JPH0230173B2 - - Google Patents

Info

Publication number
JPH0230173B2
JPH0230173B2 JP61116652A JP11665286A JPH0230173B2 JP H0230173 B2 JPH0230173 B2 JP H0230173B2 JP 61116652 A JP61116652 A JP 61116652A JP 11665286 A JP11665286 A JP 11665286A JP H0230173 B2 JPH0230173 B2 JP H0230173B2
Authority
JP
Japan
Prior art keywords
conductive film
pattern
layer
patterns
vernier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61116652A
Other languages
Japanese (ja)
Other versions
JPS62273724A (en
Inventor
Hidemi Ishiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61116652A priority Critical patent/JPS62273724A/en
Publication of JPS62273724A publication Critical patent/JPS62273724A/en
Publication of JPH0230173B2 publication Critical patent/JPH0230173B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置の製造に際してフオトリ
ソグラフイのためのマスク合わせの精度を評価す
るために半導体ウエハに形成されるマスク合わせ
精度評価用バーニアパターンに関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a mask formed on a semiconductor wafer in order to evaluate the precision of mask alignment for photolithography during the manufacture of semiconductor devices. Concerning vernier patterns for evaluating alignment accuracy.

(従来の技術) 従来の半導体ウエハにおいて、形成しようとす
る素子の回路パターンとは別にフオトリソグラフ
イのためのマスク合わせの精度を製造工程の途中
で評価するために用いられるマスク合わせ精度評
価用バーニアパターンが形成される。このバーニ
アパターンとして各種のものが知られているが、
そのうちの1つとして2回のフオトリソグラフイ
によつてそれぞれ形成される回路パターン用導電
膜と同時に形成される二層構造のバーニアパター
ンが文献(Digest of Technical Papers.1984
Symposium on VLSI Technology、P.62〜63、
特にP.63のFigure 1)に示されてある。このバ
ーニアパターンの平面図を第5図aに、そのB−
B′線に沿う断面図を第5図bに示す。即ち、5
1は半導体基板、52は上記基板51上の絶縁
膜、L1およびL2は上記絶縁膜52中にバーニ
アパターンとして形成された第1層導電膜および
第2層導電膜である。この場合、第1層導電膜L
1はそれぞれ方形の複数個の導電膜パターン53
……が一定ピツチP1で横方向に配列されるよう
に形成されており、第2層導電膜L2はそれぞれ
方形の複数個の導電膜パターン54が上記一定ピ
ツチP1とは異なる一定ピツチP2で横方向に配列
されている。したがつて、第1層の導電膜パター
ン53……と第2層の導電膜パターン54……と
の各対応するパターン相互間での電気的接触の有
無を導通試験により測定した結果をマスク合わせ
ずれが生じていない状態において得られるべき導
通状態と対比することによつて、マスク合わせず
れの有無とか程度の検出が可能になる。この場
合、上記のようなバーニアパターンを半導体ウエ
ハ上のX方向およびY方向にそれぞれ設けておく
ことによつて、上記X方向およびY方向における
マスク合わせずれの状態検出が可能になる。
(Prior Art) A vernier for evaluating mask alignment accuracy is used in conventional semiconductor wafers to evaluate the accuracy of mask alignment for photolithography during the manufacturing process, separately from the circuit pattern of the element to be formed. A pattern is formed. Various types of vernier patterns are known, but
One of them is a two-layer Vernier pattern that is formed simultaneously with a conductive film for a circuit pattern formed by two photolithography processes (Digest of Technical Papers. 1984).
Symposium on VLSI Technology, P.62-63,
This is especially shown in Figure 1) on page 63. The plan view of this vernier pattern is shown in Fig. 5a, and its B-
A sectional view taken along line B' is shown in FIG. 5b. That is, 5
1 is a semiconductor substrate, 52 is an insulating film on the substrate 51, and L1 and L2 are a first layer conductive film and a second layer conductive film formed in the insulating film 52 as a vernier pattern. In this case, the first layer conductive film L
1 is a plurality of rectangular conductive film patterns 53;
... are arranged in the lateral direction at a constant pitch P1 , and the second layer conductive film L2 has a plurality of rectangular conductive film patterns 54 arranged at a constant pitch P different from the above-mentioned constant pitch P1. 2 arranged horizontally. Therefore, the results of conducting a continuity test to determine the presence or absence of electrical contact between the corresponding patterns of the first-layer conductive film pattern 53 and the second-layer conductive film pattern 54 are used for mask alignment. By comparing this with the conduction state that should be obtained in a state where no misalignment occurs, it becomes possible to detect the presence or absence of mask alignment misalignment and the extent of the misalignment. In this case, by providing vernier patterns such as those described above in the X and Y directions on the semiconductor wafer, it becomes possible to detect mask misalignment in the X and Y directions.

