JPS61118639A - Apparatus for measuring quantity of eccentricity - Google Patents

Apparatus for measuring quantity of eccentricity

Info

Publication number
JPS61118639A
JPS61118639A JP24133584A JP24133584A JPS61118639A JP S61118639 A JPS61118639 A JP S61118639A JP 24133584 A JP24133584 A JP 24133584A JP 24133584 A JP24133584 A JP 24133584A JP S61118639 A JPS61118639 A JP S61118639A
Authority
JP
Japan
Prior art keywords
lens
eccentricity
light
computer
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24133584A
Other languages
Japanese (ja)
Other versions
JPH053889B2 (en
Inventor
Haruo Ogawa
小川 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP24133584A priority Critical patent/JPS61118639A/en
Publication of JPS61118639A publication Critical patent/JPS61118639A/en
Publication of JPH053889B2 publication Critical patent/JPH053889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make it possible to measure quantity of eccentricity with high accuracy within a short time, by measuring the quantity of eccentricity of a lens by converting the same to a numerical value by using a computer. CONSTITUTION:The light from a light source is projected to the lens 43 to be inspected held to a lens frame 44 through a lens system 42 and the transmitted light is condensed to a focus position to form a spot image. This spot image is magnified by a lens system to be formed onto a light position detection element 46 and converted to X.Y voltage wherein the position of the centroid is linear in two directions X, Y. The output of the X.Y voltage is amplified by an amplifier 10 and converted to digital output by an A/D converter 13 to be inputted to a computer 14. Next, when a lens 5 to be inspected is rotated on the basis of a frame 6, the X.Y output of a light position detection element 9 changes when the lens 5 to be inspected is eccentric because the spot image draws a circle and the area of said circle is calculated by the computer 14 and the radius of said circle is subsequently calculated to calculate the quantity of eccentricity of the lens to be inspected.

Description

【発明の詳細な説明】 (技術分野) 本発明は、レンズの偏心量を測定するための偏心量測定
装置、詳しくはレンズの偏心量をコンピュータを用いて
電気的に測定する偏心量測定装置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an eccentricity measuring device for measuring the eccentricity of a lens, and more particularly to an eccentricity measuring device for electrically measuring the eccentricity of a lens using a computer. .

−1+ (従来技術) 従来のこの種の技術の一例として、反射型のレンズの芯
出し装置(特願昭58−225965号公報参照)を第
9図に示す。この芯出し装置は、レーザ光源1からの光
がコリメータレンズ系21/(よって所定の大きさの平
行光となり、ビームスプリッタ3を透過し、第1の集光
レンズ系4によってその焦点位置に集光する。ここで、
被検レンズ5に偏心がなくその反射球面の曲率中心を集
光レンズ系4の焦点位置に一致させると、被検レンズ5
0反射球面による反射光は再び焦点位置に集光すること
になる。そして、光軸に対して被検レンズ5が偏心して
いると、焦点位置上で近似的に光軸から偏心量の2倍だ
けずれた位置に集光することになる。次に、この光は再
び第1の集光レンズ系4を通り、ビームスプリツタ30
半透過面で反射して第2の集光レンズ系7により集光さ
れて点像となり、さらに1拡大レンズ系8によりこの点
像は拡大されて光位置検出素子9上に結像する。この光
位置検出素子9は集光した点像のX−Yの二方向の重心
位置をこれとリニアなX−Yの電圧に変換する。このX
−X電圧は増幅器10′により増幅され、オシロスコー
プのような表示部11に、横軸なX電圧、縦軸なX電圧
として、第10図に示されるように輝点12として表示
される。今、この状態で被検レンズ5をその保持枠6を
基準に回転すると、表示部11において輝点12は第1
1図に示すように回転して円の軌跡を描くことになる。
-1+ (Prior Art) As an example of this type of conventional technology, FIG. 9 shows a reflective lens centering device (see Japanese Patent Application No. 58-225965). In this centering device, light from a laser light source 1 becomes a parallel beam of a predetermined size through a collimator lens system 21/(therefore, is transmitted through a beam splitter 3, and is focused at its focal position by a first condensing lens system 4). light.Here,
If the test lens 5 is not decentered and the center of curvature of its reflecting spherical surface matches the focal position of the condenser lens system 4, the test lens 5
The light reflected by the 0-reflection spherical surface will be focused again on the focal position. If the lens 5 to be tested is decentered with respect to the optical axis, the light will be focused at a position approximately shifted from the optical axis by twice the amount of eccentricity on the focal position. Next, this light passes through the first condensing lens system 4 again and passes through the beam splitter 30.
The light is reflected by the semi-transparent surface and condensed by the second condensing lens system 7 to form a point image, which is further magnified by the first magnifying lens system 8 and formed on the optical position detection element 9 . This optical position detection element 9 converts the gravity center position of the focused point image in two directions of X-Y into an X-Y voltage linear therewith. This X
The -X voltage is amplified by an amplifier 10' and displayed as a bright spot 12 on a display unit 11 such as an oscilloscope, with the horizontal axis representing the X voltage and the vertical axis representing the X voltage, as shown in FIG. Now, when the test lens 5 is rotated with reference to its holding frame 6 in this state, the bright spot 12 on the display section 11 will be the first
As shown in Figure 1, it will rotate and draw a circular trajectory.

