JPH0432216A - Evaluation of overlay accuracy and dimension accuracy - Google Patents

Evaluation of overlay accuracy and dimension accuracy

Info

Publication number
JPH0432216A
JPH0432216A JP2139421A JP13942190A JPH0432216A JP H0432216 A JPH0432216 A JP H0432216A JP 2139421 A JP2139421 A JP 2139421A JP 13942190 A JP13942190 A JP 13942190A JP H0432216 A JPH0432216 A JP H0432216A
Authority
JP
Japan
Prior art keywords
pattern
verification
accuracy
overlay
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2139421A
Other languages
Japanese (ja)
Other versions
JP2824318B2 (en
Inventor
Masayuki Nakajima
真之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2139421A priority Critical patent/JP2824318B2/en
Publication of JPH0432216A publication Critical patent/JPH0432216A/en
Application granted granted Critical
Publication of JP2824318B2 publication Critical patent/JP2824318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate an overlay accuracy and a dimension accuracy in a short time by locating a first verification pattern on each side of both arms of a second verification pattern for checking the state between the first and second verification patterns, conducting or nonconducting, and for measuring a resistance value of the second verification pattern. CONSTITUTION:In the case that an overlay error between an actual basic pattern and a desired mask pattern is within the tolerance, the space between an arm 9a of a second verification pattern 9 and each of first verification patterns 8a and 8b is in the nonconducting state since one arm 9a of the second verification pattern 9 is located between the first verification patterns 8a and 8b. It is checked if the state of the spaces between the arm 9a of the second verification pattern 9 and each of the first verification patterns 8a and 8b and between the other arm 9b of the second verification pattern 9 and each of the other first verification patterns 8c and 8d are conducting or nonconducting. In the case that every space proves to be in the nonconducting state after the check, it is estimated that the overlay error between the actual basic pattern and the desired mask pattern is within the tolerance. In the case that any one space proves to be in the conducting state, it is estimated that the overlay error exceeds the tolerance. In this case, the direction of the overlay deviation can be specified by knowing which verification pattern is in the conducting state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路装置の製造工程などにおけ
る写真製版技術及びエツチング技術を適用した微細パタ
ーン形成時において、その重ね合わせ精度及び寸法精度
を検査し評価する重ね合わせ精度及び寸法精度の評価方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention improves the overlay accuracy and dimensional accuracy when forming fine patterns using photolithography and etching techniques in the manufacturing process of semiconductor integrated circuit devices. The present invention relates to a method for evaluating overlay accuracy and dimensional accuracy to be inspected and evaluated.

〔従来の技術〕[Conventional technology]

従来、基板上の導電性の下地パターンと、その上の感光
性樹脂膜(以下レジストという)に形成する所望のマス
クパターンとの重ね合わせ精度を評価する方法としては
、第7図に示すようなバーニア法と呼ばれる方法が用い
られ、ピッチの異なる評価用パターンを転写することに
より、目視検査で重ね合わせ誤差を読み取っていた。
Conventionally, as a method for evaluating the overlay accuracy between a conductive base pattern on a substrate and a desired mask pattern formed on a photosensitive resin film (hereinafter referred to as resist) thereon, the method shown in Fig. 7 has been used. A method called the Vernier method was used to read overlay errors through visual inspection by transferring evaluation patterns with different pitches.

一方、下地パターン上のレジストに形成した所望のマス
クパターンの寸法精度を評価する方法としては、実際の
所望のマスクパターンと同じ工程で形成したモニタ用パ
ターンの寸法の測定により、寸法精度を評価していた。
On the other hand, as a method for evaluating the dimensional accuracy of a desired mask pattern formed in a resist on a base pattern, the dimensional accuracy is evaluated by measuring the dimensions of a monitor pattern formed in the same process as the actual desired mask pattern. was.

ところで、重ね合わせ精度の評価方法であるバニア法に
ついて詳述すると、第7図に示すように、実際のデバイ
スパターンとは別に、誤差読み取り専用の基板1上に、
一定の幅りの5個の第1パターン2a、2b、2C,2
d、  2eを形成し、これら各第1パターン2a〜2
e上に、各第1ノ<ターン2a〜2eに対し所定量dず
つずらして一定幅ρの第2パターン3a、3b、3.c
、  3d。
By the way, to explain in detail the Vanier method, which is a method for evaluating overlay accuracy, as shown in FIG.
Five first patterns 2a, 2b, 2C, 2 with a constant width
d, 2e, and each of these first patterns 2a to 2
e, second patterns 3a, 3b, 3. c.
, 3d.