しかし、上記バーニアパターンにあつては、合
わせずれの検出精度が第1層の導電膜パターン5
3……のピツチP1と第2層の導電膜パターン5
4……のピツチP2との差(たとえば0.1μm)で決
まるので、近年の合わせ精度に対する厳しい要求
に対応しきれない。そこで、この要求に対応し得
るように上記ピツチ差をより小さくすることが考
えられるが、これに伴つて合わせずれの検出を可
能とするためには各層の導電膜パターンのパター
ン数を増やす必要が生じるので、半導体ウエハ上
のバーニアパターンの占有面積が大きくなり、ウ
エハの利用効率が低下する。
However, in the case of the vernier pattern described above, the detection accuracy of misalignment is limited to the conductive film pattern 5 of the first layer.
3 Pitch P 1 and second layer conductive film pattern 5
Since it is determined by the difference (for example, 0.1 μm) from the pitch P 2 of 4..., it cannot meet the recent strict demands for alignment accuracy. Therefore, in order to meet this requirement, it is possible to reduce the above pitch difference, but it is necessary to increase the number of conductive film patterns in each layer in order to make it possible to detect misalignment. As a result, the area occupied by the vernier pattern on the semiconductor wafer becomes large, and the wafer utilization efficiency decreases.

なお、前記バーニアパターンにおいて、配列中
心部の両側で第1層導電膜に対する第2層導電膜
の位置ずれの方向が異なるように形成されてい
る。これは、第1層導電膜形成時における方形パ
ターン幅の変動あるいは第2層導電膜形成時にお
ける方形パターン幅の変動によつて生じる二層導
電膜間の接触状態の変動と、前記マスク合わせず
れによつて生じた二層導電膜間の接触状態の変動
とで検出結果に差が生じるようにするためになさ
れており、これによつてマスク合わせずれの正確
な検出が可能になつている。
Note that the vernier pattern is formed such that the direction of displacement of the second layer conductive film with respect to the first layer conductive film is different on both sides of the array center portion. This is due to variations in the contact state between the two-layer conductive films caused by variations in the rectangular pattern width when forming the first-layer conductive film or variations in the rectangular pattern width when forming the second-layer conductive film, and the mask alignment deviation. This is done in order to cause a difference in the detection results due to the variation in the contact state between the two-layer conductive films caused by this, thereby making it possible to accurately detect mask misalignment.

(発明が解決しようとする問題点) 本発明は上記したようにマスク合わせずれの検
出精度が低いという問題点を解決すべくなされた
もので、マスク合わせずれの検出精度が高くな
り、しかも二層導電膜のパターン数を増やす必要
がなく半導体ウエハ上の占有面積が小さくて済む
マスク合わせ精度評価用バーニアパターンを提供
することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the problem that the detection accuracy of mask misalignment is low as described above. It is an object of the present invention to provide a vernier pattern for evaluating mask alignment accuracy that does not require an increase in the number of conductive film patterns and occupies a small area on a semiconductor wafer.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明のマスク合わせ精度評価用バーニアパタ
ーンは、半導体基板上の絶縁膜中に第1層導電膜
として一定形状の複数個の導電膜パターンを一定
ピツチで横方向に配列させて形成し、第2層導電
膜として一定形状の複数個の導電膜パターンを上
記ピツチとは異なる一定ピツチで横方向に配列さ
せると共に上記第1層導電膜に対向させて形成し
てなることを特徴とする。
(Means for Solving the Problems) The vernier pattern for evaluating mask alignment accuracy of the present invention is a method in which a plurality of conductive film patterns having a constant shape are arranged horizontally at a constant pitch as a first layer conductive film in an insulating film on a semiconductor substrate. A plurality of conductive film patterns having a fixed shape are arranged in the horizontal direction at a fixed pitch different from the pitch as the second layer conductive film, and are formed to face the first layer conductive film. It is characterized by being