この半径の大小が被検レンズ5の偏心量の大小を示すこ
とになる。しかしながら、この装置においては偏心量を
表示部11を目視で見て判断するので、偏心量測定装置
としては、 (1)正確な偏心量がわからない。
The size of this radius indicates the amount of eccentricity of the lens 5 to be tested. However, in this device, since the amount of eccentricity is determined by visually observing the display unit 11, as an eccentricity measuring device, (1) the exact amount of eccentricity cannot be determined.

(2)微少な偏心量を知るためには、表示部を拡大する
操作が必要である。
(2) In order to know the minute amount of eccentricity, it is necessary to enlarge the display section.

という欠点があった。There was a drawback.

(目的) 本発明の目的は、上記の点に鑑み、高精度にレンズの偏
心量をコンピュータを用いて数値化して測定する偏心量
測定装置を提供するにある。
(Objective) In view of the above-mentioned points, an object of the present invention is to provide an eccentricity measurement device that digitizes and measures the eccentricity of a lens with high precision using a computer.

(概要) 本発明は、上記の目的を達成するため、光源からの光を
コリメートして被検レンズに投射するためのレンズ系と
、被検レンズを回転するための回転機構部と、被検レン
ズから集光した点像を拡大するための拡大レンズ系と、
拡大された点像の光量的重心位置を電気信号として検出
するための光位置検出素子と、ここで得られる電気信号
を増幅するための増幅器と、増幅されたアナログ信号を
デジタル変換するA/D変換器と、このA/D変換器の
出力により被検レンズの偏心量を計算するコンピータと
から構成される偏心量測定装置であって、被測定レンズ
の偏心量を高精度でデジタル的に得ることができる。
(Summary) In order to achieve the above object, the present invention includes a lens system for collimating light from a light source and projecting it onto a test lens, a rotation mechanism section for rotating the test lens, and a rotation mechanism for rotating the test lens. a magnifying lens system for magnifying the point image collected from the lens;
An optical position detection element for detecting the position of the center of gravity of the magnified point image in terms of light quantity as an electrical signal, an amplifier for amplifying the electrical signal obtained here, and an A/D for converting the amplified analog signal into digital. This eccentricity measurement device is composed of a converter and a computer that calculates the eccentricity of the lens to be measured based on the output of the A/D converter, and digitally obtains the eccentricity of the lens to be measured with high precision. be able to.

(実施例) 以下、図面に基づいて本発明を説明する。第1図は、本
発明による偏心量測定装置の原理を示す構成概略図であ
る。光源41からの光はコリメートlレンズ系42によ
り平行光となり、被検レンズ枠44に回転可能に保持さ
れた被検レンズ43に投射される。被検レンズ43から
の透過光は、その被検レンズ43の焦点位置に集光して
点像となる。この点像は拡大レンズ系45により拡大さ
れ、光位置検出素子46上に結像する。この光位置検出
素子46は集光した点像のX−Yの二方向の重心位置を
リニアなX−Yの電圧に変換する。とのX−X電圧は増
幅547により増幅されてA/D変換器4BVC入力し
、デジタル出力となってコンピュータ49に入力される
。今、この状態で被検レンズ枠44を基準として被検レ
ンズ43を回転すると、被検レンズ43が被検レンズ4
4に対して偏心している場合には、光位置検出素子46
上に集光した点像は円を描くことになる。したがって、
この光位置検出素子460X−Yの出力は点像が円を描
くことにより変化し、コンピュータ49のX−Yのデジ
タル入力もそれにしたがって変化する。
(Example) The present invention will be described below based on the drawings. FIG. 1 is a schematic configuration diagram showing the principle of an eccentricity measuring device according to the present invention. The light from the light source 41 is turned into parallel light by the collimating lens system 42, and is projected onto the test lens 43 rotatably held by the test lens frame 44. The transmitted light from the test lens 43 is condensed at the focal position of the test lens 43 to form a point image. This point image is magnified by the magnifying lens system 45 and formed onto the optical position detection element 46 . This optical position detection element 46 converts the position of the center of gravity of the focused point image in the two directions of X-Y into linear X-Y voltages. The XX voltage is amplified by the amplifier 547 and input to the A/D converter 4BVC, and is input to the computer 49 as a digital output. Now, when the test lens 43 is rotated using the test lens frame 44 as a reference in this state, the test lens 43 is rotated.
4, the optical position detection element 46
The point image focused above will draw a circle. therefore,
The output of the optical position detection element 460X-Y changes as the point image draws a circle, and the X-Y digital input of the computer 49 changes accordingly.

次ニ、コンピュータ49における偏心量の計算方法の原
理を説明する。第2図に示すように、コンピュータ49
のデジタル入力のうち、X入力を横軸にX入力を縦軸に
とると、偏心した被検レンズ43を回転させると円を描
くことになる。この円の半径なr1偏心した被検レンズ
43の偏心量をδとし、前記拡大レンズ45.光位置検
出装置46.増幅器47およびA/D変換器48の総合
的な倍率をmとすれば、 r=mδ 、 δ==r/、1 となる。したがって倍率mを知り半径rを求めれば偏心
量δを知ることができる。
Next, the principle of how the computer 49 calculates the amount of eccentricity will be explained. As shown in FIG.
Of the digital inputs, if the X input is taken as the horizontal axis and the X input is taken as the vertical axis, then when the eccentric test lens 43 is rotated, it will draw a circle. The amount of eccentricity of the test lens 43 which is eccentric by r1, which is the radius of this circle, is δ, and the magnifying lens 45. Optical position detection device 46. If the overall magnification of the amplifier 47 and A/D converter 48 is m, then r=mδ, δ==r/, 1. Therefore, by knowing the magnification m and finding the radius r, the amount of eccentricity δ can be found.

今、時刻tnに(Xn+ Y(1)のデジタル入力があ
り、時刻tn+1に(Xn+1’ yn−H)のデジタ
ル入力があるとする。そして、 Sn+、=Sn+yn+、(Xn+、−Xn)(nは整
数)とすれば、Xn+1が増加しているとき、第3図に
示すようにSn+1は増加し、Xn+1が減少している
ときは第4図に示すようにSn+、は減少する。これよ
り被検レンズ43が1回転すると、第5図に示すように
Sn+、はX−X入力が描く円の面積となり、これより
半径rが求められる。
Now, suppose there is a digital input of (Xn+Y(1) at time tn, and a digital input of (Xn+1' yn-H) at time tn+1. Then, Sn+, = Sn+yn+, (Xn+, -Xn)(n is an integer), when Xn+1 increases, Sn+1 increases as shown in Figure 3, and when Xn+1 decreases, Sn+ decreases as shown in Figure 4. From this, When the lens 43 to be tested rotates once, as shown in FIG. 5, Sn+ becomes the area of the circle drawn by the XX input, and the radius r is determined from this.

したがって、コンピュータ49はX−Yの入力を得るだ
けで偏心量を求めることができる。
Therefore, the computer 49 can determine the amount of eccentricity simply by receiving the XY input.

次に、第6図に基づいて本発明の第1実施例を説明する
。この実施例は反射型の偏心量測定装置に本発明を適用
したものであって、上記第9図に示された従来例におけ
る表示部11をA/D変換器13およびコンピュータ1
4に変えたものであり、その他の構成は全く同じである
から同一部材には同一符号を付し、その説明は省略する
。したがって、光位置検出素子9のX−Y電圧の出力が
増幅器10で増幅されるまでは上記第9図の従来例のも
のと全く同様である。増幅器10で増幅されたX・Y出
力は、A/D変換器13によりデジタル出力となりコン
ピュータ14ニ入力される。今、この状態で、被検レン
ズ枠6を基準として被検レンズ5を回転させると、被検
レンズ5が被検レンズ枠6に対して偏心している場合に
は、光位置検出素子9上に集光した点像は円を描く。し
たがって、光位置検出素子9のX−Y出力は点像が円を
描くことにより変化し、コンピュータ14によりその円
の面積を計算し、次いで円の半径を計算することにより
被検レンズの偏心量が求められる。これにより(1)偏
心量を数値化して求めることができる。
Next, a first embodiment of the present invention will be described based on FIG. In this embodiment, the present invention is applied to a reflection type eccentricity measuring device, and the display unit 11 in the conventional example shown in FIG. 9 is replaced by an A/D converter 13 and a computer 1.
4, and the other configurations are completely the same, so the same members are given the same reference numerals and their explanations will be omitted. Therefore, until the output of the X-Y voltage of the optical position detection element 9 is amplified by the amplifier 10, it is exactly the same as the conventional example shown in FIG. The X and Y outputs amplified by the amplifier 10 are turned into digital outputs by the A/D converter 13 and inputted to the computer 14 . Now, in this state, when the test lens 5 is rotated using the test lens frame 6 as a reference, if the test lens 5 is eccentric with respect to the test lens frame 6, the optical position detection element 9 will be The focused point image draws a circle. Therefore, the X-Y output of the optical position detection element 9 changes as the point image draws a circle, and the computer 14 calculates the area of the circle, and then calculates the radius of the circle to determine the eccentricity of the lens to be tested. is required. As a result, (1) the amount of eccentricity can be numerically determined.

(2)微小な偏心量も高精度で求めることができる。(2) Even small amounts of eccentricity can be determined with high precision.

という効果がある。There is an effect.

次に、第7図に基づいて本発明の第2実施例を説明する
。本実施例は本発明を透過型の偏心量測定装置に適用し
たものであって、図示してはいないが、検検レンズ枠1
04をチャックしている治具は光軸方向に移動できる機
能を有している。レーザ光源101からの光はコリメー
トレンズ系102VCよりコリメートされて平行光にな
り被検レンズ103に投射される。この光は被検レンズ
103によりその焦点位置に集光し、次いで拡大レンズ
系105によりビームスプリッタ106を介して透過光
と反射光に二分され、透過光は光位置検出素子107の
面上に拡大されて集光する。一方、反射光は第8図に平
面図として示されるスリット板111上に集光する。こ
のスリット板111は常時モータにより図示の矢印方向
に定速回転しており、そのスリット111aによって一
定間隔のパルスを光量検出素子112に透過するように
なっている。この透過光量は、被検レンズ103の移動
位置が正確でない場合、スリット板111の面上には集
光せずこの位置でのビ一ムが拡大されるので小さくなる
。この透過光量を光量検出素子112で検出し、このパ
ルス信号の振幅すなわち透過光量を表示部113で表示
するようになっている。従って、この表示部113を見
ながらこれが最大となるように被検レンズ103を光軸
方向に移動させれば、スリット板111と共役の位置に
ある光位置検出素子107の面上に最大の光を集光させ
ることができる。そして常にこの状態で光位置検出素子
107のX−Yの出力が増幅器10日゛により増幅され
、さらにA/D変換器109によりデジタル出力となり
コンピュータ110に入力される。
Next, a second embodiment of the present invention will be described based on FIG. In this embodiment, the present invention is applied to a transmission type eccentricity measuring device, and although not shown, an inspection lens frame 1
The jig that chucks 04 has a function of being able to move in the optical axis direction. The light from the laser light source 101 is collimated by the collimating lens system 102VC to become parallel light and projected onto the lens 103 to be tested. This light is focused at its focal point by the test lens 103, and then split into two by the magnifying lens system 105 through the beam splitter 106 into transmitted light and reflected light, and the transmitted light is expanded onto the surface of the optical position detection element 107. light is focused. On the other hand, the reflected light is focused on a slit plate 111 shown in a plan view in FIG. This slit plate 111 is constantly rotated by a motor at a constant speed in the direction of the arrow shown in the figure, and the slits 111a transmit pulses at regular intervals to the light amount detection element 112. If the moving position of the test lens 103 is not accurate, the amount of transmitted light will be small because the light will not be focused on the surface of the slit plate 111 and the beam at this position will be enlarged. The amount of transmitted light is detected by a light amount detection element 112, and the amplitude of this pulse signal, that is, the amount of transmitted light is displayed on a display section 113. Therefore, if the lens 103 to be tested is moved in the optical axis direction while looking at the display section 113 so that the display section 113 becomes maximum, the maximum light will be on the surface of the optical position detection element 107 located at a position conjugate with the slit plate 111. can be focused. In this state, the X-Y output of the optical position detection element 107 is amplified by the amplifier 10, and further converted into a digital output by the A/D converter 109 and input to the computer 110.

この外は前記第1実施例と同一であり、同様に偏心量を
求めることができる。したがって、透過型の偏心量測定
装置においても、この方法ならば偏心量を数値化して求
めることができる。
The rest is the same as the first embodiment, and the amount of eccentricity can be determined in the same manner. Therefore, even in a transmission type eccentricity measuring device, the eccentricity can be numerically determined using this method.

(発明の効果) 以上の説明で明らかなように、本発明の偏心量測定装置
は次のような効果が得られる。
(Effects of the Invention) As is clear from the above description, the eccentricity measuring device of the present invention provides the following effects.

(1)作業者が目視で偏心量を求めるのではなく、数値
で偏心量が求められるため、作業者による測定ミスを防
止することができる。
(1) Since the amount of eccentricity is determined numerically instead of being determined visually by the operator, measurement errors by the operator can be prevented.

(2)微少な偏心量を求める場合も、表示部を拡大する
必要がなく、高精度でしかも短時間で測定することがで
きる。
(2) Even when determining a minute amount of eccentricity, there is no need to enlarge the display section, and measurement can be performed with high precision and in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の偏心量測定装置の原理を示す概略構
成図、 第2図〜第5図は、偏心量を計算する過程を示す綜図、 第6図は、本発明の一実施例を示す偏心量測定装置の概
略構成図、 第7図は、本発明の他の実施例を示す偏心量測定装置の
概略構成図、 第8図は、上記第7図に示す実施例に使用されるスリッ
ト円板の平面図、 第9図は、従来の偏心量測定装置の一例を示す概略構成
図、 第10図および第11図は、上記第9図の表示部の拡大
図である。 1 、41,101・・・・光源 2,4,42,102−・・・コリメートレンズ系5 
、43,103・・・・被検レンズ6 、44,104
・・・・保持枠(回転機構部)8 、45,105・・
・・拡大レンズ系9 、46,107・・・・光位置検
出素子10、47,108・・・・増幅器 13、48,109・・・・A/D変換器14、49,
110・・・・コンピュータ特許出願人    オリン
パス光学工業株式会社111、外1 区 外2区       馬3区 %4区       外5図
Fig. 1 is a schematic configuration diagram showing the principle of the eccentricity measuring device of the present invention, Figs. 2 to 5 are diagrams showing the process of calculating the eccentricity, and Fig. 6 is an embodiment of the present invention. FIG. 7 is a schematic configuration diagram of an eccentricity measuring device showing another embodiment of the present invention; FIG. 8 is a schematic diagram of an eccentricity measuring device used in the embodiment shown in FIG. 7 above. FIG. 9 is a schematic configuration diagram showing an example of a conventional eccentricity measuring device. FIGS. 10 and 11 are enlarged views of the display section in FIG. 9. 1, 41, 101...Light source 2, 4, 42, 102-...Collimating lens system 5
, 43, 103... Test lens 6 , 44, 104
...Holding frame (rotating mechanism part) 8, 45, 105...
... Magnifying lens system 9, 46, 107... Optical position detection element 10, 47, 108... Amplifier 13, 48, 109... A/D converter 14, 49,
110... Computer patent applicant Olympus Optical Industry Co., Ltd. 111, outside 1 2 outside wards Ma 3 wards % 4 wards outside 5 figures

Claims (1)

【特許請求の範囲】[Claims] 光源とこの光を被検レンズに投射するためのレンズ系と
、被検レンズを回転するための回転機構部と、被検レン
ズからの集光した点像を拡大するための拡大レンズ系と
、拡大された点像の光量的重心位置を電気信号として検
出するための光位置検出素子と、ここで得られる電気信
号を増幅するための増幅器と、増幅されたアナログ信号
をデジタル信号に変換するためのA/D変換器と、A/
D変換器の出力により被検レンズの偏心量を計算するコ
ンピュータとからなる偏心量測定装置。
A light source, a lens system for projecting this light onto the test lens, a rotation mechanism section for rotating the test lens, and an enlarging lens system for enlarging the point image focused from the test lens; An optical position detection element for detecting the position of the center of gravity of the magnified point image as an electrical signal, an amplifier for amplifying the electrical signal obtained here, and an amplifier for converting the amplified analog signal into a digital signal. A/D converter and A/D converter of
An eccentricity measurement device comprising a computer that calculates the eccentricity of a lens to be tested based on the output of a D converter.
JP24133584A 1984-11-15 1984-11-15 Apparatus for measuring quantity of eccentricity Granted JPS61118639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24133584A JPS61118639A (en) 1984-11-15 1984-11-15 Apparatus for measuring quantity of eccentricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24133584A JPS61118639A (en) 1984-11-15 1984-11-15 Apparatus for measuring quantity of eccentricity

Publications (2)

Publication Number Publication Date
JPS61118639A true JPS61118639A (en) 1986-06-05
JPH053889B2 JPH053889B2 (en) 1993-01-18

Family

ID=17072766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24133584A Granted JPS61118639A (en) 1984-11-15 1984-11-15 Apparatus for measuring quantity of eccentricity

Country Status (1)

Country Link
JP (1) JPS61118639A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197832A (en) * 1987-10-09 1989-04-17 Olympus Optical Co Ltd Measuring apparatus of eccentricity
US5059022A (en) * 1988-11-11 1991-10-22 Olympus Optical Company Limited Device for measuring radius of curvature and a method thereof
US5280336A (en) * 1991-03-29 1994-01-18 Optikos Corporation Automated radius measurement apparatus
US5416574A (en) * 1991-03-29 1995-05-16 Optikos Corporation Automated optical measurement apparatus
US5548396A (en) * 1993-08-13 1996-08-20 Ricoh Company, Ltd. Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face
JP2006175343A (en) * 2004-12-22 2006-07-06 Matsushita Electric Ind Co Ltd Rice polishing device
EP2184596A1 (en) * 2007-08-27 2010-05-12 Nikon Corporation Wavefront aberration measuring device and method and wavefront aberration adjusting method
JP2012118066A (en) * 2010-11-29 2012-06-21 Trioptics Gmbh Measurement of position of curvature center of optical plane of multi-lens optical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519620A (en) * 1974-07-15 1976-01-26 Matsushita Electric Ind Co Ltd
JPS5873336A (en) * 1981-10-28 1983-05-02 株式会社トプコン Apparatus for measuring curvature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519620A (en) * 1974-07-15 1976-01-26 Matsushita Electric Ind Co Ltd
JPS5873336A (en) * 1981-10-28 1983-05-02 株式会社トプコン Apparatus for measuring curvature

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197832A (en) * 1987-10-09 1989-04-17 Olympus Optical Co Ltd Measuring apparatus of eccentricity
US5059022A (en) * 1988-11-11 1991-10-22 Olympus Optical Company Limited Device for measuring radius of curvature and a method thereof
US5280336A (en) * 1991-03-29 1994-01-18 Optikos Corporation Automated radius measurement apparatus
US5416574A (en) * 1991-03-29 1995-05-16 Optikos Corporation Automated optical measurement apparatus
US5548396A (en) * 1993-08-13 1996-08-20 Ricoh Company, Ltd. Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face
JP2006175343A (en) * 2004-12-22 2006-07-06 Matsushita Electric Ind Co Ltd Rice polishing device
EP2184596A1 (en) * 2007-08-27 2010-05-12 Nikon Corporation Wavefront aberration measuring device and method and wavefront aberration adjusting method
EP2184596A4 (en) * 2007-08-27 2012-12-05 Nikon Corp Wavefront aberration measuring device and method and wavefront aberration adjusting method
US8797520B2 (en) 2007-08-27 2014-08-05 Nikon Corporation Wavefront aberration measuring device and method and wavefront aberration adjusting method
TWI453381B (en) * 2007-08-27 2014-09-21 尼康股份有限公司 Wavefront aberration measuring apparatus and method, and wavefront aberration adjustment method
JP2012118066A (en) * 2010-11-29 2012-06-21 Trioptics Gmbh Measurement of position of curvature center of optical plane of multi-lens optical system

Also Published As

Publication number Publication date
JPH053889B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US3877788A (en) Method and apparatus for testing lenses
JP3511450B2 (en) Position calibration method for optical measuring device
US5710631A (en) Apparatus and method for storing interferometric images of scanned defects and for subsequent static analysis of such defects
EP0831296B1 (en) Optical apparatus for rapid defect analysis
Gao et al. Development of an optical probe for profile measurement of mirror surfaces
JPS61118639A (en) Apparatus for measuring quantity of eccentricity
US4600301A (en) Spinning disk calibration method and apparatus for laser Doppler velocimeter
JPS59166805A (en) Optical projector and use thereof
JPH08145620A (en) Position measuring apparatus for foreign matter on rotating body
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
TWI247095B (en) Optical revolving spindle error measurement device
JP3345149B2 (en) Aspherical lens eccentricity measuring device and centering device
JPS62144014A (en) Photoelectric position detector
JP2005214879A (en) Instrument and method for measuring eccentricity of non-spherical face, and aspheric lens used therefor
JP2505042B2 (en) Lens eccentricity measuring device
JP2830943B2 (en) Optical shape measurement method
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JP2001027580A (en) Method and apparatus for measurement of transmission decentration of lens
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JP2000205998A (en) Reflection eccentricity measuring apparatus
JPH0812126B2 (en) Aspherical lens eccentricity measuring device
JPH05240610A (en) Noncontact optical measuring instrument
JP2524357B2 (en) Optical signal processing method for optical fiber sensor for distance measurement
JPH06258181A (en) Eccentricity measuring apparatus
JP3268877B2 (en) Aspherical lens measurement method