JPS61183614A - Wafer inspecting microscope device - Google Patents

Wafer inspecting microscope device

Info

Publication number
JPS61183614A
JPS61183614A JP2307285A JP2307285A JPS61183614A JP S61183614 A JPS61183614 A JP S61183614A JP 2307285 A JP2307285 A JP 2307285A JP 2307285 A JP2307285 A JP 2307285A JP S61183614 A JPS61183614 A JP S61183614A
Authority
JP
Japan
Prior art keywords
wafer
optical system
objective optical
stage
dimensional movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2307285A
Other languages
Japanese (ja)
Other versions
JP2568488B2 (en
Inventor
Makoto Yoshinaga
吉永 允
Yoichi Iba
陽一 井場
Noriyuki Miyahara
宮原 則行
Masami Kawasaki
川崎 正美
Akimasa Morita
晃正 森田
Takashi Nagano
長野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60023072A priority Critical patent/JP2568488B2/en
Priority to AT86101375T priority patent/ATE42004T1/en
Priority to DE8686101375T priority patent/DE3662731D1/en
Priority to EP86101375A priority patent/EP0193001B1/en
Publication of JPS61183614A publication Critical patent/JPS61183614A/en
Priority to US07/198,642 priority patent/US4832474A/en
Application granted granted Critical
Publication of JP2568488B2 publication Critical patent/JP2568488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To reduce a variation quantity of an optical path length by executing an inspecting operation by a one-dimensional movement of an objective optical system, and a one-dimensional movement or a rotational motion of a stage, or a rotational motion centering around an eyepiece part optical axis of the objective optical system. CONSTITUTION:In a wafer inspecting microscope device in which an objective optical system 18 is moved along the upper face of a wafer 10, an inspecting operation of the wafer surface by the objective optical system 18 is executed by a one-dimensional movement of the objective optical system 18, for instance, the movement of the diameter direction of the wafer 10, and a one-dimensional movement or a rotational motion of a wafer inspecting stage 7, or a rotational motion centering around an eyepiece part optical axis of the objective optical system 18.

Description

【発明の詳細な説明】 且土豆見 本発明は、ウェハ検査顕微鏡装置に関するものである。[Detailed description of the invention] And Dozumi The present invention relates to a wafer inspection microscope apparatus.

眉−LIL 例えば本件出願人が先に出願した特願昭59−1292
04号に記載の顕微鏡は、被検査物のウェハを固定し、
対物光学系をウェハ上面に沿ってYVす曲?ご玖@h六
朴スごJ−1−±−1h丁八春而へ検面するように構成
されていたが、これはウェハをXY方向に移動させる方
1式のものに比べてコンパクト化し得るという利点があ
る反面、下記の如く観察光学系の光路長の変化量が大き
いという欠点があった。即ち、第6図に示した如く、対
物光学系が直径Rのウェハ10上において原点0に最も
近い位置aから最も遠い位置すまで移動した時のX軸方
向及びY軸方向の光路長の変化量はいず君「 れも□Rであるから、全体の光路長の変化量はffRと
いうかなり大きなものであった。そのため、この顕微鏡
がアフォーカル系の場合、瞳がケラしやすくなり従って
これを防ぐために大きな結像レンズが必要になったり、
又接眼レンズのアイポイント位置の移動も大きいという
問題があった。
Eyebrow-LIL For example, the patent application filed earlier by the applicant in 1988-1292
The microscope described in No. 04 fixes a wafer to be inspected,
Is it possible to move the objective optical system YV along the top surface of the wafer? It was configured to inspect the surface of the wafer in the X and Y directions, but it was more compact than the one that moved the wafer in the X and Y directions. On the other hand, there is a drawback that the amount of change in the optical path length of the observation optical system is large, as described below. That is, as shown in FIG. 6, the change in optical path length in the X-axis direction and the Y-axis direction when the objective optical system moves from the position a closest to the origin 0 to the farthest position on the wafer 10 with a diameter R The amount is □R, so the amount of change in the overall optical path length is ffR, which is quite large. Therefore, if this microscope is an afocal type, the pupil is likely to be vignetted, so it is necessary to In order to prevent this, a large imaging lens is required,
There is also a problem in that the eye point position of the eyepiece lens moves significantly.

l−五 本発明は、上記問題点に鑑み、装置全体をコンパクト化
し得るという利点はそのままで、光路長の変化量を小さ
くすることでアフォーカル系の場合でも瞳が)rうしに
くく一フイポイント位者の玖動も小さくなるようにした
ウェハ検査顕微鏡装置を提供せんとするものである。
In view of the above-mentioned problems, the present invention maintains the advantage that the entire device can be made compact, and by reducing the amount of change in the optical path length, the pupil is less likely to be distorted even in the case of an afocal system. It is an object of the present invention to provide a wafer inspection microscope device in which the displacement of the operator is also reduced.

互−1 本発明によるウェハ検査顕微鏡装置は、対物光学系によ
るウェハ面の検査操作は対物光学系の一次元移動とウェ
ハ検査ステージの一次元移動又は回転運動或いは対物光
学系の接眼部光軸を中心とする回転運動とによるように
して、観察光学系の光路長の変化量ができるだけ小さく
なるようにしたものである。
Interchange-1 In the wafer inspection microscope apparatus according to the present invention, the inspection operation of the wafer surface by the objective optical system is performed by one-dimensional movement of the objective optical system, one-dimensional movement or rotational movement of the wafer inspection stage, or the optical axis of the eyepiece part of the objective optical system. The amount of change in the optical path length of the observation optical system is made as small as possible by rotational movement around the center.

11皇 以下、第1図及び第2図に示した一実施例に基づき本発
明の詳細な説明すれば、1はウェハカセット2がセット
されるセンダー、3はウェハ搬送部、4はウェハカセッ
ト5がセットされるレシーバ−16はセンダー1.ウェ
ハ搬送部3.レシーバ−4に設けられたモータ駆動の搬
送ベルト、7はウェハ搬送部3の中央部に設けられたウ
ェハ検査ステージ1.8はウェハ検査ステージ7に近接
してウェハ搬送部3に設けられた非接触プリアライメン
トセンサーであって、ウェハ検査ステージ7は吸気管9
を介して図示しない真空ポンプと接続されていて上面に
載置されたウエノX10を吸着保持すると共に、後述の
ステージ駆動位置により上下方向に移動せしめられ且つ
水平面内にて回転せしめられるようになっている。11
はウェハ搬送部3内に配設された第1−フレーム、12
は第一フレーム11にローラガイド13を介して上下方
向に移動可能に装着され且つモータ14により駆動され
ると共に上部にウェハ検査ステージ7が枢着された第二
フレーム、15はウェハ検査ステージ7の中心軸に固着
されていてモータ16により回動せしめられることによ
りウェハ検査ステージ7を水平面内にて回転せしめるギ
ヤであって、これらがステージ駆動装置を構成している
。17はウェハ搬送部3に近接配置された図示しない顕
微鏡本体に固定された観察鏡筒、18は観察鏡筒17に
アリ・アリ溝結合によりウェハ10の搬送方向と直交す
る方向(第2図矢印方向)に−次元移動可能に装着され
た対物レンズであって、この対物レンズ18を含む観察
光学系は光路長を変化させても合焦位置が変化しない例
えばアフォーカルな構成になっていると共に、光学系の
途中にイメージローテータが設けられているものとする
Below, the present invention will be described in detail based on an embodiment shown in FIGS. 1 and 2. 1 is a sender in which a wafer cassette 2 is set, 3 is a wafer transport section, and 4 is a wafer cassette 5. The receiver 16 to which is set is the sender 1. Wafer transport section 3. A motor-driven conveyor belt 7 is provided in the receiver 4, a wafer inspection stage 1 is provided in the center of the wafer transfer section 3; It is a contact pre-alignment sensor, and the wafer inspection stage 7 is connected to the intake pipe 9.
It is connected to a vacuum pump (not shown) via a vacuum pump, and holds Ueno X10 placed on its upper surface by suction, and is also moved vertically and rotated in a horizontal plane by a stage drive position, which will be described later. There is. 11
is a first frame 12 disposed within the wafer transport section 3;
15 is a second frame mounted on the first frame 11 so as to be movable in the vertical direction via a roller guide 13, driven by a motor 14, and having the wafer inspection stage 7 pivotally mounted on the upper part; These gears are fixed to the central shaft and rotated by the motor 16 to rotate the wafer inspection stage 7 in a horizontal plane, and these gears constitute a stage drive device. Reference numeral 17 indicates an observation lens barrel fixed to a microscope main body (not shown) located close to the wafer transport section 3, and 18 indicates a direction perpendicular to the transport direction of the wafer 10 (arrow in FIG. The observation optical system including the objective lens 18 has an afocal structure in which the focal position does not change even if the optical path length is changed. , it is assumed that an image rotator is provided in the middle of the optical system.

本発明によるウェハ検査顕微鏡装置は上述の如く構成さ
れているから、センダー1にセットされたウェハカセッ
ト2内のウエノX10は搬送ベルト6によりウェハ検査
ステージ7上まで送られ、真空吸着によりウェハ検査ス
テージ7上に吸着保持される。続いてステージ駆動装置
によりウェハ検査ステージ7を合焦位置まで上昇せしめ
る。次に、ステージ駆動装置によりウェハ検査ステージ
7を回転させ非接触プリアライメントセンサー8により
ウェハ10のオリエンテーションフラット10aを検出
して位置出しを行った後、ウエノ1検査のためにステー
ジ駆動装置によりウェハ検査ステージ7を更に回転させ
る。一方、これに加えて対物レンズ18をウェハ搬送方
向と直角な方向(第2図矢印方向即ちウェハ10の径方
向)にウエノX1全面を検査することができる。尚、こ
の際イメージローテータの作用により、ウェハ10の回
転に伴う像の回転が防止され、検査顕微鏡の接眼部にお
いては常に静止した像が観察される。又、この例の場合
の対物レンズ18の移動距離即ち観察光学系の光路長の
変化量はR/2となる。
Since the wafer inspection microscope apparatus according to the present invention is configured as described above, the wafer X10 in the wafer cassette 2 set in the sender 1 is conveyed to the wafer inspection stage 7 by the conveyor belt 6, and is then transferred to the wafer inspection stage by vacuum suction. 7 and is held by suction. Subsequently, the wafer inspection stage 7 is raised to the in-focus position by the stage drive device. Next, the wafer inspection stage 7 is rotated by the stage drive device, the orientation flat 10a of the wafer 10 is detected and positioned by the non-contact pre-alignment sensor 8, and then the wafer inspection stage 7 is inspected by the stage drive device to inspect the wafer 1. Rotate stage 7 further. On the other hand, in addition to this, the entire surface of the wafer X1 can be inspected using the objective lens 18 in a direction perpendicular to the wafer transport direction (in the direction of the arrow in FIG. 2, that is, in the radial direction of the wafer 10). At this time, the action of the image rotator prevents the image from rotating as the wafer 10 rotates, and a stationary image is always observed at the eyepiece of the inspection microscope. Further, in this example, the moving distance of the objective lens 18, that is, the amount of change in the optical path length of the observation optical system is R/2.

第3図及び第4図は第二の実施例を示しており、これは
対物レンズ18を搬送方向と直交する方向(第2図矢印
方向)に移動せしめる点は上記第一の実施例と同じであ
るが、ステージ駆動装置を、ウェハ搬送部3内に配設さ
れた第一フレーム11と、第一フレーム11にローラガ
イド13を介して上下方向に移動可能に装着され且つモ
ータ14により駆動される第二フレーム12′と、第二
フレーム12′にローラガイド17を介してウェハ搬送
方向と同一の方向(第2図矢印方向)に−次元移動可能
に装着され且つモータ19により駆動されると共に上部
にウェハ検査ステージ7が枢着された第三フレーム20
とから構成して、ウエめるようにした点で上記第一の実
施例とは異なっている。この例の場合の対物レンズ18
の移動距離即ち観察光学系の光路長の変化量はRとなる
3 and 4 show a second embodiment, which is the same as the first embodiment in that the objective lens 18 is moved in a direction perpendicular to the transport direction (in the direction of the arrow in FIG. 2). However, the stage drive device is mounted on a first frame 11 disposed within the wafer transport section 3 and is mounted on the first frame 11 so as to be movable in the vertical direction via a roller guide 13 and is driven by a motor 14. A second frame 12' is mounted on the second frame 12' via a roller guide 17 so as to be movable in the same direction as the wafer conveyance direction (arrow direction in FIG. 2), and is driven by a motor 19. A third frame 20 on which a wafer inspection stage 7 is pivotally mounted
This embodiment differs from the first embodiment in that it is constructed from the above-mentioned components and can be assembled. Objective lens 18 in this example
The moving distance, that is, the amount of change in the optical path length of the observation optical system is R.

第5図は第三の実施例を示しており、これは対物レンズ
18を搬送方向と交差する方向(第5図矢印C方向)に
−次元移動せしめる点では上記二つの実施例と同じであ
るが、ウェハ検査ステージ7を固定し、対物レンズ18
を接眼部光軸Oを中心としてその移動距離がウェハ10
の直径Rに相当するような角度θだけ回転せしめるよう
にした点で上記二つの実施例とは異なっている。尚、こ
の例の場合の対物レンズ18の矢印C方向の移動距離即
ち観察光学系の光路長の変化量はRとなる。
FIG. 5 shows a third embodiment, which is the same as the above two embodiments in that the objective lens 18 is moved in a -dimensional direction in a direction intersecting the transport direction (direction of arrow C in FIG. 5). However, the wafer inspection stage 7 is fixed and the objective lens 18 is fixed.
The distance it moves around the optical axis O of the eyepiece is the wafer 10.
It differs from the above two embodiments in that it is rotated by an angle θ corresponding to the diameter R of. In this example, the moving distance of the objective lens 18 in the direction of arrow C, that is, the amount of change in the optical path length of the observation optical system is R.

lユ互亙呈 上述の如く、本発明によるウェハ検査顕微鏡装置は、装
置全体をコンパクト化し得るという利点はそのままで、
観峯光学系の光路長の変化量がウェハの直径R以下と従
来例に比べて著しく小さくなるので、この顕微鏡がアフ
ォーカル系の場合でも、瞳がケラレにくく従って結像レ
ンズが比較的小さくて済み、又接眼レンズのアイポイン
ト位置の移動も小さい。
As mentioned above, the wafer inspection microscope device according to the present invention has the advantage that the entire device can be made compact, and
Since the amount of change in the optical path length of the Kanmine optical system is less than the diameter R of the wafer, which is significantly smaller than that of the conventional example, even if this microscope is an afocal system, the pupil is less likely to be eclipsed, so the imaging lens is relatively small. The movement of the eye point position of the eyepiece is also small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明によるウェハ検査顕微鏡
装置の一実施例の平面図及び斜視図、第3図及び第4図
は夫々第二の実施例の平面図及び斜視図、第5図は第三
の実施例の要部平面図、第”6図は従来例の観察光学系
の光路長の変化量を示す説明図である。 1・・・・センダー、2,5・・・・ウェハカセット、
3・・・・ウェハ搬送部、4・・・・レシーバ−16・
・・・搬送ベルト、7・・・°・ウェハ検査ステージ、
8・・・・非接触プリアライメントセンサー、9・・・
・吸気管、lO・・・・ウェハ、11・・・・第一フレ
ーム、12゜12′・・・・第二フレーム、13.17
・・・・ローラガイド、14,16.19・・・・モー
タ、15・・・・ギヤ、18・・・・対物レンズ、20
・・・・第三フレー11頁の続き )発 明 者  川 崎   正 美  東京都渋谷区
幡ケ谷2会社内 )発 明 者  森 1)  晃 正 東京都渋谷区幡
ケ谷2会社内 多発 明 者  長  野     隆  東京都渋谷
区幡ケ谷2会社内
1 and 2 are a plan view and a perspective view, respectively, of an embodiment of a wafer inspection microscope apparatus according to the present invention, FIGS. 3 and 4 are a plan view and a perspective view, respectively, of a second embodiment, and FIG. The figure is a plan view of the main part of the third embodiment, and Figure 6 is an explanatory diagram showing the amount of change in the optical path length of the conventional observation optical system.・Wafer cassette,
3...Wafer transfer section, 4...Receiver-16.
...Transport belt, 7...°・Wafer inspection stage,
8...Non-contact pre-alignment sensor, 9...
・Intake pipe, lO...Wafer, 11...First frame, 12゜12'...Second frame, 13.17
...Roller guide, 14, 16.19...Motor, 15...Gear, 18...Objective lens, 20
...Continued from page 11 of the third frame) Inventor: Masami Kawasaki (within Hatagaya 2, Shibuya-ku, Tokyo) Inventor: Mori 1) Masa Akira Multiple occurrences within Hatagaya 2, Shibuya-ku, Tokyo (within 2 companies) Akira Takashi Nagano Hatagaya 2 company, Shibuya-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims]  対物光学系をウェハの上面に沿って移動せしめるよう
にしたウェハ検査顕微鏡装置において、対物光学系によ
るウェハ面の検鏡操作は対物光学系の一次元移動とウェ
ハ検査ステージの一次元移動又は回転運動或いは対物光
学系の接眼部光軸を中心とする回転運動とによることを
特徴とするウェハ検査顕微鏡装置。
In a wafer inspection microscope device in which the objective optical system is moved along the top surface of the wafer, the operation of examining the wafer surface by the objective optical system involves the one-dimensional movement of the objective optical system and the one-dimensional movement or rotation of the wafer inspection stage. Alternatively, a wafer inspection microscope apparatus is characterized in that the rotational movement is performed around the optical axis of the eyepiece of an objective optical system.
JP60023072A 1985-02-04 1985-02-08 microscope Expired - Lifetime JP2568488B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60023072A JP2568488B2 (en) 1985-02-08 1985-02-08 microscope
AT86101375T ATE42004T1 (en) 1985-02-04 1986-02-03 MICROSCOPE DEVICE FOR INSPECTING WAFERS.
DE8686101375T DE3662731D1 (en) 1985-02-04 1986-02-03 Microscope apparatus for examining wafer
EP86101375A EP0193001B1 (en) 1985-02-04 1986-02-03 Microscope apparatus for examining wafer
US07/198,642 US4832474A (en) 1985-02-04 1988-05-26 Microscope apparatus for examining wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023072A JP2568488B2 (en) 1985-02-08 1985-02-08 microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7029163A Division JP2655578B2 (en) 1995-02-17 1995-02-17 microscope

Publications (2)

Publication Number Publication Date
JPS61183614A true JPS61183614A (en) 1986-08-16
JP2568488B2 JP2568488B2 (en) 1997-01-08

Family

ID=12100194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023072A Expired - Lifetime JP2568488B2 (en) 1985-02-04 1985-02-08 microscope

Country Status (1)

Country Link
JP (1) JP2568488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291432A (en) * 1987-05-25 1988-11-29 Tokyo Electron Ltd Transfer device
JPH09189865A (en) * 1996-09-02 1997-07-22 Olympus Optical Co Ltd Microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366952U (en) * 1976-11-09 1978-06-05
JPS5837615A (en) * 1981-08-28 1983-03-04 Fujitsu Ltd Microscope for inspection of pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366952U (en) * 1976-11-09 1978-06-05
JPS5837615A (en) * 1981-08-28 1983-03-04 Fujitsu Ltd Microscope for inspection of pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291432A (en) * 1987-05-25 1988-11-29 Tokyo Electron Ltd Transfer device
JPH0581176B2 (en) * 1987-05-25 1993-11-11 Tokyo Electron Ltd
JPH09189865A (en) * 1996-09-02 1997-07-22 Olympus Optical Co Ltd Microscope

Also Published As

Publication number Publication date
JP2568488B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP4157037B2 (en) Defect inspection equipment
US11403743B2 (en) Cable detection apparatus
KR100477199B1 (en) Alignment apparatus
JP2001281158A (en) Inspecting device and inspecting method for defect in wafer frame
US20020079276A1 (en) Substrate positioning apparatus and exposure apparatus
CN208833689U (en) Detection device
US7400392B2 (en) Apparatus for handling of a disklike member, especially for handling of a wafer
JPS61183614A (en) Wafer inspecting microscope device
JPH08137091A (en) Visual inspection device for mask
JP2008309503A (en) Optical drive mechanism and inspection device
JP3365781B2 (en) Board appearance inspection device
JPS61179549A (en) Microscope device for wafer inspection
JP2603191B2 (en) Thin plate tilting device
JP2002257743A (en) Inspection device for spherical body
JP4334895B2 (en) Large substrate stage
JP2000266637A (en) Following device for inspecting substrate
JP2655578B2 (en) microscope
JP3641688B2 (en) Substrate inspection apparatus and system
JPH11160244A (en) Macro inspecting apparatus
WO2024004424A1 (en) Lens inspection device
KR101845091B1 (en) Substrate imaging apparatus and substrate imaging method
JP4120722B2 (en) Inspection device
JPS6081613A (en) Matching device of water
JP2868079B2 (en) Sample scanning mechanism for microscope
JPS59117120A (en) Prealignment equipment of wafer