(作用) 上記のように形成された二層導電膜の上下で対
向する各組の導電膜パターン間の容量は、各組の
導電膜パターンの対向面積に比例し、この対向面
積は上記導電膜パターンの配列方向におけるマス
ク合わせずれに応じてアナログ的に変化するの
で、上記容量を測定することによつてマスク合わ
せずれの程度をアナログ量として高精度で検出す
ることが可能になる。
(Function) The capacitance between each set of conductive film patterns facing each other above and below the two-layer conductive film formed as described above is proportional to the opposing area of each set of conductive film patterns, and this opposing area is Since it changes in an analog manner according to mask misalignment in the pattern arrangement direction, by measuring the capacitance, it is possible to detect the degree of mask misalignment as an analog quantity with high precision.

(実施例) 以下、図面を参照にして本発明の一実施例を詳
細に説明する。第1図は半導体ウエハ上における
X方向、Y方向のそれぞれに設けられたマスク合
わせ精度評価用バーニアパターン形成部の断面構
造を示している。即ち、1は半導体基板、2は上
記基板1上の絶縁膜、L1およびL2は上記絶縁
膜2中にバーニアパターンとして形成された第1
層導電膜および第2層導電膜であつて両者は層間
絶縁膜2′を介して対向している。上記第1層導
電膜L1は一定幅W(たとえば1.0μm)のパター
ンを有する複数個(本例では5個)の導電膜パタ
ーン3……が一定ピツチP1で横方向に配列され
るように形成されている。また、第2層導電膜L
2は一定幅Wのパターンを有する複数個(本例で
は5個)の導電膜パターン4……が上記ピツチ
P1とは異なる一定ピツチP2で横方向に配列され
るように形成されている。この場合、本例では第
1層の導電膜パターン3……のピツチP1より第
2層の導電膜パターン4……のピツチP2が大き
く、これらの各層の導電膜パターンの形成時にお
けるマスク合わせにずれが生じていない状態にお
いて、それぞれの配列方向の中心位置における1
組(上下)の導電膜パターン3,4(以下、30
0と記す)相互が完全に対向するように形成さ
れている。この状態では、上記中心位置から離れ
るにつれて上下で対向する各組の導電膜パターン
の対向位置が順次ずれ、そのずれ量dが順次大き
くなる。そして、この状態における位置ずれ量d
は、中心位置の1組の導電膜パターン30,40
零であり、その他の各組は前記ピツチP1,P2
差(たとえば0.1μm)を単位として変化するもの
であり、中心位置より右側における各組の順に+
0.1μm、+0.2μm、中心位置より左側における各
組の順に−0.1μm、−0.2μmである。換言すれば、
中心位置の1組の導電膜パターン30,40の対向
面積が最も大きく、この中心位置から離れるにつ
れて各組の導電膜パターンの対向面積が順次小さ
くなる。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a cross-sectional structure of a vernier pattern forming section for evaluating mask alignment accuracy provided in each of the X direction and Y direction on a semiconductor wafer. That is, 1 is a semiconductor substrate, 2 is an insulating film on the substrate 1, and L1 and L2 are first insulating films formed as vernier patterns in the insulating film 2.
The layer conductive film and the second layer conductive film are opposed to each other with an interlayer insulating film 2' interposed therebetween. The first layer conductive film L1 has a plurality of (5 in this example) conductive film patterns 3 having a constant width W (for example, 1.0 μm) arranged in the horizontal direction at a constant pitch P1 . It is formed. In addition, the second layer conductive film L
2, a plurality of (5 in this example) conductive film patterns 4 having a pattern of a constant width W are arranged at the above pitch.
They are formed so as to be arranged in the horizontal direction at a constant pitch P2 different from P1 . In this case, in this example, the pitch P 2 of the conductive film pattern 4 of the second layer is larger than the pitch P 1 of the conductive film pattern 3 of the first layer, and the mask used when forming the conductive film pattern of each of these layers is larger than the pitch P 1 of the conductive film pattern 3 of the first layer. 1 at the center position in each arrangement direction when there is no misalignment.
A pair (upper and lower) of conductive film patterns 3 and 4 (hereinafter referred to as 3 0 ,
4 0 ) are formed so that they completely face each other. In this state, as the distance from the center position increases, the opposing positions of the sets of conductive film patterns that face each other in the upper and lower directions shift sequentially, and the amount of shift d gradually increases. Then, the amount of positional deviation d in this state
, one set of conductive film patterns 3 0 and 4 0 at the center position is zero, and each of the other sets changes in units of the difference (for example, 0.1 μm) between the pitches P 1 and P 2 . + for each group on the right side of the position
0.1 μm, +0.2 μm, −0.1 μm, −0.2 μm for each set on the left side of the center position. In other words,
The facing area of one set of conductive film patterns 3 0 and 4 0 at the central position is the largest, and the facing area of each set of conductive film patterns becomes smaller as the distance from this central position increases.

