JPS61184879A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61184879A
JPS61184879A JP60024745A JP2474585A JPS61184879A JP S61184879 A JPS61184879 A JP S61184879A JP 60024745 A JP60024745 A JP 60024745A JP 2474585 A JP2474585 A JP 2474585A JP S61184879 A JPS61184879 A JP S61184879A
Authority
JP
Japan
Prior art keywords
channel
region
relative
width
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60024745A
Other languages
Japanese (ja)
Inventor
Yoshitomo Asakura
朝倉 善智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60024745A priority Critical patent/JPS61184879A/en
Publication of JPS61184879A publication Critical patent/JPS61184879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form an effective checking element of a part wherein the relative accuracy of each process poses problems, by changing the width of an ion implanting region to the channel region of a transistor along the longitudinal direction of the channel. CONSTITUTION:In a checking element, which is simultaneously formed together with a memory element, an area, where a gate electrode 1 of the checking element and ion implanting regions 2a and 2b are overlapped, is changed. This is caused by relative position relationship, which is a problem of poor ion implantation region in the capacitor part of a capacitor-part counter electrode 11 of the memory element. Therefore the effective channel width is changed. By measuring a channel current, correlation with respect to the relative position relationship is obtained. Thus defects due to relative errors in a plurality of processes including alignining and etching accuracy, whose clarification has been difficult, can be checked simply. Feedback to the manufacturing processes can be quickly performed, and extensive contribution to the stability of yield rates can be accomplished.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特に半導体集積回路の
製造工程のチェック用の素子の構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and particularly to the structure of an element for checking the manufacturing process of a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路の製造工程チェック用の素子とし
て単純な単体のトランジスタや、ノギスの測定原理(主
尺の9目盛t−10等分した副尺を用いて主尺の1目盛
の1/10’で測定できる)K基づいた各7オトリソグ
ラフイエ程の目合わせずれを検出するパターン等が用い
られてきた。
Conventionally, simple single transistors have been used as elements for checking the manufacturing process of semiconductor integrated circuits, and the measurement principle of calipers (using a vernier scale divided into 9 scales of the main scale by 10 equal parts, 1/10 of 1 scale of the main scale is used) A pattern for detecting misalignment of about 7 otolithographic layers based on K (which can be measured by ') has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら近年の集積度の増大、素子の微細化に伴な
い、個別のチェック素子では検出すべき物理量も微小と
なり、特に複数の工程がからみ合う特性が問題となると
き、例えば、ダイナミックメモリ等のメモリセル部など
では容量部のイオン注入工程の目合わせ、容量部対向電
極形成工程の目合わせ及び容量部対向電極のエツチング
の相対精度が特性に影響を与えるが、これらは全てサブ
ミクロンオーダーの精度が要求されておシ、これらをそ
れぞれの工程の個別のチェック素子で検出するのは非常
に困難である欠点があった。
However, with the recent increase in the degree of integration and miniaturization of elements, the physical quantities that must be detected by individual check elements have also become minute. In cell parts, etc., the relative precision of the ion implantation process of the capacitive part, the alignment of the capacitive part counter electrode formation process, and the relative accuracy of the etching of the capacitive part counter electrode affect the characteristics, but all of these have submicron-order precision. However, there is a drawback that it is very difficult to detect these with individual check elements in each process.

本発明は上記の欠点を除去した半導体集積回路のチェッ
ク素子、特にダイナミックメモリのメモリセル等の容量
部の様に各工程の相対精度が問題となる部分の効果的な
チェック素子を提供すること金目的とする。
The present invention aims to provide a check element for a semiconductor integrated circuit which eliminates the above-mentioned drawbacks, and particularly an effective check element for parts where the relative accuracy of each process is a problem, such as the capacitive part of a memory cell of a dynamic memory. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路は、内部素子と同時に形成され
る製造工程チェック用の電界効果型トランジスタにおい
て、前記トランジスタのチャンネル領域へのイオン注入
領域の幅を前記チャンネルの長さ方向く沿って変化させ
て構成している。
In the semiconductor integrated circuit of the present invention, in a field effect transistor for checking the manufacturing process formed simultaneously with internal elements, the width of the ion implantation region into the channel region of the transistor is varied along the length direction of the channel. It is composed of

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(al 、 (bl乃至第4図は本発明の一実施
例の説明図で第3図1al 、 lblは本発明のチェ
ック素子の正常時の平面図及びその断面図、第2図は正
常なメモリセルの断面図、また第3図(al 、 (b
)はずれが生じた場合のチェック素子の平面図及びその
断面図、第4図はずれを生じた場合のメモリセルの断面
図である。
Figures 1 (al, (bl) to Figure 4 are explanatory diagrams of one embodiment of the present invention, Figure 3 (1al and lbl) are a plan view and a cross-sectional view of the check element of the present invention when it is normal, and Figure 2 is a diagram illustrating an embodiment of the present invention. A cross-sectional view of a normal memory cell, and FIG. 3 (al, (b)
) is a plan view and a cross-sectional view of the check element when misalignment occurs, and FIG. 4 is a cross-sectional view of the memory cell when misalignment occurs.

