JPS61183958A - Solid-state photo detector - Google Patents

Solid-state photo detector

Info

Publication number
JPS61183958A
JPS61183958A JP60023593A JP2359385A JPS61183958A JP S61183958 A JPS61183958 A JP S61183958A JP 60023593 A JP60023593 A JP 60023593A JP 2359385 A JP2359385 A JP 2359385A JP S61183958 A JPS61183958 A JP S61183958A
Authority
JP
Japan
Prior art keywords
region
light
wavelength
receiving cell
cell means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60023593A
Other languages
Japanese (ja)
Inventor
Makoto Shizukuishi
誠 雫石
Ryuji Kondo
近藤 隆二
Takashi Murayama
任 村山
Hiroshi Tamayama
宏 玉山
Takashi Yano
孝 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60023593A priority Critical patent/JPS61183958A/en
Publication of JPS61183958A publication Critical patent/JPS61183958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain the titled device sensitive in every wavelength region by a method wherein the first photo receiving cell means is formed from the main surface to a depth corresponding to the first wavelength region, and the second photo receiving cell means from the main surface to a position deeper than the first region by corresponding to the second wavelength region. CONSTITUTION:A short-wavelength light absorption region 10a is formed as a MOS structure on one main surface of a p-type single crystal Si substrate 12 and consists of a relatively shallow n<+> region 14 and a p<+> region 16 thereunder: these regions form a photo diode generating photo carriers in response to incident light. A long-wavelength light absorption region 10c basically has the same structure as that of said region 10a and consists of an n<+> region 44 formed at a relatively deep junction depth and a p<+> region 46 thereunder. The p<+> chip region 46 includes a LOCOS region, and elements are isolated by reducing the cross-talk to adjacent image pickup cells by shortening the lifetime of minority carriers.

Description

【発明の詳細な説明】 技術分野 本発明は固体光検出装置、とくに光感応領域、すなわち
受光セル部がpn接合ダイオード構造をなす固体光検出
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a solid-state photodetection device, and particularly to a solid-state photodetection device in which a photosensitive region, that is, a light-receiving cell portion has a pn junction diode structure.

背景技術 とりわけ受光部にn◆p接合を用いたフォトダイオード
構造の固体光検出装置では、短波長光における感度、す
なわち青感度の向上のため、および接合の容量を増加さ
せてそのダイナミックレンジを拡大させるため、通常、
半導体構体の表面から比較的浅い接合を形成したり、接
合領域の近彷にp中領域を設けるなどの手段が従来より
講じられている。
Background Art In particular, solid-state photodetectors with a photodiode structure that use an n◆p junction in the light receiving section are used to improve sensitivity to short wavelength light, that is, blue sensitivity, and to expand the dynamic range by increasing the capacitance of the junction. In order to
Conventionally, measures have been taken such as forming a relatively shallow junction from the surface of a semiconductor structure or providing a p-type region in the vicinity of the junction region.

しかしこれに伴なって、接合耐圧が低下することや、こ
のような固体光検出装置を撮像装置として利用する場合
、p中領域の不純物濃度の増加による接合リーク電流に
起因して画像に白キズが現われたりする欠点があった。
However, along with this, the junction breakdown voltage decreases, and when such a solid-state photodetector is used as an imaging device, white scratches may appear on the image due to junction leakage current due to an increase in impurity concentration in the medium p region. There was a drawback that it appeared.

また、長波長領域の光については、発生した光キャリア
が隣接画素の領域に拡散するクロストークが生ずること
があり、これによってカラー画像の場合には画像の色分
離が不完全となる問題もあった。
In addition, with regard to light in the long wavelength region, crosstalk may occur in which the generated photocarriers diffuse into adjacent pixel areas, and this may cause the problem of incomplete color separation in the case of color images. Ta.

目   的 本発明はこのような従来技術の欠点を解消し、ダイナミ
ックレンジや接合耐圧を実質的に低下させることなく、
各波長領域において高い感度を有rる固体光検出装置を
提供することを目的とする。
Purpose The present invention eliminates the drawbacks of the prior art, and provides a method to achieve this without substantially reducing the dynamic range or junction breakdown voltage.
An object of the present invention is to provide a solid-state photodetector having high sensitivity in each wavelength region.

発明の開示 本発明による固体光検出装置は、一方の導電型の半導体
基板と、基板の主面に形成され、第1の波長域の入射光
によって光キャリアを発生する第1の受光セル手段と、
前記主面に形成され、第1の波長域より長い波長の第2
の波長域の入射光によって光キャリアを発生する第2の
受光セル手段とを有し、第1の受光セル手段は、前記主
面から第1の波長域に応じた深さまで形成され少なくと
も第1の波長域の入射光によって光キャリアを励起する
接合をなす他方の導電型の第1の領域を含み、752の
受光セル手段は、前記主面から第2の波長域に応じて第
1の領域より深い深さまで形成され第2の波長域の入射
光によって光キャリアを励起する接合をなす他方の導電
型の第2の領域を含むものである。
DISCLOSURE OF THE INVENTION A solid-state photodetection device according to the present invention includes a semiconductor substrate of one conductivity type, a first light receiving cell means formed on the main surface of the substrate, and generating photocarriers by incident light in a first wavelength range. ,
A second wavelength region formed on the main surface and having a wavelength longer than the first wavelength range.
a second light-receiving cell means for generating optical carriers by incident light in a wavelength range, and the first light-receiving cell means is formed from the main surface to a depth corresponding to the first wavelength range, The light-receiving cell means 752 includes a first region of the other conductivity type forming a junction that excites optical carriers by incident light in a wavelength range of . It includes a second region of the other conductivity type that is formed to a deeper depth and forms a junction that excites optical carriers by incident light in the second wavelength range.

実施例の説明 次に添付図面を参照して本発明による固体光検11fj
装置の実施例を詳細に説明する。
DESCRIPTION OF EMBODIMENTS Next, with reference to the accompanying drawings, a solid-state optical detector 11fj according to the present invention will be described.
An embodiment of the device will be described in detail.

第1A図〜第1C図を参照すると、本実施例では。Referring to FIGS. 1A to 1C, in this embodiment.