したがつて、上記評価用バーニアパターンにあ
つては、上下で対向する各組毎に容量を測定する
と、マスク合わせずれが生じていない状態におけ
る各組毎の容量値は第2図中に・印で示すように
なり、中心位置の1組の容量値が最も大きく、そ
れから離れるにつれて各組の容量値が順次小さく
なる。これに対して、第2層導電膜L2が第1層
導電膜L1に対して第1図中右方向にたとえば
0.05μmずれた状態における各組の容量値は第2
図中○印で示すようになり、前記マスク合わせず
れがない状態に比べて、中心位置およびそれより
右側の各組の容量値がマスク合わせずれ量に応じ
たアナログ量だけ低下し、中心位置より左側の各
組の容量値がマスク合わせずれ量に応じたアナロ
グ量だけ増大する。この場合、増大した各組の容
量値を結ぶ直線Uと低下した各組の容量値を結ぶ
直線Dとの交点位置Xが中心位置より左方向に
0.05μmずれることになるので、各容量値の測定
結果に基いて上記交点Xを求め、さらにそれと中
心位置とのずれ量Δを求めることによつて、マス
ク合わせずれ量を前記ピツチ差0.1μm単位より小
さなアナログ量として高精度で検出することが可
能になり、約10倍程度の高精度化が可能になる。
Therefore, in the case of the above-mentioned evaluation vernier pattern, when the capacitance is measured for each set that faces each other at the top and bottom, the capacitance value for each set when no mask misalignment occurs is as shown in Fig. 2. The capacitance value of one set at the center position is the largest, and the capacitance value of each set becomes smaller as you move away from it. On the other hand, the second layer conductive film L2 is moved toward the right in FIG. 1 with respect to the first layer conductive film L1, for example.
The capacitance value of each set with a deviation of 0.05 μm is the second
As shown by the circle in the figure, compared to the state where there is no mask misalignment, the capacitance values of the center position and each set to the right of it decrease by an analog amount corresponding to the amount of mask misalignment, and are lower than the center position. The capacitance value of each set on the left increases by an analog amount corresponding to the amount of mask misalignment. In this case, the intersection point X of the straight line U connecting the increased capacitance values of each group and the straight line D connecting the decreased capacitance values of each group is to the left of the center position.
Since there will be a deviation of 0.05 μm, the above-mentioned intersection point X is determined based on the measurement results of each capacitance value, and by further determining the amount of deviation Δ between it and the center position, the amount of mask alignment deviation can be determined in units of the pitch difference of 0.1 μm. It becomes possible to detect a smaller analog quantity with high precision, making it possible to increase the precision by about 10 times.

なお、前記各組の導電膜パターンの平面パター
ンの一例として位置ずれ量dが零でない場合を第
3図に示しており、3は第1層の導電膜パター
ン、4は第2層の導電膜パターンであり、それぞ
れ容量測定用のウエハプローバのプローブ針を接
触させて電位を与えるための面積の広い電極(パ
ツド3′,4′)が端部に連なるように形成されて
おり、当然乍ら各パツド3′,4′はプローブ針の
接触が可能であるようにウエハ上に露出してい
る。
As an example of the planar pattern of each set of conductive film patterns, a case where the amount of positional deviation d is not zero is shown in FIG. It is a pattern, and each electrode (pad 3', 4') with a wide area is formed in a row at the end to contact the probe needle of a wafer prober for capacitance measurement and apply a potential. Each pad 3', 4' is exposed on the wafer so that it can be contacted by a probe needle.

また、高精度ウエハプローバの使用によつて上
記導電膜パターンに直接にプローブ針を接触させ
ることができる場合には、上記パツドの形成を省
略してその分だけバーニアパターン形成部の占有
面積を小さくすることが可能になる。
In addition, if the probe needle can be brought into direct contact with the conductive film pattern by using a high-precision wafer prober, the formation of the pad can be omitted and the area occupied by the vernier pattern forming section can be reduced accordingly. It becomes possible to do so.