第2図、第4図において11はメモリセルの容量部対向
電極であり、これに対し第1図、第3図における1はメ
モリセルの容量部対向電極と同時く形成されたチェック
用素子のゲート電極である。
In FIGS. 2 and 4, reference numeral 11 is the capacitive part counter electrode of the memory cell, whereas in FIGS. 1 and 3, 1 is a check element formed at the same time as the capacitive part counter electrode of the memory cell. This is the gate electrode.

また第2図、第4図の12a 、12bはメモリセルの
容量部イオン注入領域であり、これに対し第1図、第3
図の2a、2bは容量部イオン注入領域12a、12b
とそれぞれ同時に形成されたチェック素子のイオン注入
領域である。同様に3,4゜及び14は同時に形成され
たチェック素子及びメモリセルのソース及びドレイン領
域である。
Further, 12a and 12b in FIGS. 2 and 4 are the ion-implanted regions of the capacitive part of the memory cell.
2a and 2b in the figure are capacitive part ion implantation regions 12a and 12b.
and the ion implantation regions of the check elements formed at the same time. Similarly, 3, 4° and 14 are the check element and the source and drain regions of the memory cell formed at the same time.

第2図は前述したように正常に形成されたメモリ素子の
断面図であるが、図において16で示したチャンネル領
域は、容量部対向電極11の目合わせ及びエツチング精
度及び容量部イオン注入領域12aの目合わせ精度によ
り長さが変化し、電気的特性に変化を与えるが、極趨な
場合には第4図に示すようにゲート電極15に対して容
量部が離れて離間領域17t−生じてしまい、チャンネ
ルが形成できなくなり電気的特性不良となるおそれがあ
る。
FIG. 2 is a cross-sectional view of a normally formed memory element as described above, and the channel region indicated by 16 in the figure is determined by the alignment and etching accuracy of the capacitive part counter electrode 11 and the capacitive part ion-implanted region 12a. The length changes depending on the alignment accuracy of the gate electrode, which changes the electrical characteristics, but in extreme cases, as shown in FIG. As a result, a channel cannot be formed, which may result in poor electrical characteristics.

これに対し本発明でメモリ素子と同時に形成したチェッ
ク素子では、メモリ素子の容量部対向電極11の容量部
イオン注入領域の上記不良で問題となる相対的位置関係
により、チェック素子のゲート電極1とイオン注入領域
2a、2bの重なる領域が変化する為、実効的なチャン
ネル幅が変化し、チャンネル電流を測定するととくよシ
、上記相対的位置関係との相関が得られる。
On the other hand, in the check element formed at the same time as the memory element according to the present invention, the relative positional relationship between the gate electrode 1 of the check element and the capacitor ion-implanted region of the capacitor counter electrode 11 of the memory element, which is problematic due to the defect described above, is Since the overlapping region of the ion implantation regions 2a and 2b changes, the effective channel width changes, and when the channel current is measured, a correlation with the above-mentioned relative positional relationship can be obtained.

第5図は本発明のチェック素子の他の実施例の平面図で
あり、チェック素子のイオン注入領域の幅のチャンネル
の長さ方向の変化率を大にしたもので、このようKする
ことにより測定の感度を容易に上げることができる。
FIG. 5 is a plan view of another embodiment of the check element of the present invention, in which the rate of change of the width of the ion-implanted region of the check element in the length direction of the channel is increased. Measurement sensitivity can be easily increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、従来解明が困難
であった目合わせ精度エツチング精度を含む複数工程の
相対誤差による不良が簡単にチェックでき、製造工程へ
のフィードバックが迅速に行なわれ歩留の安定に多大の
寄与をすることが可能となる。
As explained above, according to the present invention, defects caused by relative errors in multiple processes, including alignment accuracy and etching accuracy, which were difficult to identify in the past, can be easily checked, and feedback to the manufacturing process can be quickly provided, resulting in improved yield. This makes it possible to make a significant contribution to the stability of

【図面の簡単な説明】[Brief explanation of drawings]

第1図+り 、 lbl乃至第4図は本発明の一実施例
の説明図で、第1図(al 、 (blはチェック素子
の正常時の平面図及びその断面図、第2図は正常なメモ
リセルの断面図、また第3図1al 、 (blはずれ
が生じた場合のチェック素子の平面図及びその断面図、
第4図はずれを生じた場合のメモリセルの断面図であり
、第5図は本発明のチェック素子の他の実施例の平面図
である。 1・・・・・・チェック素子のゲート電極、2a、2b
・・・・・・イオン注入領域、3・・・・・・ソース領
域、4・・・・・・ドレイン領域、11・・・・・・容
量部対向電極、12a。 12b・・・・・・容量部イオン注入領域、14・・・
・・・ドレイン領域、15・・・・・・ゲート電極、1
6・・・・・・チャンネル領域、17・・・・・・離間
領域、22・・・・・・イオン注入領域。 代理人 弁理士  内 原   晋・、、、’、::、
j)“亭)¥1@ !サー)霞樹 榮3侶 =1 華夕瓢 、22
Figures 1 and 4 are explanatory diagrams of one embodiment of the present invention, in which Figures 1 and 4 are a plan view and a sectional view of the check element when it is in normal condition, and Figure 2 is its sectional view when it is in normal condition. A cross-sectional view of a memory cell, and FIG.
FIG. 4 is a cross-sectional view of the memory cell in the case where misalignment occurs, and FIG. 5 is a plan view of another embodiment of the check element of the present invention. 1... Gate electrode of check element, 2a, 2b
.... Ion implantation region, 3 .... Source region, 4 .... Drain region, 11 ... Capacitive part counter electrode, 12a. 12b... Capacitive part ion implantation region, 14...
...Drain region, 15...Gate electrode, 1
6... Channel region, 17... Separation region, 22... Ion implantation region. Agent: Susumu Uchihara, patent attorney...',::,
j) “Tei) ¥1 @! Sir) Kasumi Juei 3 = 1 Hana Yuhyo, 22

Claims (1)

【特許請求の範囲】[Claims] 内部素子と同時に形成される製造工程チェック用の電界
効果型トランジスタにおいて、前記トランジスタのチャ
ンネル領域へのイオン注入領域の幅が前記チャンネルの
長さ方向に沿って変化していることを特徴とする半導体
集積回路。
A field effect transistor for manufacturing process checking that is formed simultaneously with internal elements, characterized in that the width of an ion implantation region into a channel region of the transistor changes along the length direction of the channel. integrated circuit.
JP60024745A 1985-02-12 1985-02-12 Semiconductor integrated circuit Pending JPS61184879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024745A JPS61184879A (en) 1985-02-12 1985-02-12 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024745A JPS61184879A (en) 1985-02-12 1985-02-12 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61184879A true JPS61184879A (en) 1986-08-18

Family

ID=12146677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024745A Pending JPS61184879A (en) 1985-02-12 1985-02-12 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61184879A (en)

Similar Documents

Publication Publication Date Title
US5627083A (en) Method of fabricating semiconductor device including step of forming superposition error measuring patterns
US3808527A (en) Alignment determining system
US6716653B2 (en) Mask alignment structure for IC layers
US5898228A (en) On-chip misalignment indication
KR100242503B1 (en) Misregistration detecting marks for pattern formen on semiconductor substrate
JPS61184879A (en) Semiconductor integrated circuit
US6623996B2 (en) Method of measuring contact alignment in a semiconductor device including an integrated circuit
KR100357691B1 (en) Multilayer align key and align method using the same
JP2587614B2 (en) Semiconductor device
KR0149221B1 (en) Photo mask for fabricating semiconductor
JPH0230173B2 (en)
JPS61224429A (en) Alignment deviation detecting device for semiconductor device
JPS5953702B2 (en) How to measure the specifications of field effect transistors
KR100265827B1 (en) Layout accuracy measuring method for reticle
CN116560197A (en) Test structure and measurement method for measuring overlay error
JPS6348420B2 (en)
KR960001466Y1 (en) Chip magnification rate of exposure device
JPS62190750A (en) Semiconductor device
KR100542692B1 (en) Overlap Error Mark
JPH0523490B2 (en)
JP2839469B2 (en) Pattern for measuring mask misalignment and method for measuring the same
JPH025445A (en) Measuring method for pattern alignment deviation
KR20000042843A (en) Forming method of overlay measuring pattern of semiconductor device
KR100226469B1 (en) Vernier for measuring misalign
JPH02273914A (en) Mask alignment in photolithography