3eを形成する。Form 3e.

このとき、第2パターン3a〜3eの各第1パターン2
a〜2eに対する位置ずれ量dは(Lfl)15となり
、実際に要求される精度に応じた値に設定される。
At this time, each of the first patterns 2 of the second patterns 3a to 3e
The positional deviation amount d for a to 2e is (Lfl) 15, which is set to a value that corresponds to the accuracy actually required.

そして、実際のデバイスにおける下地パターンと所望の
マスクパターンとの位置関係が第7図に示す基板1上の
各パターンのいずれかに一致しているかを目視により見
つけ、第7図の各パターンのうちで1カ所最も左右均等
なパターン2C93Cの位置関係を基準として、例えば
これかられずかにずれた位置関係にあるパターン2b、
3b又はパターン2d、3dに一致していれば、重ね合
わせ誤差がd (−(L−1)15)であると判断し、
パターン2a、3a又はパターン2e、3eに一致して
いれば、重ね合せ誤差が2・dであると判断し、実際の
デバイスのパターンが第7図の各パターンの位置関係の
いずれに相当するかによって重ね合わせ誤差を判断し、
実際の下地バタンとマスクパターンとの重ね合わせ誤差
が許容範囲内か否かを評価している。
Then, it is visually determined whether the positional relationship between the underlying pattern and the desired mask pattern in the actual device matches any of the patterns on the substrate 1 shown in FIG. 7, and one of the patterns shown in FIG. With reference to the positional relationship of pattern 2C93C, which is the most even left and right at one place, for example, pattern 2b whose positional relationship is slightly shifted from this,
3b or patterns 2d and 3d, it is determined that the overlay error is d (-(L-1)15),
If it matches pattern 2a, 3a or pattern 2e, 3e, it is determined that the overlay error is 2·d, and the actual device pattern corresponds to which of the positional relationships of each pattern in FIG. 7. Determine the overlay error by
It is evaluated whether the overlay error between the actual base slam and the mask pattern is within an allowable range.

つぎに、寸法精度の評価方法について詳述すると、実際
のデバイスの下地パターン上のレジストに転写されるマ
スクパターン、及びこれと同一寸法ノモニタ用パターン
をレジストに同時に転写し、転写したモニタ用パターン
を第8図に示すようにモニタ用基板4上にバターニング
し、レジストに転写したモニタ用パターン自体の寸法、
或いは基板4上にバターニングして得られたパターン5
の寸法を、光学的測定手法や電子ビーム等を用いた測定
手法などの周知の手法により測定し、設計値との誤差を
求めてマスクパターンの寸法誤差を評価している。
Next, to explain in detail the method for evaluating dimensional accuracy, a mask pattern to be transferred to the resist on the base pattern of the actual device and a monitor pattern with the same dimensions are simultaneously transferred to the resist, and the transferred monitor pattern is As shown in FIG. 8, the dimensions of the monitor pattern itself patterned on the monitor substrate 4 and transferred to the resist;
Or pattern 5 obtained by patterning on substrate 4
The dimensions of the mask pattern are measured by a well-known method such as an optical measurement method or a measurement method using an electron beam, etc., and the error from the design value is determined to evaluate the dimensional error of the mask pattern.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の場合、重ね合わせ精度の評価と、寸法精度の評価
を別個の工程で行っており、設計上はこれらの精度評価
が互いに従属し合う場合があり、両精度評価を一つの工
程で行うことが可能であるにも拘らず両評価工程を別々
に行っているため、これら精度の総合的な評価処理に長
時間を要するという問題点があった。
In the past, overlay accuracy evaluation and dimensional accuracy evaluation were performed in separate processes, but due to the design, these accuracy evaluations may be dependent on each other, so it is necessary to perform both accuracy evaluations in one process. However, since both evaluation steps are performed separately, there is a problem in that it takes a long time to comprehensively evaluate the accuracy.