また、各組の導電膜パターン間の容量値を大き
く形成することによつて、マスク合わせずれによ
る上記容量値の変化が大きくなるので、検出精度
を向上させることが可能になる。そのためには、
各組の導電膜パターンの面積が大きくなるよう
に、各組毎にたとえば第4図に示すように第1層
で2個の導電膜パターン31,32を並列に形成し
て共通接続し、第2層でも2個の導電膜パターン
1,42を並列に形成して共通接続をするように
してもよい。
Further, by forming a large capacitance value between each set of conductive film patterns, the change in the capacitance value due to mask misalignment becomes large, so that detection accuracy can be improved. for that purpose,
In order to increase the area of each set of conductive film patterns, two conductive film patterns 3 1 and 3 2 are formed in parallel in the first layer and commonly connected for each set, as shown in FIG. 4, for example. Also in the second layer, two conductive film patterns 4 1 and 4 2 may be formed in parallel to make a common connection.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明のマスク合わせ精度評価
用バーニアパターンによれば、二層導電膜のパタ
ーン数を増やさなくても二層導電膜の対向面積を
順次ずらすよう形成しておくことによつて、半導
体ウエハの占有面積を増大させずにマスク合わせ
ずれの程度を高精度に検出することができるの
で、高精度のマスク合わせを必要とする半導体装
置の製造に適用して極めて効果的である。
As described above, according to the vernier pattern for mask alignment accuracy evaluation of the present invention, by forming the two-layer conductive film so that the opposing areas are sequentially shifted without increasing the number of patterns of the two-layer conductive film, Since the degree of mask misalignment can be detected with high accuracy without increasing the area occupied by the semiconductor wafer, it is extremely effective when applied to the manufacture of semiconductor devices that require highly accurate mask alignment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る半導体ウエハ
におけるマスク合わせ精度評価用バーニアパター
ン形成部を示す断面図、第2図は第1図のバーニ
アパターンにおける上下で対向する各組の導電膜
パターンの容量測定値とマスク合わせずれ量との
関係を示す特性図、第3図は第1図のバーニアパ
ターンのうち1組の導電膜パターンを取り出して
その一例を示す平面パターン図、第4図は第3図
のパターンの変形例を示す平面パターン図、第5
図aは従来のバーニアパターンの一例を示す平面
パターン図、第5図bは同図aのB−B′線に沿
う断面図である。 1……半導体基板、2,2′……絶縁膜、3,
0……導電膜パターン(第1層)、4,40……
導電膜パターン(第2層)、3′,4′……パツド。
FIG. 1 is a cross-sectional view showing a vernier pattern forming part for evaluating mask alignment accuracy in a semiconductor wafer according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of each set of conductive film patterns facing each other vertically in the vernier pattern of FIG. 3 is a characteristic diagram showing the relationship between the capacitance measurement value and the amount of mask misalignment; FIG. 3 is a planar pattern diagram showing an example of one set of conductive film patterns taken out of the vernier pattern in FIG. 1; FIG. Planar pattern diagram showing a modification of the pattern in Figure 3, Figure 5.
FIG. 5a is a plan pattern diagram showing an example of a conventional vernier pattern, and FIG. 5b is a sectional view taken along line BB' in FIG. 5a. 1... Semiconductor substrate, 2, 2'... Insulating film, 3,
3 0 ... Conductive film pattern (first layer), 4,4 0 ...
Conductive film pattern (second layer), 3', 4'...pad.

Claims (1)

