the ridge portion 22 and the back surface of the GaAs substrate 11 by a conventional method to manufacture a red semiconductor laser device. The obtained red semiconductor laser device was a red semiconductor laser device having an oscillation wavelength of 655 nm, excellent linearity from a low output region to a high output region, and a small kink.

なお、実施例1ではGaInP層25として、組成がGaxIn(1-x)P(ただし、x=0.51)のものを使用したが、x=0.42〜0.48の範囲内であれば同様の効果を奏する。また、GaInP層25の膜厚は0.50μm以下とする必要がある。GaInP層25の膜厚が0.50μmを超えると、GaInP層25はn型GaAs電流ブロック層19とは格子不整合状態にあるので、歪みが大きくなりすぎてウェハが白濁してしまう。このGaInP層25の膜厚の下限に臨界的限度はないが、GaInP層25が存在しないと、キンクが大きくなるだけでなく、結晶性が低いn型GaAs電流ブロック層24の形成後の化学薬品による処理によってn型GaAs電流ブロック層24が浸食されてしまうので、GaInP層25を設けることは必須である。 In Example 1, a GaInP layer 25 having a composition of Ga x In (1-x) P (x = 0.51) was used, but x = 0.42 to 0.48. If so, the same effect is produced. The thickness of the GaInP layer 25 needs to be 0.50 μm or less. If the thickness of the GaInP layer 25 exceeds 0.50 μm, the GaInP layer 25 is in a lattice mismatch with the n-type GaAs current blocking layer 19, so that the distortion becomes too large and the wafer becomes clouded. Although there is no critical limit to the lower limit of the film thickness of the GaInP layer 25, if the GaInP layer 25 is not present, not only the kink is increased, but also chemicals after the formation of the n-type GaAs current blocking layer 24 having low crystallinity. Since the n-type GaAs current blocking layer 24 is eroded by the process of, it is essential to provide the GaInP layer 25.

さらに、実施例1で得られた赤色半導体レーザ素子10は、DVD−Rなど高密度光ディスクの書き込み用として有用な発振波長655nmのものであるが、現在も光記録媒体として広く使用されているコンパクトディスク(CD)、レコーダブルコンパクトディスク(CD−R)、ミニディスク(MD)等に対しても使用できるようにするには発振波長が780nmのレーザが必要となる。さらに、光ピックアップの簡素化、小型化等を実現するためには、1つのパッケージから650nm台および780nm台の両方の波長を出すことのできる2波長レーザ装置が有効である。本発明の主題から外れるが、実施例1で得られた赤色半導体レーザ素子と周知の発振波長780nmのレーザ素子とを一体化した2波長半導体レーザ素子の具体例を参考例として図3に示す。   Further, the red semiconductor laser device 10 obtained in Example 1 has a wavelength of 655 nm that is useful for writing on a high-density optical disk such as a DVD-R, but is a compact that is still widely used as an optical recording medium. A laser having an oscillation wavelength of 780 nm is required to be able to be used for a disc (CD), a recordable compact disc (CD-R), a mini disc (MD), and the like. Further, in order to realize simplification and miniaturization of the optical pickup, a two-wavelength laser device that can emit both wavelengths of 650 nm and 780 nm from one package is effective. A specific example of a two-wavelength semiconductor laser element in which the red semiconductor laser element obtained in Example 1 and a known laser element with an oscillation wavelength of 780 nm are integrated is shown in FIG. 3 as a reference example.

この二波長半導体レーザ素子30は、DVD側の発振波長655nmの赤色半導体レーザ素子31と、CD側の発振波長780nmの赤外半導体レーザ素子40とを備えている。このうち、赤色半導体レーザ素子31は、実施例1に従って作製した赤色半導体レーザ素子10と同一の構成を備えており、その具体的構成については赤色半導体レーザ素子10と同一の参照符号を付与して説明を省略する。また、CD側の発振波長780nmの赤外半導体レーザ素子40は、周知の構成のものであり、GaAs基板11上に順次n型GAlGaAsクラッド層41、AlGaAs活性層42、p型AlGaAsクラッド層43を備え、このp型AlGaAsクラッド層43の表面にリッジ状のp型AlGaAsクラッド層43’及びp型GaAsコンタクト層44からなるリッジ部45が設けられ、このリッジ部45の側部及びp型AlGaAsクラッド層43の表面にはn型AlGaAs層46を介してn型GaAs電流ブロック層47が設けられ、さらに、p型GaAsコンタクト層44及びn型GaAs電流ブロック層47の表面をp型GaAs層48で埋めた構成を有している。このような構成の二波長半導体レーザ素子30は、ジャンクションダウン方式でサブマウント(図示せず)を介して保持体にて保持させて冷却効率を上げることができるため、信頼性が非常に高い二波長半導体レーザ素子が得られる。   The two-wavelength semiconductor laser element 30 includes a red semiconductor laser element 31 having an oscillation wavelength of 655 nm on the DVD side and an infrared semiconductor laser element 40 having an oscillation wavelength of 780 nm on the CD side. Among these, the red semiconductor laser element 31 has the same configuration as that of the red semiconductor laser element 10 manufactured according to Example 1, and the same reference numerals as those of the red semiconductor laser element 10 are given to the specific configuration. Description is omitted. The CD-side infrared semiconductor laser device 40 having an oscillation wavelength of 780 nm has a well-known configuration. On the GaAs substrate 11, an n-type GAlGaAs cladding layer 41, an AlGaAs active layer 42, and a p-type AlGaAs cladding layer 43 are sequentially formed. A ridge portion 45 comprising a ridge-shaped p-type AlGaAs cladding layer 43 ′ and a p-type GaAs contact layer 44 is provided on the surface of the p-type AlGaAs cladding layer 43, and a side portion of the ridge portion 45 and the p-type AlGaAs cladding. An n-type GaAs current blocking layer 47 is provided on the surface of the layer 43 via an n-type AlGaAs layer 46, and the p-type GaAs contact layer 44 and the n-type GaAs current blocking layer 47 are covered with a p-type GaAs layer 48. It has a buried configuration. The two-wavelength semiconductor laser device 30 having such a configuration can be held by a holding body via a submount (not shown) by a junction down method to increase the cooling efficiency. A wavelength semiconductor laser element is obtained.

実施例1に係る半導体レーザ素子の製造途中の構造を示す図である。1 is a diagram showing a structure in the middle of manufacturing a semiconductor laser device according to Example 1. FIG. 実施例1に係る半導体レーザ素子の電極形成前の半導体レーザ素子の構造を示す図である。1 is a diagram illustrating a structure of a semiconductor laser device before electrode formation of a semiconductor laser device according to Example 1. FIG. 参考例の二波長半導体レーザ素子の電極形成前の構造を示す図である。It is a figure which shows the structure before electrode formation of the dual wavelength semiconductor laser element of a reference example. 従来例のAlGaInP系の赤色半導体レーザ素子の構造を示す図である。It is a figure which shows the structure of the AlGaInP type red semiconductor laser element of a prior art example. 別の従来例のAlGaInP系の赤色半導体レーザ素子の構造を示す図である。It is a figure which shows the structure of the AlGaInP type red semiconductor laser element of another prior art example.

符号の説明Explanation of symbols

11 GaAs基板
12 n型GaInPバッファ層
13 n型AlGaInP第1クラッド層
14 アンドープAlGaInP光ガイド層
15 歪量子井戸(TQW)活性層
16 アンドープAlGaInP光ガイド層
17 GaInP活性層
18 p型AlGaInPクラッド層
19 p型GaInPコンタクト層
20 p型GaAsキャップ層
21 リッジ部
22 サポート部
23 n型AlInP層
24 n型GaAs電流ブロック層
25 GaInP層
30 2波長半導体レーザ素子
11 GaAs substrate 12 n-type GaInP buffer layer 13 n-type AlGaInP first cladding layer 14 undoped AlGaInP light guide layer 15 strained quantum well (TQW) active layer 16 undoped AlGaInP light guide layer 17 GaInP active layer 18 p-type AlGaInP cladding layer 19 p Type GaInP contact layer 20 p type GaAs cap layer 21 ridge portion 22 support portion 23 n type AlInP layer 24 n type GaAs current blocking layer 25 GaInP layer 30 two-wavelength semiconductor laser device

Claims (6)

GaAs半導体基板上に少なくとも第1導電型AlGaInPクラッド層、GaInP活性層、第2導電型AlGaInPクラッド層が順次積層され、前記第2導電型AlGaInPクラッド層上に順次積層されたリッジ状の第2導電型AlGaInPクラッド層、第2導電型GaInPコンタクト層及び第2導電型GaAsキャップ層からなるリッジ部を備えた赤色半導体レーザ素子において、前記リッジ部の側面及び第2導電型AlGaInPクラッド層表面は順次積層された第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層で被覆されていることを特徴とする赤色半導体レーザ素子。   At least a first conductivity type AlGaInP cladding layer, a GaInP active layer, and a second conductivity type AlGaInP cladding layer are sequentially stacked on a GaAs semiconductor substrate, and a ridge-shaped second conductivity is sequentially stacked on the second conductivity type AlGaInP cladding layer. In a red semiconductor laser device having a ridge portion comprising a type AlGaInP cladding layer, a second conductivity type GaInP contact layer, and a second conductivity type GaAs cap layer, the side surface of the ridge portion and the surface of the second conductivity type AlGaInP cladding layer are sequentially laminated. A red semiconductor laser device, which is covered with the first conductivity type AlInP layer, the first conductivity type GaAs current blocking layer, and the GaInP layer. 前記GaInP層は、組成がGaxIn(1-x)P(ただし、x=0.42〜0.48)であり、前記第1導電型GaAs電流ブロック層とは格子不整合状態にあることを特徴とする請求項1に記載の赤色半導体レーザ素子。 The GaInP layer has a composition of Ga x In (1-x) P (where x = 0.42 to 0.48) and is in a lattice mismatch state with the first conductivity type GaAs current blocking layer. The red semiconductor laser device according to claim 1. 前記リッジ部の両側には前記リッジ部と同一層構造のサポート部が設けられ、前記サポート部の表面及び前記リッジ部と対向する側の側面も第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層で順次被覆されていることを特徴とする請求項1又は2に記載の赤色半導体レーザ素子。   Support portions having the same layer structure as the ridge portion are provided on both sides of the ridge portion, and the first conductive type AlInP layer and the first conductive type GaAs current are provided on the surface of the support portion and the side surface facing the ridge portion. The red semiconductor laser device according to claim 1, wherein the red semiconductor laser device is sequentially covered with a block layer and a GaInP layer. 少なくとも以下の(1)〜(3)の工程を有することを特徴とする赤色半導体レーザ素子の製造方法。
(1)半導体基板上に少なくとも第1導電型AlGaInPクラッド層、GaInP活性層、第2導電型AlGaInPクラッド層、第2導電型GaInP層、及び、第2導電型GaAs層を連続的に順次積層して赤色ダブルへテロ用積層構造を形成し、次いで、
(2)前記第2導電型AlGaInPクラッド層の途中までリッジ状にエッチングすることにより、順次第2導電型AlGaInPクラッド層、第2導電型GaInPコンタクト層及び第2導電型GaAsキャップ層からなるリッジ部を形成し、さらに、
(3)前記リッジ部の側面及び第2導電型AlGaInPクラッド層の表面に順次第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層を連続的に被覆する。
A method for manufacturing a red semiconductor laser device, comprising at least the following steps (1) to (3):
(1) At least a first conductivity type AlGaInP cladding layer, a GaInP active layer, a second conductivity type AlGaInP cladding layer, a second conductivity type GaInP layer, and a second conductivity type GaAs layer are sequentially and sequentially stacked on a semiconductor substrate. To form a red double hetero laminated structure,
(2) A ridge portion comprising a second conductivity type AlGaInP clad layer, a second conductivity type GaInP contact layer, and a second conductivity type GaAs cap layer by etching in a ridge shape partway through the second conductivity type AlGaInP clad layer. Further,
(3) The first conductivity type AlInP layer, the first conductivity type GaAs current blocking layer, and the GaInP layer are successively coated on the side surface of the ridge portion and the surface of the second conductivity type AlGaInP cladding layer.
前記GaInP層は、組成をGaxIn(1-x)P(ただし、x=0.42〜0.48)とし、前記第1導電型GaAs電流ブロック層と格子不整合状態としたことを特徴とする請求項5に記載の赤色半導体レーザ素子の製造方法。 The GaInP layer has a composition of Ga x In (1-x) P (where x = 0.42 to 0.48) and is in a lattice mismatch state with the first conductivity type GaAs current blocking layer. A method for manufacturing a red semiconductor laser device according to claim 5. 前記(2)の工程において同時に前記リッジ部の両側にサポート部を形成し、前記(3)の工程において前記サポート部の表面及び前記リッジ部と対向する側の側面も同時に順次第1導電型AlInP層、第1導電型GaAs電流ブロック層及びGaInP層を連続的に被覆したことを特徴とする請求項4又は5に記載の赤色半導体レーザ素子の製造方法。

In the step (2), support portions are formed on both sides of the ridge portion at the same time. In the step (3), the surface of the support portion and the side surface facing the ridge portion are also sequentially formed in the first conductivity type AlInP. 6. The method of manufacturing a red semiconductor laser device according to claim 4, wherein the layer, the first conductivity type GaAs current blocking layer, and the GaInP layer are continuously coated.

JP2005147673A 2005-05-20 2005-05-20 Red semiconductor laser element and method of manufacturing the same Pending JP2006324552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147673A JP2006324552A (en) 2005-05-20 2005-05-20 Red semiconductor laser element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147673A JP2006324552A (en) 2005-05-20 2005-05-20 Red semiconductor laser element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006324552A true JP2006324552A (en) 2006-11-30

Family

ID=37543990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147673A Pending JP2006324552A (en) 2005-05-20 2005-05-20 Red semiconductor laser element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006324552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124273A (en) * 2010-12-07 2012-06-28 Rohm Co Ltd Semiconductor laser element
WO2018082214A1 (en) * 2016-11-01 2018-05-11 北京科技大学 Ridge-shaped semiconductor laser active cavity side wall passivation optimization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124273A (en) * 2010-12-07 2012-06-28 Rohm Co Ltd Semiconductor laser element
WO2018082214A1 (en) * 2016-11-01 2018-05-11 北京科技大学 Ridge-shaped semiconductor laser active cavity side wall passivation optimization method

Similar Documents

Publication Publication Date Title
US7045810B2 (en) Monolithic multiple-wavelength laser device and method of fabricating the same
US7539230B2 (en) Semiconductor laser device and method for fabricating the same
US6670643B2 (en) Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus
US20050018733A1 (en) Semiconductor laser device and manufacturing method therefor
KR101020118B1 (en) Monolithic semiconductor laser
KR101020147B1 (en) Monolithic semiconductor laser
JPH11186665A (en) Semiconductor light emitting element
JP2006080307A (en) Semiconductor laser array, its manufacturing method and multiwavelength semiconductor laser device
US6967119B2 (en) Semiconductor laser device and method of fabricating the same
JP2006324552A (en) Red semiconductor laser element and method of manufacturing the same
US7633987B2 (en) Semiconductor laser device and manufacturing method thereof
WO2007032268A1 (en) Semiconductor light emitting element
JP2001320132A (en) Semiconductor laser device array and manufacturing method thereof
US7180925B2 (en) Semiconductor laser device and manufacturing method therefor
JP2002124734A (en) Semiconductor light emitting device and manufacturing method of the same
JP2004296635A (en) Semiconductor laser, its fabricating process, and optical disk drive
JP3872627B2 (en) Multi-beam type semiconductor optical device
JP2003218452A (en) Semiconductor laser device and method of manufacturing the same, and optical disc regeneration and recording device
US20050058170A1 (en) Semiconductor laser element and semiconductor laser element manufacturing method
JP2004158666A (en) Semiconductor laser device and optical disk regenerating recording apparatus
JP3410959B2 (en) Semiconductor laser device and method of manufacturing the same
JP2003309328A (en) Semiconductor laser element and its manufacturing method
JP2007080934A (en) Semiconductor laser
JP2000232255A (en) Semiconductor laser device and manufacture thereof
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it