1つの固体光検出装置に3つの領域、すなわち受光セル
lOa、 10bおよび10cが形成されている。これ
らの領域10a、 10bおよび10cは、本実施例で
は可視光の3つの波長領域、すなわち短波長、中間波長
および長波長の領域に対応している。たとえ    ゛
ば水装置を、これらの領域が多数、2次元アレイ状に配
列されたカラー撮像装置として利用するときは、領域1
0aは肯い光を含む全波長領域に感応する画素セル(W
)として、また領域10bは緑色の光を含めてそれより
長い波長の領域に感応する画素セル(Ye)として、さ
らに領域10cは赤い光の波長領域に感応する画素セル
(R)として利用できる。または、領域10aおよび1
0bにそれぞれ適当な長波長光カットフィルタを使用す
れば、領域10aは胃い光の波長領域に感応する画素セ
ル(B)として、また領域10bは緑色の光の波長領域
に感応する画素セル(G)として利用できる。以下、本
実施例をカラー撮像装置に適用した例について説明する
One solid-state photodetector is formed with three regions, that is, light receiving cells IOa, 10b, and 10c. These regions 10a, 10b, and 10c correspond to three wavelength regions of visible light in this embodiment, namely, short wavelength, intermediate wavelength, and long wavelength regions. For example, when using a water device as a color imaging device in which many of these regions are arranged in a two-dimensional array, region 1
0a is a pixel cell (W
), the region 10b can be used as a pixel cell (Ye) sensitive to a wavelength region longer than green light, and the region 10c can be used as a pixel cell (R) sensitive to a wavelength region of red light. Or areas 10a and 1
If appropriate long wavelength light cut filters are used for 0b, the region 10a will become a pixel cell (B) sensitive to the wavelength region of dark light, and the region 10b will become a pixel cell (B) sensitive to the wavelength region of green light. G) can be used. An example in which this embodiment is applied to a color imaging device will be described below.

第1A図に示すように短波長光吸収領域10aは、p型
車結晶シリコン基板12の一方の主表面にMOS構造と
して形成されている。この領域10aは、MOS )ラ
ンジスタのソースを構成し不純物としてイオン注入され
たAsまたはPを含む比較的浅いn+領域14と、その
下のp÷領域16とからなり、これらは入射光に応動し
て光キャリアを発生するフォトダイオードを形成してい
る。これに対向する基板12の主表面の位置に、領域1
4とは分離されたn十領域18が形成され、これはMO
S )ランジスタのドレーンを構成している。なおp中
領域16は、n中領域14とp型基板12の間に形成さ
れる1+p接合の静電容量を増加させ、結果としてセル
10aへの入射光による飽和光量を増加させる機撤を有
し、必ずしも必要でない。
As shown in FIG. 1A, the short wavelength light absorption region 10a is formed as a MOS structure on one main surface of a p-type crystalline silicon substrate 12. As shown in FIG. This region 10a consists of a relatively shallow n+ region 14 that constitutes the source of a MOS transistor and contains As or P ion-implanted as an impurity, and a p÷ region 16 below it, which responds to incident light. This forms a photodiode that generates optical carriers. A region 1 is located on the main surface of the substrate 12 opposite to this.
An n+ region 18 is formed which is separated from the MO
S) It constitutes the drain of the transistor. Note that the p medium region 16 has a mechanism that increases the capacitance of the 1+p junction formed between the n medium region 14 and the p type substrate 12, and as a result increases the saturation amount of light incident on the cell 10a. However, it is not necessarily necessary.

これらのn中領域14および18を覆って2酸化シリコ
ンの膜20が形成され、その上の円領域14と18の間
の位置にゲート電極22が形成されている。ゲート電極
22は、本実施例では、たとえばリンまたはAsをドー
プした多結晶シリコンで形成されている。このような短
波長光吸収領域すなわち撮像セル10aは、他の撮像セ
ルに対して2酸化シリコンなどのフィールド酸化膜24
や、その下のp十領域(図示せず)で素子分離されてい
る。
A silicon dioxide film 20 is formed to cover these n medium regions 14 and 18, and a gate electrode 22 is formed above the silicon dioxide film 20 at a position between the circular regions 14 and 18. In this embodiment, the gate electrode 22 is made of polycrystalline silicon doped with phosphorus or As, for example. Such a short wavelength light absorption region, that is, the imaging cell 10a has a field oxide film 24 such as silicon dioxide, which is different from other imaging cells.
Elements are isolated by a p region (not shown) below.

n中領域14の下に形成される浅いp+チップ領域16
の不純物濃度は、n+p接合の逆耐圧の所望の下限値に
応じて設定される。短波長光吸収領域10aを短波長光
のみに応動する領域として使用する場合は、領域10a
の上に青領域の光より長い波長の光を実質的に除去する
光学フィルタを配設してもよい、なお、図の複雑化を避
けるため、同図において電極などの電気的接続要素や、
パッシベーション層などの保護膜など、本発明の理解に
直接関係ない要素は図示されていない。
Shallow p+ chip region 16 formed under n medium region 14
The impurity concentration is set according to the desired lower limit of the reverse breakdown voltage of the n+p junction. When using the short wavelength light absorption region 10a as a region that responds only to short wavelength light, the region 10a
An optical filter that substantially removes light with a wavelength longer than that of light in the blue region may be disposed above the blue region. In order to avoid complicating the diagram, electrical connection elements such as electrodes,
Elements that are not directly relevant to understanding the present invention, such as protective films such as passivation layers, are not shown.

第1B図に示すように中間波長光吸収領域10bは、基
本的には長波長光吸収領域10aと同様の構造を有し、
同じシリコン基板12の一方の主表面ににO8構造とし
て形成されている。相違する点は、領域10bが、そこ
で吸収すべき波長領域に対応した接合の深さに形成され
たn中領域34と、その下のp中領域36とで構成され
ることである。p中領域36は撮像セル10aのp中領
域16と同様の機能を有する。
As shown in FIG. 1B, the intermediate wavelength light absorption region 10b basically has the same structure as the long wavelength light absorption region 10a,
An O8 structure is formed on one main surface of the same silicon substrate 12. The difference is that the region 10b is composed of an n-medium region 34 formed at a junction depth corresponding to the wavelength region to be absorbed therein, and a p-medium region 36 below the n-medium region 34. The p-middle region 36 has the same function as the p-middle region 16 of the imaging cell 10a.

この接合の深さは、撮像セル10aのn中領域14より
深く、n中領域34にAsイオンまたはPイオンをイオ
ン注入する際の加速エネルギーを制御することによって
決定される。以下の図において、同様の要素は同じ参照
符号で示されている。
The depth of this junction is deeper than the n-middle region 14 of the imaging cell 10a, and is determined by controlling the acceleration energy when ion-implanting As ions or P ions into the n-middle region 34. In the following figures, similar elements are designated with the same reference numerals.

p+チップ領域36の広さと不純物濃度は、1+p接合
の逆耐圧の所望の下限値と、MOSトランジスタのゲー
ト闇値電圧を考慮して、可能なかぎり大きく設定される
。中間波長光吸収領域10bを中間波長光のみに応動す
る領域として使用する場合は、領域10bの上に中間波
長より長い波長の光を吸収するフィルタを配設してもよ
い。
The width and impurity concentration of the p+ chip region 36 are set as large as possible in consideration of the desired lower limit value of the reverse breakdown voltage of the 1+p junction and the gate dark value voltage of the MOS transistor. When the intermediate wavelength light absorption region 10b is used as a region that responds only to intermediate wavelength light, a filter that absorbs light with a wavelength longer than the intermediate wavelength may be provided above the region 10b.

第1C図に示すように長波長光吸収領域10cは、基本
的には短波長光吸収領域10aと同様の構造を有し、同
じシリコン基板12の一方の主表面にMOS構造として
形成されている。相違する点は、領域10cが、比較的
深い接合の深さに形成されたn十領域44と、その下の
p中領域46とで構成されることである。p中領域46
は撮像セル10aのp中領域16と同様のIa能を有す
る。この接合の深さは、撮像セル10bのn中領域34
より深く、n中領域34にAsイオンの他にリンイオン
をイオン注入することによって形成され、本実施例では
約800nmより長い波長の光を吸収するように構成さ
れている。なお、p+チップ領域4BにはLOGOS領
域も含まれ、少数キャリアの寿命を短くすることによっ
て隣接の撮像セルへのクロストークを減少させ、素子分
離を行なっている。
As shown in FIG. 1C, the long wavelength light absorption region 10c basically has the same structure as the short wavelength light absorption region 10a, and is formed as a MOS structure on one main surface of the same silicon substrate 12. . The difference is that region 10c is composed of an n+ region 44 formed at a relatively deep junction depth and a p-medium region 46 below. p middle region 46
has the same Ia ability as the p-middle region 16 of the imaging cell 10a. The depth of this junction is determined by the depth of the n-middle region 34 of the imaging cell 10b.
It is formed deeper by implanting phosphorus ions in addition to As ions into the n-middle region 34, and in this embodiment is configured to absorb light with a wavelength longer than about 800 nm. Note that the p+ chip region 4B also includes a LOGOS region, and by shortening the life of minority carriers, crosstalk to adjacent imaging cells is reduced and element isolation is achieved.

ここでp中領域18.38および46の形成条件を詳細
に説明する。浅いn中領域14を有する青色光吸収セル
10aでは、大きな接合容量は必要ない。これは、青に
対する視感度が低く、したがってその光強度も低くてよ
いためである。そこでp中領域16におけるp中不純物
の濃度は、緑色光吸収セル10bの    ・それより
低くてよい。同様に、赤色光吸収セル10cの接合容量
も緑色光吸収セル10bのそれより小さくてよい。
Here, the conditions for forming the p-middle regions 18, 38 and 46 will be explained in detail. A blue light absorption cell 10a having a shallow n-medium region 14 does not require a large junction capacitance. This is because visibility to blue is low, and therefore its light intensity may also be low. Therefore, the concentration of the p-type impurity in the p-type region 16 may be lower than that of the green light absorption cell 10b. Similarly, the junction capacitance of red light absorption cell 10c may be smaller than that of green light absorption cell 10b.

赤色光吸収セル10cにおけるp十領域48をn十領域
44の深さに従って深く形成することは重要である。そ
のためには、不純物イオン注入の際に高い加速エネルギ
ーを必要とする。したがって、高い注入エネルギーでフ
ィールド酸化膜24などの厚い酸化膜をも通過したB+
十などの注入イオンの存在は、長波長光による発生電荷
の隣接画素セルへの漏洩を阻止するJa能を果す、そこ
で、この場合のp4領域46の不純物濃度の設定は、接
合容量の増加のみならず、クロストークの改善をも企図
したもでである。
It is important that the p+ region 48 in the red light absorption cell 10c be formed as deep as the n+ region 44. For this purpose, high acceleration energy is required during impurity ion implantation. Therefore, B+ that passes through a thick oxide film such as the field oxide film 24 with high implantation energy.
The presence of implanted ions, such as ions, serves to prevent charges generated by long-wavelength light from leaking to adjacent pixel cells.Therefore, in this case, setting the impurity concentration of the p4 region 46 only increases the junction capacitance. It is also intended to improve crosstalk.

そこで第8A図に示すように、青色光吸収セル10aの
p十領域16は、yl+p接合の底部領域の一部に局在
形成すればよい、また緑色光吸収セル10bのp十領域
3Bは、第9B図に示すように接合容量を増すために青
色光吸収セル10aのそれよりも広く形成する。さらに
赤色光吸収セル10cのp十領域46は、第9C図に示
すようにフィールド酸化膜24の下の領域まで広がって
形成される。
Therefore, as shown in FIG. 8A, the p<0> region 16 of the blue light absorption cell 10a may be locally formed in a part of the bottom region of the yl+p junction, and the p<0> region 3B of the green light absorption cell 10b may be formed locally in a part of the bottom region of the yl+p junction. As shown in FIG. 9B, it is formed wider than that of the blue light absorption cell 10a in order to increase the junction capacitance. Furthermore, the p+ region 46 of the red light absorbing cell 10c is formed to extend to the region below the field oxide film 24, as shown in FIG. 9C.

ここでn十領域14.34および44、ならびにp÷領
域18、36および46の不純物濃度について説明する
The impurity concentrations of the n+ regions 14, 34 and 44 and the p÷ regions 18, 36 and 46 will now be described.

青色光吸収セル10aのn十領域14はn十不純物の濃
度を緑色光吸収セルtabの場合よりも低くするのが有
利である。これは、この領域での生成キャリアの寿命を
減じて素子の青色光に対する感度を低下させることがな
いようにするためである。
Advantageously, the n+ region 14 of the blue light absorbing cell 10a has a lower concentration of n+ impurities than in the green light absorbing cell tab. This is to avoid reducing the sensitivity of the element to blue light by reducing the lifetime of carriers generated in this region.

また緑色光吸収セル10bのn÷領域34は、接合容量
を増すために高くするのが有利である。赤色光吸収セル
10cのn十領域44は、これを深く形成するためにn
+イオンの注入量を多く、しかも高いエネルギーにて注
入を行なう、しかしp+イオンを用いるので、拡散係数
が大きく、As+イオン注入された領域よりも結果的に
は濃度が低くなることもある。したがって、赤色光吸収
セル10cのn◆領域44は緑色光吸収セル10bのそ
れより不純物濃度が低くてよい。
It is also advantageous for the n÷region 34 of the green light absorbing cell 10b to be high to increase junction capacitance. The n region 44 of the red light absorption cell 10c is formed with a depth of n
A large amount of + ions is implanted at high energy. However, since p + ions are used, the diffusion coefficient is large and the concentration may end up being lower than in the region where As + ions are implanted. Therefore, the n♦ region 44 of the red light absorption cell 10c may have a lower impurity concentration than that of the green light absorption cell 10b.

青色光吸収セル10aの接合容量は、前述のように緑色
光吸収セル10bのそれより小さくてよい。
The junction capacitance of the blue light absorption cell 10a may be smaller than that of the green light absorption cell 10b, as described above.

逆に緑色光吸収セルlObのp十領域3Bは、多い飽和
光量を得るために接合容量を大きくするのが有利である
。したがって、青色光吸収セル10aのp十領域16は
緑色光吸収セル10bのp十領域3Bよりもp÷不純物
の濃度を低く設定するのが有利である。
On the contrary, it is advantageous to increase the junction capacitance of the p+ region 3B of the green light absorption cell lOb in order to obtain a large amount of saturated light. Therefore, it is advantageous to set the concentration of p÷impurity in the p+ region 16 of the blue light absorption cell 10a to be lower than that in the p+ region 3B of the green light absorption cell 10b.

また赤色光吸収セル10cのp十領域4Bは、深く形成
されること、すなわち高いエネルギーでイオン注入され
ることが主眼であり、必ずしも緑色光吸収セルlObよ
りも接合容量を大きくする必要はなく、深いp十領域4
Bを形成するための拡散の深さを考慮すればよい、した
がって赤色光吸収セル10cのp÷領域46は、緑色光
吸収セル10bのp中領域36より不純物濃度が低くて
よい、これらの説明かられかるように、緑色光吸収セル
10bは他の色のセル10aおよび10cと比較して最
も飽和光量が多い。
Furthermore, the main purpose of the p+ region 4B of the red light absorption cell 10c is to be formed deeply, that is, to be ion-implanted with high energy, and it is not necessarily necessary to make the junction capacitance larger than that of the green light absorption cell lOb. deep p ten area 4
It is sufficient to consider the depth of diffusion for forming B. Therefore, the impurity concentration of the p/region 46 of the red light absorption cell 10c may be lower than that of the p medium region 36 of the green light absorption cell 10b. As can be seen, the green light absorption cell 10b has the highest amount of saturated light compared to the cells 10a and 10c of other colors.

第2図ないし第7C図を参照して本実施例による光検出
装置の製造方法の例を説明する。図では、簡単のため1
つの画素に対応する撮像セルが示されているが、本実施
例では単一の半導体基板にこのようなセルが多数2次元
アレイ状に配列された撮像セルアレイが製造される。こ
の例では、多結晶シリコンのゲート電極22の形成まで
は通常のnチャネルMOSデバイスの製造工程と同じ、
たとえばLOGOSによる絶縁分離法が有利に適用され
る。
An example of a method for manufacturing the photodetecting device according to this embodiment will be described with reference to FIGS. 2 to 7C. In the figure, 1 is used for simplicity.
Although an imaging cell corresponding to one pixel is shown, in this embodiment, an imaging cell array in which a large number of such cells are arranged in a two-dimensional array on a single semiconductor substrate is manufactured. In this example, the process up to the formation of the polycrystalline silicon gate electrode 22 is the same as the manufacturing process of a normal n-channel MOS device.
For example, a dielectric isolation method using LOGOS is advantageously applied.

まず、第2図に示すように、単結晶のp型シリコン基板
12を用意し、その一方の主表面に5i02層100、
およびSi3N、層102を形成する。次に、第3図に
示すように、撮像セルを構成する領域と、素子分離領域
をLOIII;O9によって形成する。撮像セル領域を
フォトレジスト104によってマスクし、残りの領域を
プラズマエッチする。2酸化シリコン層100の露出し
た部分からB+イオンを注入し、さらにフィールド酸化
膜24を成長させる。フォトレジスト104および窒化
膜102を除去した状態を第4図に示す。
First, as shown in FIG. 2, a single-crystal p-type silicon substrate 12 is prepared, and a 5i02 layer 100 is formed on one main surface of the substrate.
and Si3N, forming layer 102. Next, as shown in FIG. 3, a region constituting an imaging cell and an element isolation region are formed by LOIII; O9. The imaging cell area is masked with photoresist 104 and the remaining area is plasma etched. B+ ions are implanted from the exposed portion of the silicon dioxide layer 100, and a field oxide film 24 is further grown. FIG. 4 shows a state in which the photoresist 104 and the nitride film 102 have been removed.

次に、この構体の上にゲート酸化膜を成長させてMOS
ゲートの酸化膜20を形成し、ゲート電極22としての
閾値電圧を制御するためのイオンを注入する。この北に
多結晶シリコン層10Bを堆積させる(第5図)。
Next, a gate oxide film is grown on this structure to form a MOS
A gate oxide film 20 is formed, and ions for controlling the threshold voltage of the gate electrode 22 are implanted. A polycrystalline silicon layer 10B is deposited to the north of this (FIG. 5).

ゲート電極22を形成する領域をマスクしてプラズマエ
ッチにより残りの領域を除去し、 Asイオンをイオン
注入する。イオン注入の加速電圧は、たとえば約50〜
200KeV、不純物密度は約0.1〜〜1xlO18
cm−2である。これによって浅いn中領域14とドレ
ーン領域18が形成される(第6図)、n中領域14の
深さ、すなわち接合の深さは、0.11Lrs〜0.4
 JLtm程度が有利である。
A region where the gate electrode 22 is to be formed is masked, the remaining region is removed by plasma etching, and As ions are implanted. The acceleration voltage for ion implantation is, for example, about 50~
200KeV, impurity density is about 0.1~~1xlO18
cm-2. As a result, a shallow n-medium region 14 and a drain region 18 are formed (FIG. 6). The depth of the n-medium region 14, that is, the depth of the junction, is 0.11Lrs to 0.4Lrs.
JLtm level is advantageous.

こうして準備された半導体構体の主面に短波長光吸収領
域10aを形成するときは、第7A図に示すように、主
面のp+チップ領域1Bを形成する部分を開口させて他
をフォトレジスト108で覆い、ホウ素イオンB+をイ
オン注入する。イオン注入の加速電圧は、たとえば約3
0〜200KeV、不純物濃度は約Oo1〜3x101
3C11−2テある。これによッテn+領域14の下に
浅いp+領域16が形成される。なお、n◆領域14と
フィールド酸化膜24との境界部分は、pn接合からの
リークが最も多くなる危険性があるので。
When forming the short wavelength light absorption region 10a on the main surface of the semiconductor structure prepared in this way, as shown in FIG. Then, boron ions B+ are implanted. The accelerating voltage for ion implantation is, for example, about 3
0 to 200KeV, impurity concentration approximately Oo1 to 3x101
There is 3C11-2. As a result, a shallow p+ region 16 is formed below the n+ region 14. Note that the boundary between the n♦ region 14 and the field oxide film 24 has the greatest risk of leakage from the pn junction.

この部分を避けてp十不純物を打ち込むのが有利である
。フォトレジスト108を除去すると第1A図に示す状
態となる。
It is advantageous to avoid this portion and implant the p-doped impurity. When the photoresist 108 is removed, the state shown in FIG. 1A is obtained.

半導体構体の主面に中間波長光吸収領域10bを形成す
るときは、第7B図に示すように、主面のp+チップ領
域3Bを形成する部分を開口させて他をフォトレジスト
llOで覆い、ホウ素イオンB÷またはB÷+をイオン
注入する。イオン注入の加速電圧は、たとえば約200
〜500KeV、不純物濃度は約0.1〜8Klo13
0層−2である。これによって、撮像セルloaのp÷
領域16より不純物濃度の高いp中領域36が形成され
る。
When forming the intermediate wavelength light absorption region 10b on the main surface of the semiconductor structure, as shown in FIG. 7B, a portion of the main surface where the p+ chip region 3B will be formed is opened and the rest is covered with photoresist 11O, and boron Ions B÷ or B÷+ are implanted. The acceleration voltage for ion implantation is, for example, about 200
~500KeV, impurity concentration approximately 0.1~8Klo13
It is layer 0-2. By this, p of the imaging cell loa ÷
A medium p region 36 having a higher impurity concentration than the region 16 is formed.

次にP(リン)をイオン注入する。イオン注入の加速電
圧は、たとえば約lO〜200KeV、不純物濃度は約
0.1〜2xlO16c+++−2テあり、基板12ニ
垂直な方向の深さ約0.4〜0.8ル■に形成される。
Next, P (phosphorus) ions are implanted. The accelerating voltage for ion implantation is, for example, about 10 to 200 KeV, the impurity concentration is about 0.1 to 2xlO16c++-2, and the ion implantation is performed at a depth of about 0.4 to 0.8 l in the direction perpendicular to the substrate 12. .

これによってn◆領域34が完成する。フォトレジスト
110を除去すると第1B図に示す状態となる。
This completes the n♦ region 34. When the photoresist 110 is removed, the state shown in FIG. 1B is obtained.

長波長光吸収領域10cは次のようにして形成される。The long wavelength light absorption region 10c is formed as follows.

第7C図に示すように、主面のp+チップ領域46を形
成する部分を開口させて他をフォトレジスト112で覆
い、ホウ素イオンB+十をイオン注入する。この場合p
中領域4Bは、従来の素子のようにn+領域44の直下
の領域に局在させる必要はなく、とくに長波長光によっ
て励起された電荷が隣接画素セルへ横方向に拡散するの
を防ぐ目的で、隣接画素セルとの境界、すなわちフィー
ルド酸化膜24の下の領域にも分布させてよい、イオン
注入の加速電圧は、たとえば約400 KeV〜IMe
V、不純物濃度は約0.01〜1x1015cm−2テ
ある。これによッテ、撮像セル10bのp中領域36よ
りさらに垂直方向に深いp中領域4Bが形成される。
As shown in FIG. 7C, a portion of the main surface where the p+ chip region 46 will be formed is opened, the rest is covered with a photoresist 112, and boron ions B+1 are implanted. In this case p
The middle region 4B does not need to be localized in the region directly under the n+ region 44 as in conventional elements, but is intended to prevent charges excited by long wavelength light from laterally diffusing to adjacent pixel cells. The acceleration voltage for ion implantation, which may be distributed also in the boundary between adjacent pixel cells, that is, in the region under the field oxide film 24, is, for example, approximately 400 KeV to IMe.
V, the impurity concentration is about 0.01 to 1×10 15 cm −2 te. As a result, a p-medium region 4B that is deeper in the vertical direction than the p-medium region 36 of the imaging cell 10b is formed.

次にP(リン)をイオン注入する。イオン注入の加速電
圧は、たとえば約200〜GOOKeV、不純物密度は
約0.1〜2xlO”’cm−”である。これによって
、深いn中領域44が完成する。フォトレジスト112
を除去すると第1C図に示す状態となる。
Next, P (phosphorus) ions are implanted. The acceleration voltage for ion implantation is, for example, about 200 to GOOKeV, and the impurity density is about 0.1 to 2xlO"'cm-". As a result, the deep n-medium region 44 is completed. Photoresist 112
When is removed, the state shown in FIG. 1C is obtained.

以降の工程は、通常のデバイス製造工程と同じでよい。The subsequent steps may be the same as normal device manufacturing steps.

電気接続コンタクト孔を開口し、PSG被着、アニール
、アルミニウム被着、エツチング、パッシベーション膜
被着、ポンディング、パッケージングなどの工程を施し
、デバイスとして完成する。
Electrical connection contact holes are opened, and processes such as PSG deposition, annealing, aluminum deposition, etching, passivation film deposition, bonding, and packaging are performed to complete the device.

このようにして各撮像セル10a、、 10bおよび1
0cが基板12の上に2次元アレイ状に形成される。こ
れを、たとえば第8A図に示すようなベイヤー配列の撮
像セルアレイとして使用する場合には、各撮    ゛
像セル10a、 lObおよびlOcの受光領域の上に
モザイク状色フィルタを配設する。この例では、撮像セ
ル10aが青(B)のセルとして、撮像セル10bが緑
(G)のセルとして、また撮像セル10cが赤(R)の
セルとして使用される。したがって、それらのとには、
それぞれB、GおよびRの色フイルタセグメント120
B、 120Gおよび120Rがそれぞれ被着される。
In this way, each imaging cell 10a, 10b and 1
0c are formed on the substrate 12 in a two-dimensional array. When this is used, for example, as a Bayer array imaging cell array as shown in FIG. 8A, a mosaic color filter is arranged above the light receiving area of each imaging cell 10a, 1Ob, and 1Oc. In this example, the imaging cell 10a is used as a blue (B) cell, the imaging cell 10b is used as a green (G) cell, and the imaging cell 10c is used as a red (R) cell. Therefore, those and
B, G and R color filter segments 120 respectively
B, 120G and 120R are deposited, respectively.

なお、これらの各撮像セルの上に赤外(IR)カットフ
ィルタを配設するのが有利である。その場合、赤の撮像
セルlOcには必ずしもRのフィルタを設けなくてもよ
い。
Note that it is advantageous to arrange an infrared (IR) cut filter above each of these imaging cells. In that case, the red imaging cell lOc does not necessarily need to be provided with an R filter.

第8A図の一点鎖線B−8から見た断面を模式的に第8
B図に示すように、Bのフィルタセグメント120Bの
下には短波長吸収領域10aの比較的浅い1+領域14
が位置し、Gのフィルタセグメント120Gの下には中
間波長吸収領域10bのn中領域34が位置し、この配
列が交互に繰り返される。なお同図では、筒中のために
、n十領域14.34および44の底、すなわちfi+
p接合の位置が線122によって観念的に示され、他の
部分は省略されている。
The cross section seen from the dashed line B-8 in FIG. 8A is schematically shown in FIG.
As shown in Figure B, below the filter segment 120B of B is a relatively shallow 1+ region 14 of the short wavelength absorption region 10a.
is located, and below the G filter segment 120G, the n medium region 34 of the intermediate wavelength absorption region 10b is located, and this arrangement is alternately repeated. In addition, in the same figure, the bottoms of n+ regions 14, 34 and 44, that is, fi+
The location of the p-junction is indicated conceptually by line 122, and other parts are omitted.

同様に、第8A図の一点鎖線C−Cから見た断面を模式
的に第8C図に示すように、Rのフィルタセグメント1
20Rの下には長波長吸収領域10bの比較的深いn中
領域44が位置し、Gのフィルタセグメント120Gの
下には中間波長吸収領域10bのn中領域34が位置し
、この配列が交互に繰り返される。こうしてこの例では
、ベイヤー配列の画素アレイによる固体撮像装置が構成
される。なお色フィルタを用いない場合は、各画素セル
10a、 10bおよび10cは、それぞれW、Yeお
よびHの配列でよい。
Similarly, as shown schematically in FIG. 8C, a cross section taken along the dashed line CC in FIG. 8A, the R filter segment 1
A relatively deep n-middle region 44 of the long wavelength absorption region 10b is located below 20R, and an n-middle region 34 of the intermediate wavelength absorption region 10b is located below the G filter segment 120G, and this arrangement is alternately arranged. Repeated. In this way, in this example, a solid-state imaging device is configured using a Bayer array pixel array. Note that when color filters are not used, each pixel cell 10a, 10b, and 10c may be arranged in W, Ye, and H, respectively.

このように本実施例では、入射光の波長域に応じた深さ
と大きさで接合が形成されている。したかって、光検出
装置としてとりわけ青感度を向上させることができ、色
波長領域に対応またダイナミックレンジを設定すること
ができる。また、P+チップ領域の面積、ならびに不純
物分布の深さおよび濃度を吸収波長に応じた画素セルご
とに設定できるので、各分光波長強度に対応した接合容
量が得られ、セル間分離の接合耐圧の低下を防ぐことが
できる。したがって、相対的に光強度の弱い波長域に対
応する画素セル領域のp÷領領域不純物濃度を高くしな
いでよいので、接合リーク電流が少なく1画像の白キズ
の発生が防止される。また、p十領域の垂直方向の分布
を深くすることにより、長波長光におけるクロストーク
が改善される。
As described above, in this embodiment, the junction is formed with a depth and size depending on the wavelength range of the incident light. Therefore, as a photodetecting device, it is possible to particularly improve blue sensitivity, and it is possible to correspond to color wavelength regions and set a dynamic range. In addition, since the area of the P+ chip region and the depth and concentration of impurity distribution can be set for each pixel cell according to the absorption wavelength, a junction capacitance corresponding to each spectral wavelength intensity can be obtained, and the junction breakdown voltage of cell separation can be reduced. The decline can be prevented. Therefore, it is not necessary to increase the impurity concentration in the p/region region of the pixel cell region corresponding to the wavelength range where the light intensity is relatively low, so that the junction leakage current is small and the occurrence of white scratches in one image is prevented. Further, by deepening the vertical distribution of the p-domain, crosstalk in long wavelength light is improved.

なお、ここで説明した実施例は本発明を説明するための
ものであって、本発明は必ずしもこれに限定されるもの
ではなく1本発明の精神を逸脱することなく当業者が可
能な変形および修正は本発明の範囲に含まれる。たとえ
ば、実施例では3種類の波長域に対応したセル10a、
 10bおよび10cが設けられていたが、必ずしもこ
のようにする必要はなく、可視光領域を短波長と長波長
の2種類に分割して両者に対応した2種類の受光セルを
設けてもよい。
The embodiments described here are for illustrating the present invention, and the present invention is not necessarily limited thereto, and modifications and variations that can be made by those skilled in the art without departing from the spirit of the present invention. Modifications are within the scope of this invention. For example, in the embodiment, a cell 10a corresponding to three types of wavelength ranges,
10b and 10c were provided, but it is not necessary to do this, and the visible light region may be divided into two types, short wavelength and long wavelength, and two types of light receiving cells corresponding to both may be provided.

効  果 このように本発明による固体光検出装置は、ダイナミッ
クレンジや接合耐圧を実質的に低下させることなく、所
望の波長領域において高い感度を有する。したがって本
固体光検出装置を撮像装置に適用すれば、短波長領域に
ても良好な感度を有し、白キズが少なく色分離の良好な
再生画像が得られる。
Effects As described above, the solid-state photodetector according to the present invention has high sensitivity in a desired wavelength range without substantially reducing the dynamic range or junction breakdown voltage. Therefore, if this solid-state photodetection device is applied to an imaging device, a reproduced image with good sensitivity even in a short wavelength region and with few white scratches and good color separation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図ないし第1C図は、本発明による固体光検出装
置の実施例における受光領域の構成例を示す断面図、 第2図ないし第7A図、第7B図および第7C図は、第
1八図ないし第1C図に示す構成の固体光検出装置の製
造方法の例を段階的に示す断面図、第8A図はベイヤー
配列の撮像セルアレイとして本発明による固体光検出装
置を適用した固体撮像装置の例を概念的に示す説明図、 第8B図および第8C図は、第8A図のそれぞれ一点鎖
線B−8およびC−Cから見た断面を模式的に示す図、 第8A図、第9B図および第8C図は、接合領域の不純
物濃度の設定の例を示すグラフである。 主要部分の符号の説明 10a、IOb、 、撮像セル 14.34,44 、 n+領領 域ilt、38.4B 、 p+領域 1B、、、、ドレーン領域 20、、、、ゲート酸化膜 22、− 、 、ゲート電極 特許出願人 富士写真フィルム株式会社本lA図 匹仁 #t8図 ざや 茸、lc口 5娑 氷2図 尾30 デ 秦4図 襄7ε図 氷7C図 岸、13A図 第8B図 蒸8CUD 帽犬畔椰      蛤零舞畔ぐ 玲案C鰹倫 手続補正書 昭和60年4月15日
1A to 1C are cross-sectional views showing configuration examples of the light receiving area in an embodiment of the solid-state photodetecting device according to the present invention, and FIGS. 8A is a cross-sectional view showing step-by-step an example of a method for manufacturing a solid-state photodetection device having the configuration shown in FIGS. An explanatory diagram conceptually illustrating an example; Figures 8B and 8C are diagrams schematically showing cross sections taken from dashed-dotted lines B-8 and CC in Figure 8A, respectively; Figures 8A and 9B; and FIG. 8C is a graph showing an example of setting the impurity concentration of the junction region. Explanation of symbols of main parts 10a, IOb, , imaging cell 14, 34, 44, n+ region ilt, 38.4B, p+ region 1B, , , drain region 20, , gate oxide film 22, - , , Gate electrode patent applicant Fuji Photo Film Co., Ltd. Book 1A Figure 8B 8 CUD cap Inuhan Yam, Clam Zero Mai, Reinan C Katsuo Rin Proceedings Amendment Document April 15, 1985

Claims (1)

【特許請求の範囲】 1、一方の導電型の半導体基板と、 該基板の主面に形成され、第1の波長域の入射光によっ
て光キャリアを発生する第1の受光セル手段と、 該主面に形成され、第1の波長域より長い波長の第2の
波長域の入射光によって光キャリアを発生する第2の受
光セル手段とを有し、 第1の受光セル手段は、 前記主面から第1の波長域に応じた深さまで形成され、
少なくとも第1の波長域の入射光によって光キャリアを
励起する接合をなす他方の導電型の第1の領域を含み、 第2の受光セル手段は、 前記主面から第2の波長域に応じて第1の領域より深い
深さまで形成され、第2の波長域の入射光によって光キ
ャリアを励起する接合をなす他方の導電型の第2の領域
を含むことを特徴とする固体光検出装置。 2、特許請求の範囲第1項記載の装置において、 該装置は、前記主面に形成され第1の波長域と第2の波
長域の間の第3の波長域の入射光によって光キャリアを
発生する第3の受光セル手段を有し、 第3の受光セル手段は、 前記主面から第3の波長域に応じて第1の領域より深く
第2の領域より浅い深さまで形成され、少なくとも第3
の波長域の入射光によって光キャリアを励起する接合を
なす他方の導電型の第3の領域を含むことを特徴とする
固体光検出装置。 3、特許請求の範囲第1項または第2項に記載の装置に
おいて、第1ないし第3の受光セル手段の少なくとも1
つは、対応する第1ないし第3の領域の下に、一方の導
電型の不純物を前記基板より多く含む一方の導電型の第
4の領域を有することを特徴とする固体光検出装置。 4、特許請求の範囲第3項記載の装置において、第3の
受光セル手段に形成された第4領域の不純物の濃度は第
1の受光セル手段に形成された第4領域の不純物の濃度
より高く、第2の受光セル手段に形成された第4領域の
不純物の濃度は第3の受光セル手段に形成された第4領
域の不純物の濃度より高いことを特徴とする固体光検出
装置。 5、特許請求の範囲第1項ないし第4項のいずれかに記
載の装置において、第1および第3の受光セル手段の少
なくとも一方は、対応する第1または第3の波長域より
長い波長の入射光を実質的に除去する光学フィルタ手段
を有することを特徴とする固体光検出装置。
[Claims] 1. A semiconductor substrate of one conductivity type; a first light-receiving cell means formed on the main surface of the substrate and generating optical carriers by incident light in a first wavelength range; a second light-receiving cell means formed on a surface and generating optical carriers by incident light in a second wavelength range having a longer wavelength than the first wavelength range, the first light-receiving cell means comprising: is formed to a depth corresponding to the first wavelength range,
The second light-receiving cell means includes a first region of the other conductivity type forming a junction that excites optical carriers by at least incident light in a first wavelength range, and the second light-receiving cell means A solid-state photodetection device comprising a second region of the other conductivity type that is formed to a deeper depth than the first region and forms a junction that excites optical carriers by incident light in a second wavelength range. 2. The device according to claim 1, wherein the device is formed on the main surface and drives optical carriers by incident light in a third wavelength range between the first wavelength range and the second wavelength range. The third light receiving cell means is formed from the main surface to a depth deeper than the first region and shallower than the second region according to the third wavelength range, and at least Third
A solid-state photodetection device comprising a third region of the other conductivity type forming a junction that excites optical carriers by incident light in a wavelength range of . 3. In the device according to claim 1 or 2, at least one of the first to third light receiving cell means
A solid-state photodetection device characterized in that it has a fourth region of one conductivity type that contains more impurities of one conductivity type than the substrate below the corresponding first to third regions. 4. In the device according to claim 3, the impurity concentration in the fourth region formed in the third light receiving cell means is higher than the impurity concentration in the fourth region formed in the first light receiving cell means. A solid-state photodetecting device characterized in that the impurity concentration in the fourth region formed in the second light receiving cell means is higher than the impurity concentration in the fourth region formed in the third light receiving cell means. 5. In the device according to any one of claims 1 to 4, at least one of the first and third light receiving cell means has a wavelength longer than the corresponding first or third wavelength range. A solid state photodetection device comprising optical filter means for substantially removing incident light.
JP60023593A 1985-02-12 1985-02-12 Solid-state photo detector Pending JPS61183958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023593A JPS61183958A (en) 1985-02-12 1985-02-12 Solid-state photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023593A JPS61183958A (en) 1985-02-12 1985-02-12 Solid-state photo detector

Publications (1)

Publication Number Publication Date
JPS61183958A true JPS61183958A (en) 1986-08-16

Family

ID=12114879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023593A Pending JPS61183958A (en) 1985-02-12 1985-02-12 Solid-state photo detector

Country Status (1)

Country Link
JP (1) JPS61183958A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004140A1 (en) * 1997-06-12 2000-05-31 Intel Corporation A well to substrate photodiode for use in a cmos sensor on a salicide process
US6369414B2 (en) 1998-12-07 2002-04-09 Nec Corporation Charge coupled device having charge accumulating layer free from tow-dimensional effect under miniaturization and process for fabrication thereof
JP2004193609A (en) * 2002-12-05 2004-07-08 Natl Semiconductor Corp <Ns> Vertical color photoreceiver whose sensibility and interchangeability with video interface are improved
KR100748345B1 (en) * 2001-12-31 2007-08-09 매그나칩 반도체 유한회사 Image sensor with improved light sensitivityy and fabricating method of the same
US7345703B2 (en) 2002-10-23 2008-03-18 Magnachip Semiconductor, Ltd. CMOS image sensor including photodiodes having different depth according to wavelength of light
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
US9142580B2 (en) 2012-08-10 2015-09-22 Canon Kabushiki Kaisha Image pickup apparatus and image pickup system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004140A1 (en) * 1997-06-12 2000-05-31 Intel Corporation A well to substrate photodiode for use in a cmos sensor on a salicide process
EP1004140A4 (en) * 1997-06-12 2000-09-20 Intel Corp A well to substrate photodiode for use in a cmos sensor on a salicide process
JP2002505035A (en) * 1997-06-12 2002-02-12 インテル・コーポレーション Well-substrate photodiode for use in CMOS sensors based on salicide process
US6369414B2 (en) 1998-12-07 2002-04-09 Nec Corporation Charge coupled device having charge accumulating layer free from tow-dimensional effect under miniaturization and process for fabrication thereof
KR100748345B1 (en) * 2001-12-31 2007-08-09 매그나칩 반도체 유한회사 Image sensor with improved light sensitivityy and fabricating method of the same
US7345703B2 (en) 2002-10-23 2008-03-18 Magnachip Semiconductor, Ltd. CMOS image sensor including photodiodes having different depth according to wavelength of light
JP2004193609A (en) * 2002-12-05 2004-07-08 Natl Semiconductor Corp <Ns> Vertical color photoreceiver whose sensibility and interchangeability with video interface are improved
JP2008235753A (en) * 2007-03-23 2008-10-02 Sony Corp Solid imaging apparatus and method of manufacturing the same
US9142580B2 (en) 2012-08-10 2015-09-22 Canon Kabushiki Kaisha Image pickup apparatus and image pickup system

Similar Documents

Publication Publication Date Title
US6894265B2 (en) Vertical color filter sensor group and semiconductor integrated circuit fabrication method for fabricating same
US7166880B2 (en) Vertical color filter sensor group with carrier-collection elements of different size and method for fabricating such a sensor group
US8445950B2 (en) Solid-state imaging device
JP4130891B2 (en) A method for manufacturing a CMOS image sensor in which the depth of a photodiode differs according to the wavelength of light, and a method for forming the photodiode.
KR0168902B1 (en) Solid state image pick-up device
KR100821469B1 (en) Small size cmos image sensor pixel with improved color cross talk and method for fabricating the same
US7304338B2 (en) Solid-state image sensor and method for fabricating the same
US20060255372A1 (en) Color pixels with anti-blooming isolation and method of formation
US20080217724A1 (en) Backside illuminated solid-state imaging device
US6914314B2 (en) Vertical color filter sensor group including semiconductor other than crystalline silicon and method for fabricating same
JP2006210919A (en) Image sensor having embedded barrier layer having different thickness depending on wavelength of light, and method of forming the same
US7964928B2 (en) Photodetector with an improved resolution
KR100696995B1 (en) Solid-state imaging device
US7485939B2 (en) Solid-state imaging device having a defect control layer and an inversion layer between a trench and a charge accumulating area
US6215165B1 (en) Reduced leakage trench isolation
US8445983B2 (en) Semiconductor device for performing photoelectric conversion
JPS61183958A (en) Solid-state photo detector
KR20050039167A (en) Cmos image sensor and method for fabricating the same
KR100329770B1 (en) image sensor with photodiode of hemisphere shape
KR100326267B1 (en) Image sensor and method for fabricating the same
KR20110079329A (en) Image sensor and method for manufacturing the same
JP2584010B2 (en) Solid-state imaging device and method of manufacturing the same
JP2000260972A (en) Solid-state image pickup device and its manufacture
KR20100079056A (en) Image sensor and method for manufacturing thereof
JP2004079657A (en) Method for manufacturing solid-state imaging element