JPS61179825A - Production of sintered co-base alloy having excellent corrosion resistance - Google Patents

Production of sintered co-base alloy having excellent corrosion resistance

Info

Publication number
JPS61179825A
JPS61179825A JP1739885A JP1739885A JPS61179825A JP S61179825 A JPS61179825 A JP S61179825A JP 1739885 A JP1739885 A JP 1739885A JP 1739885 A JP1739885 A JP 1739885A JP S61179825 A JPS61179825 A JP S61179825A
Authority
JP
Japan
Prior art keywords
powder
sintered
weight
alloy
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1739885A
Other languages
Japanese (ja)
Other versions
JPS6365738B2 (en
Inventor
Masayuki Iijima
正幸 飯島
Osamu Mayama
間山 治
Morikatsu Iwasaki
岩崎 守克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1739885A priority Critical patent/JPS61179825A/en
Publication of JPS61179825A publication Critical patent/JPS61179825A/en
Publication of JPS6365738B2 publication Critical patent/JPS6365738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered Co-base alloy having high strength and excellent corrosion resistance by compounding and mixing powdery Cr23C6, Cr, W, Ni, Fe, Co and C to an adequate compsn. and molding compressively the powder mixture then subjecting the molding to temporarily sintering and sintering. CONSTITUTION:The Cr23C6 powder, Cr powder, W powder, Ni powder and/or Fe powder and Co powder are so compounded as to attain the compsn. range of known stellite in terms of stellite. The C powder is further added and mixed to and with such compounded comps. at such a ratio at which C is incorporated therein at <=1% by 100wt% said compsn. After such mixture is compressively molded, the molding is sintered temporarily at temp. within a 900-1,100 deg. range in 10<-1>-10<-6> Torr vacuum, by which the oxide layer on the surface of the raw material metallic powder is reduced by C and is removed. The temporarily sintered body is in succession sintered at the temp. within a 1,210-1,280 deg.C range in the vacuum. The sintered Co-base alloy which has good dimensional accuracy, has no blowholes and directivity and has high strength and excellent corrosion resistance is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、寸法精度が良く、巣や方向性がなく高強度
な上(二、更に耐食性の向上した焼結Co基合金の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a sintered Co-based alloy that has good dimensional accuracy, no cavities or directionality, high strength, and also has improved corrosion resistance. .

〔従来の技術〕[Conventional technology]

従来、耐食性に優れたCo基合金として、Co−Cr−
W−C系の謂ゆるステライト合金(Cr:15〜334
、W : 5〜22 To 、 Fe及びN1のうちの
1種又は2種:1〜5%、C:0〜3チ、Co:残部:
以上重量係)がよく知られているが、ステライト合金の
なかでも、C成分が1.8係以下のものは特に耐食性;
二優れていることもよく知られている。
Conventionally, Co-Cr-
W-C series so-called stellite alloy (Cr: 15-334
, W: 5-22 To, one or two of Fe and N1: 1-5%, C: 0-3%, Co: remainder:
It is well known that stellite alloys with a C component of 1.8 or less have particularly high corrosion resistance;
It is also well known that the two are superior.

この組成のCo基合金の製造方法としては、鋳造法が一
般的であり、現在まで多く用いられている。
Casting is a common method for producing Co-based alloys having this composition, and has been widely used up to now.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、鋳造法は、寸法精度が悪く、そのために
仕上げ加工の負荷が高く、結果的::は極めてコストの
高い製造方法になってしまう。
However, the casting method has poor dimensional accuracy and therefore requires a high finishing load, resulting in an extremely costly manufacturing method.

更に一前記従ヰのa浩烙によるステライト合金製造方法
では、 Cr含量やW含量が高くなるに従って鋳造性が
悪くなり、鋳造時に大きな巣を内在することが多くなり
、健全で強度がある合金を得ることが難しく、製品歩留
上、問題が多い。
Furthermore, in the method for producing a stellite alloy by Hiroaki A, the castability deteriorates as the Cr content and W content increase, and large cavities are often present during casting, making it difficult to produce a sound and strong alloy. It is difficult to obtain, and there are many problems in terms of product yield.

又、鋳造法は、溶解−凝固の過程を経るために粗大な樹
枝状晶を晶出することは不可避であり、この樹枝状晶(
二より、材料の強度が著しく低くなり(特に、高Cr、
高Wの場合は巣の存在のために一層強度が低下し)、強
度的には必ずしも信頼性の高いものではなかった。
In addition, in the casting method, it is inevitable to crystallize coarse dendrites due to the process of melting and solidification, and these dendrites (
2, the strength of the material becomes significantly lower (especially high Cr,
In the case of high W, the strength was further reduced due to the presence of nests), and the strength was not necessarily highly reliable.

したがって、この発明の目的は、寸法精度が良く、巣や
方向性がなく高強度であって、しかも、耐食性に優れた
ステライトの製造方法を確立することである。
Therefore, an object of the present invention is to establish a method for producing stellite that has good dimensional accuracy, is free from cavities and directionality, has high strength, and has excellent corrosion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、鋳造法ではなく焼結法でステライトに相
当する組成を有するCo基合金を製造することができな
いかどうか種々実験を重ねた結果、次のような知見を得
た。
The present inventors conducted various experiments to determine whether it was possible to produce a Co-based alloy having a composition equivalent to stellite by a sintering method rather than a casting method, and as a result, the following findings were obtained.

(ω配合原料として、Cr、Cm l CryCs及び
Cr23C。
(ω As blended raw materials, Cr, Cm l CryCs and Cr23C.

のCr炭化物のなかのcr*scsを選択すると、■C
rl二対するCの比率を小さく抑えることができるため
に、C含有率を低く抑えることができ、その結果、耐食
性を高く保つこともできるし、又、金属Crの配合量も
少なくて済むので、真空中での焼結工程におけるCrの
蒸発量も少なく抑えることができ、容易に所望組成の焼
結Co基合金を得ることができ、しかも、■他のCr炭
化物に比べて、 COやWと反応して、複合金属炭化物
を生成し易いために、硬度が向上すること。
If you select cr*scs among the Cr carbides, ■C
Since the ratio of C to rl2 can be kept low, the C content can be kept low, and as a result, corrosion resistance can be kept high, and the amount of metal Cr added can be small. The amount of Cr evaporated during the sintering process in vacuum can be suppressed to a low level, and a sintered Co-based alloy with a desired composition can be easily obtained. Hardness improves because it easily reacts and forms composite metal carbide.

■配合組成物にCを遊離Cの形で少量添加し、本焼結の
前(二、特定の真空度及び特定の温度で仮焼結すると、
前記遊離Cによる原料金属粉末表面の酸化物層の還元が
起こって、本焼結による緻密化が一層促進され、硬度や
耐食性が充分に向上すること。
■ Adding a small amount of C in the form of free C to the blended composition, before main sintering (2. If pre-sintered at a specific degree of vacuum and at a specific temperature,
The free C causes reduction of the oxide layer on the surface of the raw metal powder, further promoting densification through main sintering and sufficiently improving hardness and corrosion resistance.

この発明は、上記知見に基いて更に実験を重ねた結果、
発明されたものであり、 Cr23C,粉末とCr粉末とW粉末と、 Ni粉末及
びFe粉末のうちの1種又は2種と、Co粉末とを、換
算すると公知のステライトの組成範囲になるように配合
し、この配合組成物100重量%に対してCが1重量係
以下の割合となるよう(二C粉末を添加し混合し、この
混合物を圧縮成形したのち、10″″1〜10−’to
rr  の真空中において900〜1100℃の範囲内
の温度で仮焼結して、原料金属粉末表面の酸化物層をC
Eよって還元・除去し、引き続き、真空中において12
10〜1280℃の範囲内の温度で焼結することを特徴
とする耐食性に優れた焼結Co基合金の製造方法である
This invention was made as a result of further experiments based on the above findings.
It was invented by converting Cr23C powder, Cr powder, W powder, one or two of Ni powder and Fe powder, and Co powder into the composition range of known stellite. The ratio of C to 100% by weight of the blended composition is 1 to 10% (after adding and mixing 2C powder and compression molding this mixture, to
The oxide layer on the surface of the raw metal powder is oxidized by pre-sintering at a temperature within the range of 900 to 1100°C in a vacuum of
Reduced and removed by E, and then in vacuum for 12
This is a method for producing a sintered Co-based alloy with excellent corrosion resistance, characterized by sintering at a temperature within the range of 10 to 1280°C.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

■)配合組成 知見事項((転)の所でも述べたように、この発明にお
いては、配合成分としてCr炭化物のなかのCr23C
,を用いることが必要不可欠である。
■) Knowledge of the blended composition (As mentioned in the (translation) section, in this invention, Cr23C in Cr carbide is used as a blended component.
, is essential.

ステライトの組成範囲とは、Cr:15〜33t6、W
:5〜22憾、Fe及びNiのうちの1種又は2種=1
〜5憾、C:O〜3憾、CO:残部である。
The composition range of stellite is Cr: 15-33t6, W
: 5 to 22, one or two of Fe and Ni = 1
~5 regrets, C: O~3 regrets, CO: remainder.

Cの添加割合は、他の配合成分の配合組成物を100重
量係としたとき、1重量%以下である。
The proportion of C added is 1% by weight or less, based on 100% by weight of the blended composition of other blended components.

これは、前記割合が1重量憾を越えると、この発明の仮
焼結工8!(二よって、全部を酸化物の還元のため(;
消耗することができなくなり、耐食性にとって有害だか
らである。
This means that when the above ratio exceeds 1 weight, the pre-sintering process of this invention is 8! (2, therefore, all for the reduction of oxides (;
This is because it cannot be consumed and is harmful to corrosion resistance.

n)  仮焼結工程 仮焼結工程は、知見事項■の所でも述べたように、少量
添加したCにより原料金属粉末表面に形成されている薄
膜の酸化物層を消滅させ、前記原料粉末表面を清浄にし
て活発化させる工程であるが、その真空度がI O−’
 torrより低い場合、前記の効果がない。一方、1
0”torrより高い真空度となると、この発明の仮焼
結温度範囲ではCr成分の蒸発が激しくなり、所望組成
の焼結Co基合金を得るための配合組成の決定が難しく
なる。したがって、仮焼結工程の真空度を10− ’〜
10−’torrと定めた。
n) Temporary sintering process As mentioned in the section on findings ①, the temporary sintering process is a process in which the thin oxide layer formed on the surface of the raw metal powder is eliminated by the addition of a small amount of C, and the surface of the raw metal powder is This is the process of cleaning and activating the IO-'
If it is lower than torr, the above effect is not present. On the other hand, 1
When the degree of vacuum is higher than 0"torr, the Cr component evaporates violently in the pre-sintering temperature range of this invention, making it difficult to determine the blending composition to obtain a sintered Co-based alloy with the desired composition. The degree of vacuum in the sintering process is 10-' ~
It was determined to be 10-'torr.

仮焼結温度が900℃未満では、Cによる酸化物の還元
が殆んど起こらずに、次工程の本焼結工程において充分
(:緻密化することができないために、強度や耐食性が
充分に向上せず、一方、1100℃を越えると、圧縮成
形により得られた圧粉体の仮焼結の加熱による収縮が大
きくなり。
If the preliminary sintering temperature is less than 900°C, the reduction of oxides by C will hardly occur, and the next main sintering process will not be able to achieve sufficient strength and corrosion resistance. On the other hand, if the temperature exceeds 1100°C, the shrinkage due to heating during preliminary sintering of the green compact obtained by compression molding becomes large.

充分(:還元されないうちに空孔が外部と通じなくなっ
てしまい、その結果、還元が中断されるので、次工程の
本焼結工程において緻密化されない。したがって、仮焼
結温度を900〜1100℃の範囲内の温度と定めた。
Sufficient (: Before reduction occurs, the pores no longer communicate with the outside, and as a result, reduction is interrupted, so densification is not possible in the next main sintering step. Therefore, the preliminary sintering temperature is set at 900 to 1100°C. The temperature was determined to be within the range of .

前記温度での保持時間は、温度等により異なるが0.5
〜2.0時間が好ましい。
The holding time at the above temperature varies depending on the temperature etc., but is 0.5
~2.0 hours is preferred.

■)本焼結工程 本焼結温度が1210℃未満では緻密化が不充分であり
、一方、1280℃を越えると液相量の増大により形状
維持が困難となり、又、ガス発生による大きなピンホー
ルが発生し、形状維持できたとしても強度が大巾に低下
することから、本焼結温度を1210〜1280℃の範
囲内の温度に定めた。
■) Main sintering process If the main sintering temperature is less than 1210°C, densification will be insufficient. On the other hand, if it exceeds 1280°C, it will be difficult to maintain the shape due to an increase in the amount of liquid phase, and there will be large pin holes due to gas generation. occurs, and even if the shape can be maintained, the strength will be significantly reduced. Therefore, the main sintering temperature was set at a temperature within the range of 1210 to 1280°C.

次に、本焼結工程の雰囲気は真空であるが、その真空度
としては、10−1〜10″″”torrが望ましい。
Next, the atmosphere in the main sintering step is vacuum, and the degree of vacuum is preferably 10-1 to 10'''' torr.