ここで、重ね合わせ精度と寸法精度の評価が従属すると
は、重ね合わせ精度は下地パターンとマスクパターンと
の相対的な位置関係で定まり、マスクパターンの寸法や
下地パターンの寸法の精度によって影響される場合があ
ることを言い、例えば規格寸法よりも線幅の大きい下地
パターンに対し、規格寸法より線幅の小さいマスクパタ
ーンが形成されると、重ね合わせ誤差は結果的に許容範
囲内に入る。
Here, the evaluation of overlay accuracy and dimensional accuracy are dependent, which means that overlay accuracy is determined by the relative positional relationship between the underlying pattern and the mask pattern, and is influenced by the dimensions of the mask pattern and the accuracy of the dimensions of the underlying pattern. For example, if a mask pattern with a line width smaller than the standard size is formed on a base pattern with a line width larger than the standard size, the overlay error will eventually fall within the allowable range.

この発明は、上記のような問題点を解消するためになさ
れたもので、重ね合わせ精度及び寸法精度の評価を、導
電性パターンの導通、抵抗値測定の結果に基づいて短時
間で行えるようにすることを目的とする。
This invention was made to solve the above-mentioned problems, and makes it possible to evaluate overlay accuracy and dimensional accuracy in a short time based on the results of continuity and resistance measurement of conductive patterns. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る重ね合わせ精度及び寸法精度の評価方法
は、基板上の導電性の下地パターン上に形成された感光
性樹脂膜に写真製版技術を用いて転写された所望のマス
クパターンと、前記下地パターンとの重ね合わせ精度、
及び前記マスクパターンの寸法精度を評価する重ね合わ
せ精度及び寸法精度の評価方法において、前記下地パタ
ーンと同一工程により、前記基板上の検証パターン形成
領域に導電性の第1の検証パターンを形成すると共に、
前記マスクパターンと同一工程により形成したモニタ用
マスクパターンを用いて前記基板上の前記検証パターン
形成領域に、直交する二辺からなる導電性の第2の検証
パターンを形成し、前記第2の検証パターンの両辺それ
ぞれの両側に前記第1の検証パターンを位置せしめ、前
記第1第2の検証パターン間の導通・非導通、前記第2
の検証パターンの抵抗値を測定することにより、前記下
地パター ンと前記マスクパターンとの重ね合わせ精度
及び前記マスクパターンの寸法精度を評価することを特
徴としている。
A method for evaluating overlay accuracy and dimensional accuracy according to the present invention includes a method for evaluating overlay accuracy and dimensional accuracy by combining a desired mask pattern transferred using photolithography onto a photosensitive resin film formed on a conductive base pattern on a substrate, and Overlay accuracy with patterns,
In the overlay accuracy and dimensional accuracy evaluation method for evaluating the dimensional accuracy of the mask pattern, a conductive first verification pattern is formed in the verification pattern formation area on the substrate by the same process as the base pattern, and ,
A conductive second verification pattern consisting of two orthogonal sides is formed in the verification pattern formation area on the substrate using a monitoring mask pattern formed in the same process as the mask pattern, and the second verification pattern is formed in the verification pattern formation area on the substrate. The first verification pattern is positioned on both sides of the pattern, and conduction/non-conduction between the first and second verification patterns, and the second
The method is characterized in that the overlay accuracy of the base pattern and the mask pattern and the dimensional accuracy of the mask pattern are evaluated by measuring the resistance value of the verification pattern.

〔作用〕[Effect]

この発明においては、第1.第2の検証パターン間の導
通・非導通、第2の検証パターンの抵抗値を測定し、両
検証パターンが導通或いは非導通であれば、実際の下地
パターンとマスクパターンとの重ね合わせ誤差がそれぞ
れ許容範囲内或いは許容範囲外であると評価され、第2
の検証パターンの測定抵抗値と設計値との誤差がどれく
らいであるかにより、実際のマスクパターンの寸法精度
が評価される。
In this invention, 1. Measure the conduction/non-continuity between the second verification patterns and the resistance value of the second verification pattern, and if both verification patterns are conductive or non-conductive, the overlay error between the actual underlying pattern and the mask pattern is determined respectively. It is evaluated as within or outside the acceptable range, and the second
The dimensional accuracy of the actual mask pattern is evaluated based on the error between the measured resistance value of the verification pattern and the design value.

このように、両検証パターンの導通・非導通及び第2の
検証パターンの抵抗値は一連の工程で測定できるため、
従来のように重ね合わせ精度の評価と寸法精度の評価と
を別工程で行う必要がなく、評価処理を従来より短時間
で行える。
In this way, the conduction/nonconduction of both verification patterns and the resistance value of the second verification pattern can be measured in a series of steps.
It is not necessary to evaluate overlay accuracy and evaluate dimensional accuracy in separate processes as in the past, and the evaluation process can be performed in a shorter time than in the past.

〔実施例〕〔Example〕

第1図はこの発明の重ね合わせ精度及び寸法精度の評価
方法の一実施例の概略を示す平面図、第2図は第1図中
のA−A’線における断面図である。
FIG. 1 is a plan view schematically showing an embodiment of the overlay accuracy and dimensional accuracy evaluation method of the present invention, and FIG. 2 is a sectional view taken along the line AA' in FIG. 1.

第1図及び第2図に示すように、実際のデバイスパター
ンにおける基板」二に形成される導電性の下地パターン
と同一工程により、同一の基板6上の検証パターン形成
領域に薄い絶縁膜7を介して導電性の第1の検証パター
ン8a、8b、8c。
As shown in FIGS. 1 and 2, a thin insulating film 7 is formed in the verification pattern formation area on the same substrate 6 by the same process as that for the conductive base pattern formed on the substrate 2 in the actual device pattern. First verification patterns 8a, 8b, 8c conductive through.

8dを形成すると共に、導電性の下地パターン上の1ノ
ジストに転写された所望のマスクパターンと同一工程に
より形成lまたモニタ用マスクパターンを用いて、基板
6上の検証パターン形成領域に直交する二辺9a、9b
からなる十字状の導電性の第2の検証パターン9を形成
する。
At the same time, a desired mask pattern is formed in the same process as the desired mask pattern transferred to one resist on the conductive base pattern.Also, using a monitoring mask pattern, two patterns perpendicular to the verification pattern formation area on the substrate 6 are formed. Sides 9a, 9b
A cross-shaped conductive second verification pattern 9 is formed.

このとき、第2の検証パターン9の一方の辺9aの両側
に第1の検証パターン8a、8bが位置j〜、第2の検
証パターン9の他方の辺りbの両側に第1の検証パター
ン8c、8dが位置するように、各検証パターン8a〜
8d、9を形成する。
At this time, the first verification patterns 8a and 8b are located at positions j~ on both sides of one side 9a of the second verification pattern 9, and the first verification patterns 8c are located on both sides of the other side b of the second verification pattern 9. , 8d are located in each verification pattern 8a to 8d.
Form 8d and 9.

そ(7て、一連のデバイス形成プロセスの完了後に、検
証パターン形成領域が切断分離されて精度評価に供され
る。
(7) After completing a series of device forming processes, the verification pattern forming area is cut and separated and subjected to accuracy evaluation.

また、第1図において、10は各節1の検証パターン8
8〜8dの一端に設けられた測定用パッドであり、1−
1は第2の検証パターン9の両辺9a、9bそれぞれの
両端に設けられた測定用パッドである。
In addition, in FIG. 1, 10 is the verification pattern 8 of each node 1.
It is a measurement pad provided at one end of 8-8d, and 1-
Reference numeral 1 denotes measurement pads provided at both ends of both sides 9a and 9b of the second verification pattern 9.

ところで、第1の検証パターン8a、8bの間隔は、例
えば重ね合わせマージンを見込んだ値に設定されており
、他の第1−の検証パ9−ン8e。
Incidentally, the interval between the first verification patterns 8a and 8b is set to a value that takes into account an overlapping margin, for example, and the distance between the first verification patterns 8a and 8b is set to a value that takes into account an overlapping margin.

8dの間隔も同様であり、一方第2の検証パターン9の
両辺9a、9bは、例えば第1の検証バタ・−ン8a〜
8dの一連の形成工程において予め設けたアライメント
マークを基準にして位置合イつせされている。
8d is the same, and on the other hand, both sides 9a and 9b of the second verification pattern 9 are, for example, the first verification pattern 8a to 8d.
In a series of forming steps 8d, alignment is performed with reference to alignment marks provided in advance.

つぎに、このような検証パターン88〜8d。Next, such verification patterns 88 to 8d.

9を使った重ね合わせ精度9寸法精度の評価方法につい
て、第3図ないし第6図に示すような種々のケースを例
にとって説明する。ここで、第3図ないし第6図の (
a)図は一部の平面図、(1))図はそれぞれ(a)図
の・−点鎖線における断面図を示す。
A method for evaluating overlay accuracy and dimensional accuracy using 9 will be explained by taking various cases as shown in FIGS. 3 to 6 as examples. Here, in Figures 3 to 6 (
Figure a) is a partial plan view, and figure (1) is a sectional view taken along the dashed line in figure (a).

まず、実際の下地パターンと所望のマスクバタンとの重
ね合わせ誤差が許容範囲内である場合、第3図に示すよ
うに、第1の検証パターン8a8bの間に第2の検証パ
ターン9の一方の辺9aが位置するため、辺9aと第1
の検証パターン8a、8bそれぞれとの間は非導通とな
り、辺9aの両端間の抵抗値は所定値となる。
First, if the overlay error between the actual base pattern and the desired mask button is within the allowable range, as shown in FIG. Since side 9a is located, side 9a and the first
There is no conduction between each of the verification patterns 8a and 8b, and the resistance value between both ends of the side 9a becomes a predetermined value.

一方、重ね合わせ誤差が許容範囲内であれば、図示はさ
れていないが、第1の検証パターン8e。
On the other hand, if the overlay error is within the allowable range, the first verification pattern 8e, although not shown.

8dと第2の検証パターン9の他方の辺9bとの位置関
係は第3図と同様になり、辺9bと第1の検証パターン
3e、3dそれぞれとの間は非導通となり、辺9bの両
端間の抵抗値は所定値となる。
The positional relationship between 8d and the other side 9b of the second verification pattern 9 is the same as that in FIG. The resistance value between them becomes a predetermined value.

つぎに、実際の下地パターンと所望のマスクパターンと
の重ね合わせ誤差が許容範囲を超える場合、第4図に示
すように、例えば第2の検証パターン9の辺9aが第1
の検証パターン8b方向にずれると、辺9aが第1の検
証パターン8bに重なるため、辺9aと第1の検証パタ
ーン8bとか導通し、辺9aが第1の検証パターン8a
方向にずれている場合には、辺9aと第1の検証パター
ン8aとが導通し、他方の辺9bが第1の検証パターン
8c又は8d方向にずれている場合には、辺9bと第1
の検証パターン8C又は8dとが導通する。
Next, if the overlay error between the actual base pattern and the desired mask pattern exceeds the allowable range, as shown in FIG.
When the side 9a is shifted in the direction of the verification pattern 8b, the side 9a overlaps the first verification pattern 8b, so that the side 9a and the first verification pattern 8b are electrically connected, and the side 9a is connected to the first verification pattern 8a.
If the other side 9b is deviated in the direction of the first verification pattern 8c or 8d, the side 9b and the first verification pattern 8a are electrically connected.
The verification pattern 8C or 8d is electrically connected.

従って、第1の検証パターン8a、8bそれぞれと第2
の検証パターン9の辺9aとの導通・非導通、及び第1
の検証パターン8c、8dそれぞれと第2の検証パター
ン9の辺9bとの導通・非導通を測定し、これらの測定
の結果、すべて非導通であれば、実際の下地パターンと
所望のマスクパターンの重ね合わせ誤差は許容範囲内に
あると評価でき、いずれかが導通であれば、実際の下地
パターンと所望のマスクパターンの重ね合わせ誤差は許
容範囲を超えていると評価でき、しかもどの検証パター
ンが導通しているかによって重ね合わせのずれ方向を特
定できる。
Therefore, each of the first verification patterns 8a and 8b and the second
conduction/non-conduction with the side 9a of the verification pattern 9, and the first
The conduction/non-continuity between each of the verification patterns 8c and 8d and the side 9b of the second verification pattern 9 is measured, and if the results of these measurements are all non-conduction, the actual base pattern and the desired mask pattern are connected. It can be evaluated that the overlay error is within the allowable range, and if either of them is conductive, it can be evaluated that the overlay error between the actual base pattern and the desired mask pattern is beyond the allowable range, and which verification pattern is The direction of misalignment in overlay can be determined depending on whether there is continuity.

また、予め第2の検証パターン9の両辺9a。Moreover, both sides 9a of the second verification pattern 9 are prepared in advance.

9bそれぞれの抵抗値とその線幅との関係を予め求めて
おき、第3図に示すように、重ね合わせ誤差が許容範囲
内であるときの両辺9a、9bそれぞれの抵抗値から、
両辺9a、9bの線幅を導出し、実際のマスクパターン
の線幅を定量的に評価することができる ところで、実際の下地パターン及びマスクパターンの線
幅が規格寸法よりも大きい場合、下地パターンの線幅が
大きくなると、第1の検証パターン8a〜8dそれぞれ
の線幅が大きくなってそれらの間隔は逆に小さくなり、
第5図に示すように、例えば第2の検証パターン9の辺
9aが第1の検証パターン8aと8bに重なり、これら
が導通するため、辺9a(又は9b)と第1の検証パタ
ーン8a、8b (又は8c、8d)とが導通しティれ
ば、実際の下地パターン又はマスクパターンのいずれか
の線幅が規格寸法よりも大きいことがわかる。
The relationship between the resistance value of each of 9b and its line width is determined in advance, and as shown in FIG.
It is possible to derive the line widths of both sides 9a and 9b and quantitatively evaluate the line width of the actual mask pattern, but if the line width of the actual base pattern and mask pattern is larger than the standard dimension, the line width of the base pattern As the line width increases, the line width of each of the first verification patterns 8a to 8d increases, and the intervals between them conversely decrease.
As shown in FIG. 5, for example, the side 9a of the second verification pattern 9 overlaps the first verification patterns 8a and 8b and conducts between them, so that the side 9a (or 9b) and the first verification pattern 8a, 8b (or 8c, 8d), it can be seen that the line width of either the actual underlying pattern or the mask pattern is larger than the standard dimension.

さらに、実際のマスクパターンの線幅が規格寸法を下回
っているか否かを調べるために、例えば実際のマスクパ
ターンの寸法誤差の許容範囲を±0.1μmとして、実
際の寸法が許容範囲の下限値を下回っているか否かを調
べるために、第2の検証パターン9の両辺9a、9bの
線幅が0. 1μmになるように形成すれば、この両辺
9a、9bそれぞれの両端間の導通を調べた結果、例え
ば第6図に示すように、辺9aが途中で断線して辺9a
の両端間が非導通であり、或いは辺9bの両端間が非導
通であれば、実際のマスクパターンの線幅が規格寸法を
下回っていることも評価できる。
Furthermore, in order to check whether the line width of the actual mask pattern is less than the standard dimension, for example, assuming that the tolerance range for the dimensional error of the actual mask pattern is ±0.1 μm, the actual dimension is the lower limit of the tolerance range. In order to check whether or not the line width of both sides 9a and 9b of the second verification pattern 9 is 0. If it is formed to have a thickness of 1 μm, as a result of examining the conduction between both ends of both sides 9a and 9b, for example, as shown in FIG.
If there is no conduction between both ends of the side 9b, or there is no conduction between both ends of the side 9b, it can be evaluated that the line width of the actual mask pattern is less than the standard dimension.

このように、両検証パターン8a〜8d、9の導通・非
導通及び第2の検証パターン9の両辺9a、9bの抵抗
値は一連の工程で測定できるため、従来のように重ね合
わせ精度の評価と寸法精度の評価とを別々の工程で行う
必要かなく、評価処理を従来よりも短時間で行うことが
でき、評価処理の能率の向上を図ることができる。
In this way, the conduction/non-conduction of both verification patterns 8a to 8d, 9 and the resistance values of both sides 9a, 9b of the second verification pattern 9 can be measured in a series of steps, so it is possible to evaluate overlay accuracy as in the conventional method. There is no need to perform the evaluation of the dimensional accuracy and the evaluation of dimensional accuracy in separate processes, and the evaluation process can be performed in a shorter time than conventionally, and the efficiency of the evaluation process can be improved.

なお、上記実施例では、第2の検証パターン9を十字状
に形成したが、直交する二辺からなるL字状であっても
よい。
In the above embodiment, the second verification pattern 9 is formed in a cross shape, but it may be formed in an L shape consisting of two orthogonal sides.

また、上記実施例では、実際のデバイスの下地パターン
と、その上のレジストに転写したマスクパターンとの2
層のパターンの重ね合わせ精度。
In addition, in the above embodiment, there are two types: the underlying pattern of the actual device and the mask pattern transferred to the resist above it.
Overlay accuracy of layer patterns.

寸法精度の評価をする場合について説明したが、3層以
上のパターンの評価を行う場合であっても、この発明を
同様に実施することができ、このとき例えば第2図に示
す断面においてパターン8a。
Although the case where the dimensional accuracy is evaluated has been described, the present invention can be implemented in the same way even when evaluating a pattern with three or more layers. .

8bの外側に他の検証パターンを形成するなどの方法が
考えられる。
A method such as forming another verification pattern outside of 8b may be considered.

さらに、第1の検証パターン8a、8b (又は8c、
8d)の間隔を所定ピッチで変えたものをいくつか準備
し、このパターンに対して第2の検証パターン9を形成
し、前述した評価を行うことによって、重ね合わせ精度
をどこまで保証できるかという評価も行うことができる
Furthermore, first verification patterns 8a, 8b (or 8c,
8d) with different intervals at a predetermined pitch, form a second verification pattern 9 for this pattern, and perform the above-mentioned evaluation to evaluate to what extent the overlay accuracy can be guaranteed. can also be done.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の重ね合わせ精度及び寸法精度
の評価方法によれば、両検証パターンの導通・非導通及
び第2の検証パターンの抵抗値は一連の工程で測定する
ことができるため、重ね合わせ精度及び寸法精度の評価
に要する時間を従来よりも短縮することができ、半導体
装置の製造において極めて有利である。
As described above, according to the method for evaluating overlay accuracy and dimensional accuracy of the present invention, the conduction/non-conduction of both verification patterns and the resistance value of the second verification pattern can be measured in a series of steps. The time required for evaluating overlay accuracy and dimensional accuracy can be reduced compared to the conventional method, which is extremely advantageous in manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の重ね合わせ精度及び寸法精度の評価
方法の一実施例の平面図、第2図は第1図のA−A’線
における断面図、第3図ないし第6図の(a)は第1図
の評価手順の説明用の一部の平面図、各図の(b)は断
面図、第7図(a) = (b)は従来の重ね合わせ精
度の評価方法の説明用の平面図及び断面図、第8図(a
) 、(b)は従来の寸法精度の評価方法の説明用の平
面図及び断面図である。 図において、88〜8dは第1の検証パターン、9は第
2の検証パターン、9a、9bは辺である。 なお、 示す。
FIG. 1 is a plan view of an embodiment of the overlay accuracy and dimensional accuracy evaluation method of the present invention, FIG. 2 is a sectional view taken along the line AA' in FIG. 1, and FIGS. a) is a partial plan view for explaining the evaluation procedure in Fig. 1, (b) of each figure is a cross-sectional view, and Fig. 7 (a) = (b) is an explanation of the conventional evaluation method of overlay accuracy. Plan view and cross-sectional view for Figure 8 (a
) and (b) are a plan view and a sectional view for explaining a conventional method for evaluating dimensional accuracy. In the figure, 88 to 8d are first verification patterns, 9 is a second verification pattern, and 9a and 9b are sides. In addition, it is shown.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の導電性の下地パターン上に形成された感
光性樹脂膜に写真製版技術を用いて転写された所望のマ
スクパターンと、前記下地パターンとの重ね合わせ精度
、及び前記マスクパターンの寸法精度を評価する重ね合
わせ精度及び寸法精度の評価方法において、 前記下地パターンと同一工程により、前記基板上の検証
パターン形成領域に導電性の第1の検証パターンを形成
すると共に、 前記マスクパターンと同一工程により形成したモニタ用
マスクパターンを用いて前記基板上の前記検証パターン
形成領域に、直交する二辺からなる導電性の第2の検証
パターンを形成し、 前記第2の検証パターンの両辺それぞれの両側に前記第
1の検証パターンを位置せしめ、 前記第1、第2の検証パターン間の導通・非導通、前記
第2の検証パターンの抵抗値を測定することにより、前
記下地パターンと前記マスクパターンとの重ね合わせ精
度及び前記マスクパターンの寸法精度を評価することを
特徴とする重ね合わせ精度及び寸法精度の評価方法。
(1) Overlay accuracy of a desired mask pattern transferred using photolithography to a photosensitive resin film formed on a conductive base pattern on a substrate and the base pattern, and the accuracy of the mask pattern. In the overlay accuracy and dimensional accuracy evaluation method for evaluating dimensional accuracy, a conductive first verification pattern is formed in the verification pattern formation area on the substrate by the same process as the base pattern, and the mask pattern and forming a conductive second verification pattern consisting of two orthogonal sides in the verification pattern formation area on the substrate using a monitor mask pattern formed in the same process; by positioning the first verification pattern on both sides of the base pattern and the mask, and measuring conduction/non-continuity between the first and second verification patterns and the resistance value of the second verification pattern. A method for evaluating overlay accuracy and dimensional accuracy, comprising evaluating overlay accuracy with a pattern and dimensional accuracy of the mask pattern.
JP2139421A 1990-05-29 1990-05-29 Evaluation method of overlay accuracy and dimensional accuracy Expired - Fee Related JP2824318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139421A JP2824318B2 (en) 1990-05-29 1990-05-29 Evaluation method of overlay accuracy and dimensional accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139421A JP2824318B2 (en) 1990-05-29 1990-05-29 Evaluation method of overlay accuracy and dimensional accuracy

Publications (2)

Publication Number Publication Date
JPH0432216A true JPH0432216A (en) 1992-02-04
JP2824318B2 JP2824318B2 (en) 1998-11-11

Family

ID=15244817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139421A Expired - Fee Related JP2824318B2 (en) 1990-05-29 1990-05-29 Evaluation method of overlay accuracy and dimensional accuracy

Country Status (1)

Country Link
JP (1) JP2824318B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242757B1 (en) * 1999-06-14 2001-06-05 Taiwan Semiconductor Manufacturing Company Capacitor circuit structure for determining overlay error
WO2002082531A3 (en) * 2001-04-05 2003-02-27 Infineon Technologies Corp Structure and method for determining edges of regions in a semiconductor wafer
JP2006147898A (en) * 2004-11-22 2006-06-08 Oki Electric Ind Co Ltd Detection method of registration accuracy
US7084427B2 (en) 2003-06-10 2006-08-01 International Business Machines Corporation Systems and methods for overlay shift determination
US7569403B2 (en) 2004-05-20 2009-08-04 Kabushiki Kaisha Toshiba Pattern evaluation method, manufacturing method of semiconductor device, correction method of mask pattern and manufacturing method of exposure mask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242757B1 (en) * 1999-06-14 2001-06-05 Taiwan Semiconductor Manufacturing Company Capacitor circuit structure for determining overlay error
WO2002082531A3 (en) * 2001-04-05 2003-02-27 Infineon Technologies Corp Structure and method for determining edges of regions in a semiconductor wafer
US6828647B2 (en) 2001-04-05 2004-12-07 Infineon Technologies Ag Structure for determining edges of regions in a semiconductor wafer
US7084427B2 (en) 2003-06-10 2006-08-01 International Business Machines Corporation Systems and methods for overlay shift determination
US7550303B2 (en) 2003-06-10 2009-06-23 International Business Machines Corporation Systems and methods for overlay shift determination
US7569403B2 (en) 2004-05-20 2009-08-04 Kabushiki Kaisha Toshiba Pattern evaluation method, manufacturing method of semiconductor device, correction method of mask pattern and manufacturing method of exposure mask
JP2006147898A (en) * 2004-11-22 2006-06-08 Oki Electric Ind Co Ltd Detection method of registration accuracy

Also Published As

Publication number Publication date
JP2824318B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP3630269B2 (en) Superposition mark and semiconductor device manufacturing method using this superposition mark
US5617340A (en) Method and reference standards for measuring overlay in multilayer structures, and for calibrating imaging equipment as used in semiconductor manufacturing
US6849957B2 (en) Photomask including auxiliary mark area, semiconductor device and manufacturing method thereof
US4538105A (en) Overlay test wafer
US5699282A (en) Methods and test structures for measuring overlay in multilayer devices
US7180593B2 (en) Overlay mark for aligning different layers on a semiconductor wafer
US4437760A (en) Reusable electrical overlay measurement circuit and process
JPH0594933A (en) Alignment check pattern
JP2870461B2 (en) Photomask alignment mark and semiconductor device
US4571538A (en) Mask alignment measurement structure for semiconductor fabrication
JP3363082B2 (en) Electrical measurement of pattern misalignment
JPS6253946B2 (en)
JPH0432216A (en) Evaluation of overlay accuracy and dimension accuracy
JPS5846054B2 (en) photo mask
US7136520B2 (en) Method of checking alignment accuracy of patterns on stacked semiconductor layers
JP2663623B2 (en) Method of forming resist pattern
JP3609896B2 (en) Overlay measurement error correction method
US5616438A (en) Reticle and a method for measuring blind setting accuracy using the same
JP2687418B2 (en) Semiconductor device
JP3327279B2 (en) Semiconductor device and manufacturing method thereof
US7868629B2 (en) Proportional variable resistor structures to electrically measure mask misalignment
JPS6297327A (en) Evaluation method of overlapping accuracy
TWI835455B (en) Process inspection method, process inspection pattern and formation method, and photomask
JPH08162383A (en) Pattern for evaluating registration accuracy and evaluation method by use thereof
KR0149221B1 (en) Photo mask for fabricating semiconductor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees