JPS6118402Y2 - - Google Patents

Info

Publication number
JPS6118402Y2
JPS6118402Y2 JP8247781U JP8247781U JPS6118402Y2 JP S6118402 Y2 JPS6118402 Y2 JP S6118402Y2 JP 8247781 U JP8247781 U JP 8247781U JP 8247781 U JP8247781 U JP 8247781U JP S6118402 Y2 JPS6118402 Y2 JP S6118402Y2
Authority
JP
Japan
Prior art keywords
sample
glass tube
measurement
laser
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8247781U
Other languages
Japanese (ja)
Other versions
JPS57194014U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8247781U priority Critical patent/JPS6118402Y2/ja
Publication of JPS57194014U publication Critical patent/JPS57194014U/ja
Application granted granted Critical
Publication of JPS6118402Y2 publication Critical patent/JPS6118402Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Sorting Of Articles (AREA)

Description

【考案の詳細な説明】 本考案はガラス管特にHe−Neレーザ発振器の
発振部等々に用いられている肉厚ガラス管の自動
内径選別装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an automatic inner diameter sorting device for glass tubes, particularly thick-walled glass tubes used in the oscillation section of a He--Ne laser oscillator.

上記目的に使用されている同一外径かつ同一屈
折率を有する成分にて製作されたガラス管の内径
値は発振器本体の出力パワー等の性能に大きく影
響するため、試料内径値を10μm単位でランク分
けし各々のランクごとに適用発振器機種を区別す
る必要がある。このため、従来はランク区分値を
外径値とする金属ピンゲージ群を用意し、各ピン
ゲージの試料への挿入可否から試料ガラス管の内
径値の上限・下限をおさえるという手法がとられ
てきた。しかし、上記ピンゲージによる測定法で
は測定作業は全て作業者に頼らなくてはならない
ため作業効率が悪く、測定値の人為差が大きく精
度が低下するという欠点があつた。また、測定基
準とするピンゲージの製作・保守についても極め
て注意を要するという問題点があつた。
The inner diameter of the glass tube used for the above purpose, which is manufactured from components with the same outer diameter and the same refractive index, greatly affects the performance such as the output power of the oscillator body, so the inner diameter of the sample is ranked in units of 10 μm. It is necessary to distinguish the applicable oscillator model for each rank. For this reason, the conventional method has been to prepare a group of metal pin gauges whose outer diameter values are rank classification values, and to set the upper and lower limits of the inner diameter value of the sample glass tube based on whether each pin gauge can be inserted into the sample. However, the above measurement method using a pin gauge has disadvantages in that the measurement work must be done entirely by the operator, resulting in poor working efficiency and large artificial differences in measurement values, resulting in a decrease in accuracy. Additionally, there was a problem in that the production and maintenance of pin gauges used as measurement standards required extreme care.

本考案による装置では、従来の測定法の欠点を
鑑み、高精度・高速の測定が可能な方法による自
動内径測定及び選別を行なうことを目的とする。
In view of the drawbacks of conventional measuring methods, the apparatus according to the present invention aims to perform automatic inner diameter measurement and sorting using a method that enables high-accuracy and high-speed measurement.

本装置は、レーザ発振器と音さ偏向器、ならび
に光学系によつて微小口径レーザスポツト走査部
と、走査範囲内に置かれた試料ガラス管肉厚部の
レンズ効果により前記レーザが集光する位置に配
置された受光素子と、試料ガラス管回転駆動機構
と、上記回転駆動用モータと、上記モータの回転
速度調整と、上記レーザ走査系の出力のA/D変
換を行なうマイクロプロセツサ等々の処理制御手
段と、を備えて構成されることを特徴とするガラ
ス管内径選別装置である。
This device uses a laser oscillator, a tuning fork deflector, and an optical system to scan a micro-diameter laser spot, and a position where the laser beam is focused by the lens effect of the thick part of the sample glass tube placed within the scanning range. Processing of a light receiving element arranged in the sample glass tube rotation drive mechanism, the rotation drive motor, a microprocessor that adjusts the rotation speed of the motor, and performs A/D conversion of the output of the laser scanning system, etc. A glass tube inner diameter sorting device is characterized in that it comprises a control means.

次に、本装置に用いられている測定原理を第1
図、第2図、第3図ならびに第4図を用いて説明
する。
Next, we will explain the measurement principle used in this device in the first place.
This will be explained using FIGS. 2, 3, and 4.

第1図は従来不透明円柱物体の外径測定に用い
られたレーザ走査系の原理図である。レーザ発振
器1から出て音さ偏向器2によつて高速走査され
るレーザスポツトが不透明物体によつてしや断さ
れると光電素子3の出力レベルが低下する。
FIG. 1 is a diagram showing the principle of a laser scanning system conventionally used for measuring the outer diameter of an opaque cylindrical object. When the laser spot emitted from the laser oscillator 1 and scanned at high speed by the tuning fork deflector 2 is cut off by an opaque object, the output level of the photoelectric element 3 decreases.

そこで、第2図に示すように光電素子の出力レ
ベルを時間軸で観察した場合、出力変化点間の時
間差Tからしや断部分長さを逆算できるわけであ
る。しかし、本考案で測定対象とするガラス管の
場合はこの原理をそのまま応用することはできな
い。なぜならば、試料自体が半透明であるため、
レーザ光に対してレンズ効果を及ぼし、第1図に
示されるような光路からは全くはずれてしまうか
らである。ここで、走査ビームの試料ガラス管入
射後の光路に関してさらに詳細に検討を加えると
以下のようになる。
Therefore, when the output level of the photoelectric element is observed on the time axis as shown in FIG. 2, the time difference T between the output change points can be calculated backward. However, this principle cannot be directly applied to the glass tube that is the object of measurement in the present invention. This is because the sample itself is translucent.
This is because a lens effect is exerted on the laser beam, causing it to deviate completely from the optical path as shown in FIG. Here, a more detailed study of the optical path of the scanning beam after it enters the sample glass tube results in the following.

第3図においてまず、試料入射後内壁に当らず
にそのまま試料外へ出ていく光線群A11に対し
てはガラス管は半径rの球レンズとしての効果を
及ぼすために光軸上の1点S1に集光する。次に、
試料入射後管内空気層を通過し再び試料に入射し
出射する光線群B12に対しては4つの球面にお
ける屈折により、S1とは異なる点S2に集光する。
最後に試料へ入射後内壁と当たる光線のうちでそ
の入射角θが臨界角θc以上であるC群13に関
してはS1,S2とは大きく離れた点S3に集光する。
従つて第3図中S1で示される位置に微小光電素子
を置いたならばレーザ走査時の光電素子出力波形
は第4図に表わすようなものとなり、レベル変化
点P1・P2間の時間差tと外径値D0と屈折率nに
よつてレーザ進行方向から見た時の内径値が演算
により求めることができる。ただし、上記の説明
は試料の外径と内径の中心が一致している場合を
想定しているが、実際の試料ではむしろ偏心量が
存在することの方が多い。そのため本考案におけ
る装置では、反対側から測定した時のデータとの
平均値をとることによつて偏心量による測定誤差
を補正している。
In Fig. 3, first, for the group of rays A11 that exit the sample without hitting the inner wall after entering the sample, the glass tube exerts the effect of a spherical lens with radius r, so that one point S on the optical axis Focus the light on 1 . next,
After entering the sample, the group of rays B12 passes through the air layer in the tube, enters the sample again, and exits, and is focused at a point S2 different from S1 by refraction on the four spherical surfaces.
Finally, among the light rays that hit the inner wall after entering the sample, the C group 13 whose incident angle θ is greater than or equal to the critical angle θc is focused on a point S 3 that is far away from S 1 and S 2 .
Therefore, if a minute photoelectric element is placed at the position shown by S1 in Figure 3, the output waveform of the photoelectric element during laser scanning will be as shown in Figure 4, and the waveform between the level change points P1 and P2 will be From the time difference t, the outer diameter value D 0 , and the refractive index n, the inner diameter value when viewed from the laser traveling direction can be calculated. However, although the above explanation assumes that the centers of the outer diameter and inner diameter of the sample are coincident, in actual samples, there is often an amount of eccentricity. Therefore, in the device according to the present invention, the measurement error due to the amount of eccentricity is corrected by taking the average value of the data measured from the opposite side.

次に本考案の一実施例について第5図、第6図
を用いて説明する。
Next, an embodiment of the present invention will be described using FIGS. 5 and 6.

第5図は本考案一実施例外観斜視図であり、レ
ーザ走査系と試料回転駆動機構部とからなる機構
部20と、電気回路・マイクロプロセツサ等々の
処理手段、ならびに操作表示パネルとからなる制
御部21とから構成される。試料22はゴムライ
ニングされたローラ23,24の間に置かれ、作
業者がスタートスイツチ25を押すとパルスモー
タは定速回転を行う。
FIG. 5 is an external perspective view of one embodiment of the present invention, which includes a mechanism section 20 consisting of a laser scanning system and a sample rotation drive mechanism section, processing means such as an electric circuit and a microprocessor, and an operation display panel. It is composed of a control section 21. The sample 22 is placed between rubber-lined rollers 23 and 24, and when the operator presses the start switch 25, the pulse motor rotates at a constant speed.

第6図は試料回転駆動機構部の断面図を示し、
パルスモータの回転は各シヤフト26,27,2
8に取付けられている歯車30,31,32を通
じてローラ23,24が反対方向に回転するよう
に伝達される。従つて、ローラ23,24の間に
置かれた試料22はローラとの摩擦によつて回転
運動を行う。ここで試料が45゜回転するのに要す
る時間t0ごとにレーザ走査系の1走査分の出力を
マイクロプロセツサに取込み第4図に示した時間
差tから内径値d0を算出する。上記測定を計8回
行なつてd0,d1,……d7を得た後マイクロプロセ
ツサ等々の処理手段では次式によつて偏心補正内
径値データD0,D1,D2,D3を算出する。
FIG. 6 shows a cross-sectional view of the sample rotation drive mechanism,
The pulse motor rotates through each shaft 26, 27, 2.
The rollers 23, 24 are transmitted to rotate in opposite directions through gears 30, 31, 32 attached to the rollers 8. Therefore, the sample 22 placed between the rollers 23 and 24 rotates due to friction with the rollers. Here, the output of one scan of the laser scanning system is input into the microprocessor every time t 0 required for the sample to rotate 45 degrees, and the inner diameter value d 0 is calculated from the time difference t shown in FIG. After performing the above measurement a total of 8 times and obtaining d 0 , d 1 , ... d 7 , a processing means such as a microprocessor generates eccentricity-corrected inner diameter value data D 0 , D 1 , D 2 , Calculate D3 .

Di=di+di+4/2(i=0,1,2,3) 試料内径値としては、D0,D1,D2,D3の中の
最大値又は最小値あるいはさらにD0からD3の4
ケのデータの平均値のいずれかを用いるかをあら
かじめ決めておき、マイクロプロセツサ等々の処
理手段によつて内径代表値Dを求めて7セグメン
トLEDで数値表示をするとともに、その内径値
がどのランクに入るかを判定・表示する。測定終
了後モータは停止させ、作業者は試料を交換した
後、再び測定を行なう。
Di = di + di + 4/2 (i = 0, 1, 2, 3) The sample inner diameter value is the maximum value or minimum value among D 0 , D 1 , D 2 , D 3 or the 4th value from D 0 to D 3
It is decided in advance which one of the average values of the above data is to be used, and the representative value D of the inner diameter is determined by a processing means such as a microprocessor and displayed numerically on a 7-segment LED. Determine and display whether it is ranked. After the measurement is completed, the motor is stopped, the operator replaces the sample, and then performs the measurement again.

以上述べたように、本考案によるガラス管内径
選別装置では作業者が行なわなければならないの
は試料のローラ上への着脱のみであり、作業労力
が大巾に削減される。また、測定はほぼ試料を1
回転させるのに必要な時間だけで済むため、測定
時間の短縮が実現できる。
As described above, in the glass tube inner diameter sorting apparatus according to the present invention, the only thing the operator has to do is to load and unload the sample onto and from the roller, which greatly reduces the work effort. In addition, the measurement was performed using approximately 1 sample.
Measurement time can be shortened because only the time required for rotation is required.

さらに、データの精度・信頼性に関しても、上
記実施例の説明では測定方向が45゜おきの4組の
データから代表値を算出するものとしたが、レー
ザ走査系の走査速度は500Hz程度まで可能である
から、もつと細かい角度おきにデータの取込みを
行なうことができ、高精度・高信頼性の測定・選
別が測定時間の大幅な増加を伴わずに行なえる。
Furthermore, regarding the accuracy and reliability of the data, in the explanation of the above example, it was assumed that the representative value was calculated from four sets of data with measurement directions separated by 45 degrees, but the scanning speed of the laser scanning system can be up to about 500Hz. Therefore, data can be taken in at very small angles, and highly accurate and reliable measurement and selection can be performed without a significant increase in measurement time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の外径測定用レーザ走査系の原理
図、第2図は光電素子の出力波形図、第3図は本
考案における原理説明図、第4図は本考案におけ
る測定時の出力波形図、第5図は本考案一実施例
の斜視図、第6図は回転駆動機構部の説明図であ
る。図中の各記号はそれぞれ次のものを示す。 1……レーザ発振器、2……音さ偏向器、3…
…光電素子、4……被測定物、11,12,13
……光線軌跡、20……機構部、21……制御
部、22……試料ガラス管、23,24……ゴム
ライニング、25……スタートスイツチ、26,
27,28……シヤフト、30,31,32……
歯車。
Figure 1 is a principle diagram of a conventional laser scanning system for outer diameter measurement, Figure 2 is a diagram of the output waveform of the photoelectric element, Figure 3 is a diagram explaining the principle of the present invention, and Figure 4 is the output during measurement in the present invention. FIG. 5 is a perspective view of an embodiment of the present invention, and FIG. 6 is an explanatory diagram of the rotational drive mechanism. Each symbol in the figure indicates the following. 1... Laser oscillator, 2... Tuning fork deflector, 3...
...Photoelectric element, 4...Object to be measured, 11, 12, 13
...Light ray trajectory, 20...Mechanism section, 21...Control section, 22...Sample glass tube, 23, 24...Rubber lining, 25...Start switch, 26,
27, 28...shaft, 30, 31, 32...
gear.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 微小口径レーザスポツト走査部と、走査範囲内
におかれた試料ガラス管肉厚部のレンズ効果によ
り前記レーザが集光する位置に配置された受光素
子と、試料ガラス管回転駆動機構と、上記回転駆
動用モータと、上記モータの回転速度調整と上記
レーザ走査系の出力のA/D変換を行う電気回路
と、上記回路から出力されるデータの処理を行う
手段と、を備えて構成されていることを特徴とす
るガラス管内径選別装置。
a micro-diameter laser spot scanning section, a light receiving element arranged at a position where the laser beam is focused by the lens effect of the thick part of the sample glass tube placed within the scanning range, a sample glass tube rotation drive mechanism, and the above-mentioned rotation. The device includes a drive motor, an electric circuit that adjusts the rotational speed of the motor and A/D converts the output of the laser scanning system, and means that processes data output from the circuit. A glass tube inner diameter sorting device characterized by:
JP8247781U 1981-06-04 1981-06-04 Expired JPS6118402Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247781U JPS6118402Y2 (en) 1981-06-04 1981-06-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247781U JPS6118402Y2 (en) 1981-06-04 1981-06-04

Publications (2)

Publication Number Publication Date
JPS57194014U JPS57194014U (en) 1982-12-09
JPS6118402Y2 true JPS6118402Y2 (en) 1986-06-04

Family

ID=29877940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247781U Expired JPS6118402Y2 (en) 1981-06-04 1981-06-04

Country Status (1)

Country Link
JP (1) JPS6118402Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064681A (en) * 1983-09-16 1985-04-13 日東食品製造株式会社 Automatic distributor for canning can

Also Published As

Publication number Publication date
JPS57194014U (en) 1982-12-09

Similar Documents

Publication Publication Date Title
US4902902A (en) Apparatus for determining the thickness of material
EP0698776B1 (en) Optical inspection of container finish dimensional parameters
CA1300370C (en) Measuring curvature of transparent or translucent material
US5291271A (en) Measurement of transparent container wall thickness
US3870415A (en) Method and means for measuring the refractive properties of an optical system
KR870000478B1 (en) Method of measuring optical outlines
US5017008A (en) Particle measuring apparatus
US6590221B2 (en) On-line measuring system for measuring substrate thickness and the method thereof
JP4359293B2 (en) Glass bottle inspection equipment
WO2022166037A1 (en) Tip clearance online measuring device, measuring method, and test bench
JPS6118402Y2 (en)
CN100485364C (en) Optical parameter absolute value measuring device and method thereof
JPS63191007A (en) Method of screw inspection and measurement
US5587787A (en) Process for measuring relative angles
JP3848310B2 (en) Glass bottle inspection equipment
JP2865337B2 (en) Optical measuring device
CN208012545U (en) A kind of Spectral Confocal measuring device for drilling quality detection
JPS61118639A (en) Apparatus for measuring quantity of eccentricity
CN209792554U (en) ESP continuous casting machine crystallizer bending section arc connection sample plate calibration tool
JPS59154308A (en) Automatic measuring method of object shape
JP2814255B2 (en) How to measure the refractive index distribution
JPS6246808B2 (en)
JPS61191912A (en) Method and apparatus for measuring eccentricity
SU1523907A1 (en) Spherometer
JPH02272308A (en) Non-contact type shape measuring instrument