【特許請求の範囲】 1 半導体基板上の絶縁膜中に層間絶縁膜を介し
て上下方向に対向する二層の導電膜が素子の回路
パターンとは別に形成されてなり、 上記各層の導電膜はそれぞれ一定形状の複数の
導電膜パターンが横方向に配列されて形成され、 第1層の導電膜パターンの配列ピツチと第2層
の導電膜パターンの配列ピツチとが相異なり、 各導電膜パターンの各一部あるいは各導電膜パ
ターン毎に形成されたパツドがウエハ上に露出し
ていることを特徴とするマスク合わせ精度評価用
バーニアパターン。 2 前記各層の導電膜パターンは、配列方向中心
位置における上下で1組の導電膜パターンがマス
ク合わせずれの生じていない状態で対向位置のず
れが生じないように形成され、 上記配列方向における中心位置の両側で各組の
導電膜パターンの対向位置ずれの方向が互いに逆
になつていることを特徴とする前記特許請求の範
囲第1項記載のマスク合わせ精度評価用バーニア
パターン。
[Claims] 1 Two layers of conductive films vertically facing each other with an interlayer insulating film interposed in an insulating film on a semiconductor substrate are formed separately from the circuit pattern of the element, and the conductive films of each layer are A plurality of conductive film patterns each having a certain shape are arranged in the horizontal direction, and the arrangement pitch of the first layer conductive film pattern and the arrangement pitch of the second layer conductive film pattern are different, and each conductive film pattern has a different arrangement pitch. A vernier pattern for evaluating mask alignment accuracy, characterized in that a pad formed for each part or each conductive film pattern is exposed on the wafer. 2. The conductive film patterns of each layer are formed such that a pair of conductive film patterns above and below the center position in the arrangement direction is formed so that there is no deviation in opposing positions with no mask misalignment, and the center position in the arrangement direction is 2. The vernier pattern for evaluating mask alignment accuracy according to claim 1, wherein the directions of the opposing positions of the conductive film patterns of each set are opposite to each other on both sides of the pattern.
JP61116652A 1986-05-21 1986-05-21 Vernier pattern for evaluating mask alignment accuracy Granted JPS62273724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61116652A JPS62273724A (en) 1986-05-21 1986-05-21 Vernier pattern for evaluating mask alignment accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116652A JPS62273724A (en) 1986-05-21 1986-05-21 Vernier pattern for evaluating mask alignment accuracy

Publications (2)

Publication Number Publication Date
JPS62273724A JPS62273724A (en) 1987-11-27
JPH0230173B2 true JPH0230173B2 (en) 1990-07-04

Family

ID=14692533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116652A Granted JPS62273724A (en) 1986-05-21 1986-05-21 Vernier pattern for evaluating mask alignment accuracy

Country Status (1)

Country Link
JP (1) JPS62273724A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666859B2 (en) * 1988-11-25 1997-10-22 日本電気株式会社 Semiconductor device with vernier pattern for alignment
JP2790416B2 (en) * 1993-08-26 1998-08-27 沖電気工業株式会社 Alignment mark placement method
CN106981435B (en) * 2016-01-15 2019-12-03 无锡华润上华科技有限公司 A kind of photoetching inspection graphic structure

Also Published As

Publication number Publication date
JPS62273724A (en) 1987-11-27

Similar Documents

Publication Publication Date Title
US4516071A (en) Split-cross-bridge resistor for testing for proper fabrication of integrated circuits
US4386459A (en) Electrical measurement of level-to-level misalignment in integrated circuits
US3808527A (en) Alignment determining system
US4571538A (en) Mask alignment measurement structure for semiconductor fabrication
US4529314A (en) Method of measuring misalignment between levels on a substrate
KR100273317B1 (en) Test pattern structure for measuring a misalignment in semiconductor device fabrication process and method of measuring the misalignment
KR100490277B1 (en) The alignment error measuring method and alignment error measuring pattern
CN115274482A (en) Semiconductor structure and measurement method
US5543633A (en) Process and structure for measuring the planarity degree of a dielectric layer in an integrated circuit and integrated circuit including means for performing said process
JPH0230173B2 (en)
US6623996B2 (en) Method of measuring contact alignment in a semiconductor device including an integrated circuit
US6218847B1 (en) Test pattern for use in measuring thickness of insulating layer and method for using the same
CN112259527A (en) Test structure of wafer
JPS622458B2 (en)
CN214068725U (en) Test structure of wafer
JP2587614B2 (en) Semiconductor device
JPH0432216A (en) Evaluation of overlay accuracy and dimension accuracy
CN213958950U (en) Test structure of wafer
JP3818903B2 (en) Element for measuring alignment error of semiconductor device
JPS6353942A (en) Method of measuring mis alignment of mask pattern
JP3712496B2 (en) Resistance value monitor pattern of connection hole of semiconductor device
JPH10335229A (en) Mask misalignment evaluation test pattern
JP2001291754A (en) Semiconductor element having pattern for measuring resistance of conductive plug and process evaluation method
JPH0435907B2 (en)
JP2839469B2 (en) Pattern for measuring mask misalignment and method for measuring the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees