JPS61185962A - Complementary mos integrated circuit - Google Patents

Complementary mos integrated circuit

Info

Publication number
JPS61185962A
JPS61185962A JP60025456A JP2545685A JPS61185962A JP S61185962 A JPS61185962 A JP S61185962A JP 60025456 A JP60025456 A JP 60025456A JP 2545685 A JP2545685 A JP 2545685A JP S61185962 A JPS61185962 A JP S61185962A
Authority
JP
Japan
Prior art keywords
integrated circuit
layer
diode
diffusion layer
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025456A
Other languages
Japanese (ja)
Inventor
Hitoshi Mitani
三谷 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60025456A priority Critical patent/JPS61185962A/en
Publication of JPS61185962A publication Critical patent/JPS61185962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To improve latch-up resistivity, by providing with a power source voltage controlling circuit on a region insulated from the semiconductor substrate, between the integrated circuit and the power source terminals of the integrated circuit. CONSTITUTION:An N channel MOS transistor consisting of an N<+> diffusion layer 24 formed in a P<-> well, oxide film 18 and gate electrode 25 and a P channel MOS transistor consisting of a P<+> diffusion layer 28 formed in an N<-> substrate 15, oxide film 18 and gate electrode 29 are formed on the principal surface of the N<-> substrate 15. An N layer 23 of a diode is connected to the P<+> diffusion layer 28 and power source pad 12, while the P layer is connected to a polycrystalline silicon layer 31 as a ground wire. In this way, controlling the power source voltage is possible. Moreover, since the voltage controlling circuit is being formed on a region insulated from the semiconductor substrate, the leak current does not trigger latch-up, so that latch-up resistivity can be remarkably increased and a reliable complementary MOS integrated circuit can be provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MOS集積回路に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to complementary MOS integrated circuits.

〔従来の技術〕[Conventional technology]

相補型MOS集積回路(以下、0MOSICという、)
は、消費電力が小さい、動作温度範囲が広い、雑音余裕
度が大きいなどの利点を有する為、近年MOSICに積
極的に採用されている。ところが、電子機器の小型、軽
量化が要求される現在、0MOSICの高集積化に伴う
ラッチアップ現象が、0MOSICを構成する際の解決
すべき重要な問題となっている。
Complementary MOS integrated circuit (hereinafter referred to as 0MOSIC)
has been actively adopted in MOSICs in recent years because it has advantages such as low power consumption, wide operating temperature range, and large noise margin. However, now that electronic devices are required to be smaller and lighter, the latch-up phenomenon that accompanies the high integration of 0MOSCs has become an important problem to be solved when configuring 0MOSCs.

第5図は、0MOSICのラッチアップ現象の説明図で
、0MOS構造と寄生トランジスタ及び配線関係の一例
を示した模式的断面図である。同図において、電源線2
の電位が上昇し、出力信号l113との電位差がP 拡
散層6で形成されるソース−ドレイン間を降伏せしめる
に至ると、発生した降伏電流のN−基板9へのリーク電
流がラッチアップを引き起こすトリガとなる。すなわち
P+拡散層6からのリーク電流が寄生))N、f))ラ
ンジスタ10をオン状態にし、トランジスタ10のコレ
クタ電流の一部が寄生’?’LP%トランジスタ11の
ベース電流となシ、トランジスタ11がオン状態となる
。ここで、トランジスタto、ttは正帰還がかかる様
に接続しているので、両トランジスタはオン状態を保ち
、この結果、電源線2〜P+拡散層6〜N−基板9〜P
−ウェル8〜N 拡散層7〜接地線lの経路に大電流が
流れ続け、この経路間にある配線、接合部が熱破壊する
などの現象が起こる。なお同図において、4.5はゲー
ト電極、8はP−ウェルである。
FIG. 5 is an explanatory diagram of the latch-up phenomenon of the 0MOSIC, and is a schematic cross-sectional view showing an example of the relationship between the 0MOS structure, parasitic transistors, and wiring. In the same figure, power line 2
When the potential of P increases and the potential difference with the output signal l113 causes breakdown between the source and drain formed by the P diffusion layer 6, the leak current of the generated breakdown current to the N substrate 9 causes latch-up. It becomes a trigger. In other words, the leakage current from the P+ diffusion layer 6 turns on the transistor 10 (parasitic))N, f)), and part of the collector current of the transistor 10 becomes parasitic'? 'LP% When the base current of the transistor 11 decreases, the transistor 11 is turned on. Here, since the transistors to and tt are connected so that positive feedback is applied, both transistors remain on, and as a result, the power supply line 2 to P+ the diffusion layer 6 to N- the substrate 9 to P
-Wells 8 to N A large current continues to flow in the path from the diffusion layer 7 to the ground line l, and phenomena such as thermal destruction of the wiring and junctions between these paths occur. In the figure, 4.5 is a gate electrode, and 8 is a P-well.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の様に、従来の0MOSICでは電源電圧の上昇に
よって、ラッチアップ現象が生じ、魁動作や破損を招き
やすいという欠点があった。
As described above, the conventional 0MOSC has the disadvantage that a latch-up phenomenon occurs due to an increase in the power supply voltage, which tends to cause undesirable operation and damage.

従って、本発明の目的は、電源電圧の制御により上記欠
点を除去し、ラッチアップ耐性の高い0MOSICを提
供する事にある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks by controlling the power supply voltage and to provide a 0MOSIC with high latch-up resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の相補型MOS集積回路は、半導体基板上に相補
型MOS)ランジスメによって構成された集積回路と該
集積回路の電源電圧制御回路を有する相補型MOS集積
回路であって、前記集積回路と該集積回路の電源端子の
間に、前記半導体基板と絶縁された領域に設けられた前
記電源電圧制御回路を有している。
A complementary MOS integrated circuit of the present invention is a complementary MOS integrated circuit having an integrated circuit formed by a complementary MOS transistor on a semiconductor substrate and a power supply voltage control circuit for the integrated circuit, The power supply voltage control circuit is provided between power supply terminals of the integrated circuit in a region insulated from the semiconductor substrate.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の要部を示す断面図、第2図
はその回路を示すブロック図である。
FIG. 1 is a sectional view showing a main part of an embodiment of the present invention, and FIG. 2 is a block diagram showing its circuit.

本実施例は、第1図、第2図に示すように1・N−基板
15上[0MOS)ランジスタから構成されたIC14
と、このIC14の電源電圧制御回路としての電圧制御
用ダイオード13を有す0MOSICであって、電圧制
御用ダイオード13が、工CL4と電源バット部12の
間に、N″″基板15とは酸化膜18によって絶縁され
たダイオード部21に設けられていることからなってい
る。ここで電圧制御ダイオード13の制御電圧は、後で
詳しく説明するよう4C1IC14のラッチアップに対
する電源耐圧未満に設定される。又、IC14は第1図
において、N−基板15の一主面上に、P−ウェル16
に形成された、ソース・ドレイン領域としてのN+拡散
層24.酸化膜18.  ゲートを極25とよりなるN
チャネルMOS)ランジスタと、N−基板15に形成さ
れた、ソース・ドレイン領域としてのP+拡散層28.
酸化膜18゜ゲート電極29とよりなるPチャネルMO
S)ランジスタとからなっている。さらに電圧制御用ダ
イオード13は、ダイオード部21に設けられた8層2
3と2層27とからなっている。そしてダイオードの8
層23はアルミニウム層33によって、PチャネルM0
8ト9ンジスタの一方の戸拡散層28及び電源バット部
12に接続され、一方ダイオードのP層は接地線として
の多結晶シリコン層31に接続されている。
In this embodiment, as shown in FIG. 1 and FIG.
This IC 14 is a 0MOSIC having a voltage control diode 13 as a power supply voltage control circuit, and the voltage control diode 13 is located between the circuit CL4 and the power supply bat part 12, and the N'''' substrate 15 is not oxidized. The diode section 21 is insulated by a film 18. Here, the control voltage of the voltage control diode 13 is set to be lower than the power supply breakdown voltage against latch-up of the 4C1 IC 14, as will be explained in detail later. Further, in FIG. 1, the IC 14 has a P-well 16 on one main surface of the N-substrate 15.
The N+ diffusion layer 24. is formed as a source/drain region. Oxide film 18. The gate consists of pole 25 and N
channel MOS) transistor and a P+ diffusion layer 28 as a source/drain region formed on the N- substrate 15.
P-channel MO consisting of oxide film 18° and gate electrode 29
S) consists of a transistor. Furthermore, the voltage control diode 13 has eight layers 2 provided in the diode section 21.
3 and two layers 27. and diode 8
Layer 23 is formed by aluminum layer 33 to provide P-channel M0
The diode is connected to the diffusion layer 28 and the power supply batt part 12 of one of the 8 transistors, and the P layer of the diode is connected to the polycrystalline silicon layer 31 as a ground line.

次に、本実施例の製造方法について説明する。Next, the manufacturing method of this example will be explained.

第3図(a)〜(d)は、本発明の一実施例の製造工程
における断面図である。
FIGS. 3(a) to 3(d) are cross-sectional views in the manufacturing process of an embodiment of the present invention.

第3図(a)はatの多結晶シリコン層19までを従来
の積層方法と同様に形成したものである。すなわち、1
0Ω・CmのN−基板15上に100KeVで8XIQ
  cm  のポロンを注入し、1200℃、Nz0z
雰囲気10時間の熱処理によ、9P−ウェル16を形成
し、1000℃、 H,O,雰囲気で膜厚9500人の
素子分離用の酸化膜17を形成し、更にtooo℃、H
2O2雰囲気で膜厚500人のゲート部酸化膜18を形
成した上で、層厚soo。
In FIG. 3(a), layers up to the at polycrystalline silicon layer 19 are formed in the same manner as in the conventional lamination method. That is, 1
8XIQ at 100KeV on N-substrate 15 of 0Ω・Cm
Poron of cm was injected, 1200℃, Nz0z
A 9P-well 16 is formed by heat treatment in an atmosphere for 10 hours, and an oxide film 17 for element isolation with a thickness of 9500 mm is formed in an H, O atmosphere at 1000°C, and further heated at too much°C and H
After forming the gate oxide film 18 with a thickness of 500 mm in a 2O2 atmosphere, a layer thickness of soo.

人の第1の多結晶シリコン層19を形成する。A first polycrystalline silicon layer 19 is formed.

第3図の)は酸化膜上のダイオード部21の多結晶シリ
コン層を再結晶化し単結晶シリコン層を形成した状態の
断面図である。再結晶化の方法は、まず第3図(a)の
チップ上に膜厚1000人のプラズマCVD酸化膜2o
を形成し、次に1ダイオ一ド部21に対して、30 K
eV、直径90 μmの連続発振電子ビームを12cm
/秒の速度で70チの照射重複をとシ走査する。
3) is a cross-sectional view of the state in which the polycrystalline silicon layer of the diode portion 21 on the oxide film is recrystallized to form a single crystal silicon layer. The method of recrystallization is to first deposit a plasma CVD oxide film 200 nm thick on the chip shown in Figure 3(a).
Then, for one diode part 21, 30K
eV, continuous wave electron beam with a diameter of 90 μm at 12 cm
The irradiation overlap of 70 inches is scanned at a speed of 1/sec.

第3図(C)はダイオード部21ON層23、及び1拡
散層24を形成した状態の断面図である。第3図Φ)の
酸化膜20をエツチング除去した後、Pチャネルのトラ
ンジスタ部をレジスト22でマスクして、9QKeVで
5xlQcm  のヒ素を注入する。
FIG. 3(C) is a cross-sectional view of the diode section 21 with the ON layer 23 and one diffusion layer 24 formed. After removing the oxide film 20 shown in FIG. 3 Φ) by etching, the P-channel transistor section is masked with a resist 22, and arsenic of 5xlQcm 2 is implanted at 9QKeV.

第3図(d)H、タイオード部21CJP層27、及び
P 拡散層28を形成した状態の断面図である。
FIG. 3(d)H is a sectional view of the diode portion 21CJP layer 27 and P diffusion layer 28 formed.

纂3図(C)のレジスト22を除去した後、yrたにレ
ジスト26でダイオード部21の8層23及びNチャネ
ルのトランジスタ部をマスクして、50KeVで6 X
 1015cm ”のボロンを注入する。
After removing the resist 22 shown in Figure 3 (C), mask the 8 layers 23 of the diode section 21 and the N-channel transistor section with a yr resist 26, and conduct 6X at 50 KeV.
Inject 1015 cm of boron.

次に、8g3図(d)のレジスト26を除去した後、ま
ず膜厚5000人の酸化膜3oを形成し、ダイオード部
21の2層27、及びN+拡散層24と、接地線となる
第2の多結晶シリコン層31間のコンタクト穴を設ける
。次に、層厚3000 Aの第2の多結晶シリコン層3
1i形成し、1oOKeVで6XlOcm   のリン
を注入した後ダイオード部21の8層23.N+拡散層
24.及びP+拡散層28とアルミニウム層33間のコ
ンタクト穴を設ける。更K、層厚1.0μmのアルミニ
ウム層33を形成することKより、第1図に示す実施例
が得られる。
Next, after removing the resist 26 shown in FIG. 8G3(d), an oxide film 3o with a thickness of 5000 is formed, and the second layer 27 of the diode part 21 and the N+ diffusion layer 24 and the second A contact hole is provided between the polycrystalline silicon layers 31. Next, a second polycrystalline silicon layer 3 with a layer thickness of 3000 A is formed.
After forming 8 layers 23.1i of the diode part 21 and implanting phosphorus of 6XlOcm2 at 1oOKeV. N+ diffusion layer 24. And a contact hole is provided between the P+ diffusion layer 28 and the aluminum layer 33. Further, by forming an aluminum layer 33 with a layer thickness of 1.0 μm, the embodiment shown in FIG. 1 is obtained.

第4図はP−N型ダイオードの電圧、電流特性図である
。ダイオードの降伏特性は、自身の不純物濃度が増すに
従ってBからAの方向に変化する。
FIG. 4 is a voltage and current characteristic diagram of a PN type diode. The breakdown characteristics of the diode change from B to A as its impurity concentration increases.

ここでダイオード部21の8層23.2層27の不純物
密度忙関しては、ラッチアップに対する電源耐圧35、
最大定格における電源電圧最大値38V一対し、逆方向
の動抵抗による電圧降下分36.39の余裕をとった値
37.40の間で逆電圧降伏する様にヒ素、及びボロン
の注入量が設定されているものとする。
Regarding the impurity density of the 8 layers 23 and 2 layers 27 of the diode section 21, the power supply withstand voltage 35 against latch-up,
The amount of arsenic and boron implanted is set so that the reverse voltage breakdown occurs between the maximum power supply voltage of 38 V at the maximum rating and a value of 37.40, which is a margin of 36.39 for the voltage drop due to dynamic resistance in the reverse direction. It is assumed that

以上の様に形成された本実施例のチップにおいては、外
来の過大電圧が電源パッド部12に印加された場合、電
源線としてのアルミニウム層33は高電位となるが、か
かる電源線と接地線としての第2の多結晶シリコン層3
1間に接続されている単結晶シリコン層からなる8層2
3,2層27によって構成されるダイオードが0MOS
ICの戸拡散層28に対して電源線−接地線間の電気的
なバイパス回路をなしていて、電源線−接地線間に印加
される降伏電圧以上の電圧分をリミットする為、P 拡
散層28にはラッチアップ電源耐圧以上の電圧が印加さ
れない。又、このリミット効果の際、電流がアルミニウ
ム層33からダイオード部21の8層23,2層27を
通って第2の多結晶シリコン層31に流れる事によシ、
P+拡散層28に印加される電圧が下降して%CMOS
ICの動作に支障をきたす事がないのは、第4図のダイ
オードの降伏特性より明らかである。更忙、かかるダイ
オード部21は、酸化膜17.18によ)N−基板15
と絶縁されているので、降伏電流、及び降伏電流のリー
クがラッチアップのトリガ要因となる事はない。
In the chip of this embodiment formed as described above, when an external excessive voltage is applied to the power supply pad section 12, the aluminum layer 33 serving as the power supply line becomes at a high potential; second polycrystalline silicon layer 3 as
8 layers consisting of single crystal silicon layers connected between 1 and 2
The diode composed of the 3 and 2 layers 27 is 0MOS
The P diffusion layer forms an electrical bypass circuit between the power supply line and the ground line for the IC diffusion layer 28, and limits the voltage applied between the power supply line and the ground line that exceeds the breakdown voltage. A voltage higher than the latch-up power supply breakdown voltage is not applied to 28. Also, during this limit effect, current flows from the aluminum layer 33 to the second polycrystalline silicon layer 31 through the 8th layer 23 and 2nd layer 27 of the diode section 21.
The voltage applied to the P+ diffusion layer 28 decreases and the %CMOS
It is clear from the breakdown characteristics of the diode shown in FIG. 4 that there is no problem with the operation of the IC. Furthermore, such a diode section 21 is formed by an oxide film 17, 18) on an N-substrate 15.
Therefore, breakdown current and leakage of breakdown current will not trigger latch-up.

〔発明の効果〕〔Effect of the invention〕

以上、詳細説明したとおり、本発明によれば半導体基板
上の集積回路にラッチアップ耐圧以上の外来の過大電圧
を加えない様に電源電圧の制御が出来、又、電圧制御回
路が、半導体基板と絶縁された領域に設けられているの
で、電圧制御回路からのリーク電流がラッチアップのト
リガとなる事もない。従って、ラッチアップ耐性が著し
く向上し、今日の高集積化の要求に応じた信頼性の高い
相補型MOS集積回路を得る事ができる。
As described in detail above, according to the present invention, the power supply voltage can be controlled so as not to apply external excessive voltage exceeding the latch-up withstand voltage to the integrated circuit on the semiconductor substrate, and the voltage control circuit can be connected to the integrated circuit on the semiconductor substrate. Since it is provided in an insulated area, leakage current from the voltage control circuit will not trigger latch-up. Therefore, latch-up resistance is significantly improved, and a highly reliable complementary MOS integrated circuit that meets today's demands for high integration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図は本発明の一実施例を示す断面図、第2図はその
回路を示すブロック図、第3図(a)〜(d)はその製
造方法を示す主要工程忙おける断面図、第4図はダイオ
ードの電圧、電流特性図、第5図は相補型MOS集積回
路のラッチアップ現象の説明図である。 12・・・・・・電源バット部、13・・・・・・電圧
制御用ダイオード、14・・・・・・集積回路、15・
・・・・・N−基板、16・・・・・・P−ウェル、1
7.18・・団・酸化膜、19・・・・・・多結晶シリ
コン層、20・旧・・酸化膜、21・・・・・・ダイオ
ード部、22・山・・レジスト% 23・・・・・・N
層、24・・・・・・N 拡散層、25・・・・・・ゲ
ート電極、26・・・・・・レジスト、27・・・・・
・P/it、28・・・・・°P 拡散層、29・・・
・・・ゲート電極、30・・・・・・酸化膜、31・・
・・・・多結晶シリコン層、32・・・・・・酸化膜、
33・・・・・・アルミニウム層。 “噸2′卿バ・ツ上゛嵌P 予2TiJ
Figure M1 is a cross-sectional view showing one embodiment of the present invention, Figure 2 is a block diagram showing its circuit, Figures 3 (a) to (d) are cross-sectional views showing the main steps of the manufacturing method, and Figure 4 is a cross-sectional view showing an embodiment of the present invention. The figure is a voltage and current characteristic diagram of a diode, and FIG. 5 is an explanatory diagram of a latch-up phenomenon in a complementary MOS integrated circuit. 12...Power supply bat part, 13...Voltage control diode, 14...Integrated circuit, 15.
...N-substrate, 16...P-well, 1
7.18... group oxide film, 19... polycrystalline silicon layer, 20... old oxide film, 21... diode part, 22... mountain... resist% 23... ...N
Layer, 24...N Diffusion layer, 25...Gate electrode, 26...Resist, 27...
・P/it, 28...°P Diffusion layer, 29...
...Gate electrode, 30...Oxide film, 31...
... Polycrystalline silicon layer, 32 ... Oxide film,
33...Aluminum layer. ``噸2'Kyoba Tsuge゛InsertP YO2TiJ

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に相補型MOSトランジスタによって構
成された集積回路と該集積回路の電源電圧制御回路を有
する相補型MOS集積回路であって、前記電源電圧制御
回路を、前記集積回路と該集積回路の電源端子の間に、
前記半導体基板と絶縁された領域に設けたことを特徴と
する相補型MOS集積回路。
A complementary MOS integrated circuit comprising an integrated circuit formed of complementary MOS transistors on a semiconductor substrate and a power supply voltage control circuit for the integrated circuit, the power supply voltage control circuit being connected to the integrated circuit and the power supply for the integrated circuit. between the terminals,
A complementary MOS integrated circuit, characterized in that it is provided in a region insulated from the semiconductor substrate.
JP60025456A 1985-02-13 1985-02-13 Complementary mos integrated circuit Pending JPS61185962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025456A JPS61185962A (en) 1985-02-13 1985-02-13 Complementary mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025456A JPS61185962A (en) 1985-02-13 1985-02-13 Complementary mos integrated circuit

Publications (1)

Publication Number Publication Date
JPS61185962A true JPS61185962A (en) 1986-08-19

Family

ID=12166528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025456A Pending JPS61185962A (en) 1985-02-13 1985-02-13 Complementary mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS61185962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294670A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376677A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS53105985A (en) * 1977-02-28 1978-09-14 Nec Corp Conmplementary-type insulating gate field effect transistor
JPS5429984A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Protector for semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376677A (en) * 1976-12-17 1978-07-07 Nec Corp Semiconductor device
JPS53105985A (en) * 1977-02-28 1978-09-14 Nec Corp Conmplementary-type insulating gate field effect transistor
JPS5429984A (en) * 1977-08-10 1979-03-06 Hitachi Ltd Protector for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294670A (en) * 2006-04-25 2007-11-08 Toyota Motor Corp Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3608456B2 (en) Manufacturing method of SOI structure MIS field effect transistor
JP3589102B2 (en) SOI structure MOS field effect transistor and method of manufacturing the same
JP3039967B2 (en) Semiconductor device
US5966599A (en) Method for fabricating a low trigger voltage silicon controlled rectifier and thick field device
US5751042A (en) Internal ESD protection circuit for semiconductor devices
JPH07183500A (en) Insulated gate type field effect transistor
US6133078A (en) Method for manufacturing a semiconductor device having an ESD protection region
JPH03214666A (en) Semiconductor device containing charge transfer device and manufacture thereof
JP2002134752A (en) Semiconductor device
JPH04259259A (en) Mis transistor for thin film soi structure
JPS62213272A (en) Semiconductor device
JPH04234162A (en) High-reliability semiconductor device
JPS61185962A (en) Complementary mos integrated circuit
JP2882309B2 (en) Input protection circuit and method of manufacturing semiconductor integrated circuit device
JPH0783113B2 (en) Semiconductor device
JPH08316335A (en) Semiconductor device and fabrication thereof
JPH0241910B2 (en)
JPH11289056A (en) Input protection circuit and its manufacturing method
EP0281032B1 (en) Semiconductor device comprising a field effect transistor
JP2001298195A (en) Mos transistor
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPS6043027B2 (en) Method for manufacturing integrated circuit device using complementary field effect transistors
JPH0319276A (en) Cmos semiconductor device
JPH05872B2 (en)
JPH02284460A (en) Semiconductor device