これは、10””torr  よりも低い真空度では藝
−一還元が不充分であり、一方、10−’ torrを
越えると、 Cr成分の蒸気圧が高くなるので、所望組
成の焼結Co基合金を得るための配合組成の決定が難し
くなるからである。
This is because at a vacuum level lower than 10'' torr, the reduction is insufficient, whereas at a vacuum level exceeding 10'' torr, the vapor pressure of the Cr component becomes high, so that the sintered Co base of the desired composition is This is because it becomes difficult to determine the blending composition for obtaining the alloy.

そして、本焼結温度の保持時間は、配合組成や温度等に
よっても異なるが、0.5〜2.0時間が好ましい。
The holding time at the main sintering temperature varies depending on the composition, temperature, etc., but is preferably 0.5 to 2.0 hours.

以上説明したこの発明の製造方法で得られた焼結Co基
合金の密度は、理論値;二対する密度比で、97〜98
憾に達し、充分実用に供するものである。しかしながら
、一部の装飾用部品で要求されるように更に内部欠陥を
減少させる必要がある場合には、焼結体を熱間静水圧プ
レスして密度を高めてもよい。
The density of the sintered Co-based alloy obtained by the manufacturing method of the present invention explained above is 97 to 98 as a density ratio to the theoretical value of 2.
It has reached its full potential and is fully put to practical use. However, if further internal defect reduction is required, as is required in some decorative parts, the sintered body may be hot isostatically pressed to increase density.

〔実施例〕〔Example〕

実施例1 平均粒径45μmのCr 23C、粉末と平均粒径82
μmのCr粉末と平均粒径3.5μmのW粉末と平均粒
径63μmのNi粉末と平均粒径43μmのCo粉末と
平均粒径40μmのC粉末を用意し、 CruCs粉末:20重を係。
Example 1 Cr 23C powder with an average particle size of 45 μm and an average particle size of 82
A Cr powder of μm, a W powder of 3.5 μm in average particle size, a Ni powder of 63 μm in average particle size, a Co powder of 43 μm in average particle size, and a C powder of 40 μm in average particle size were prepared, and 20 layers of CruCs powder were prepared.

Cr粉末:111重量% W粉末:10.5重量%、 Ni粉末:1.5重量%、 Co粉末=57重量係 (以上、100重量%)となるようζ二配合し、この配
合組成物100重量優に対してCが0.3 fi量係と
なるよう)二C粉末を添加し、ボールミルにより48時
間湿式混合した。充分微細かつ均一(−混合された粉末
を型潤滑された金型を用い、3t/dで圧縮成形したの
ち、10−” torrの真空中において1000℃で
1時間の仮焼結を行ない、引き続き10″″−6Tor
rの真空中において1260℃で1時間の本焼結を行な
い、本発明合金1を得た。
Cr powder: 111% by weight, W powder: 10.5% by weight, Ni powder: 1.5% by weight, and Co powder = 57% by weight (100% by weight). 2C powder was added so that the ratio of C to weight was 0.3 fi, and wet mixing was carried out in a ball mill for 48 hours. Sufficiently fine and uniform (-The mixed powder was compression-molded at 3t/d using a lubricated mold, then pre-sintered for 1 hour at 1000℃ in a 10-” torr vacuum, and then 10″″-6 Tor
Main sintering was carried out at 1260° C. for 1 hour in a vacuum of 30°C to obtain Invention Alloy 1.

実施例2 実施例1で用いた原料粉末の他(:、平均粒径65μm
のFe粉末を用意し、 c r ts c s粉末:200重量%Cr粉末=1
1重量憾、 W粉末:10.5重量%、 Ni粉末:1.5重量%、 1’e粉末:1.5重量%、 Co粉末: 55.5重量% (以上、100重量1)となるように配合し、この配合
組成物100重量1に対してCが0.3重量%となるよ
うにC粉末を添加し、以下、仮焼結温度を10500、
本焼結温度を1250℃とすることを除いて、実施例]
と同様(−行ない、本発明合金2を得た。
Example 2 In addition to the raw material powder used in Example 1 (:, average particle size 65 μm
Prepare Fe powder of Cr ts CS powder: 200% by weight Cr powder = 1
1 weight%, W powder: 10.5% by weight, Ni powder: 1.5% by weight, 1'e powder: 1.5% by weight, Co powder: 55.5% by weight (more than 100% by weight). C powder was added so that C was 0.3% by weight based on 100% by weight of this blended composition, and the preliminary sintering temperature was set to 10500.
Example except that the main sintering temperature was 1250°C]
In the same manner as (-), the alloy 2 of the present invention was obtained.

実施例3 実施例1及び2で用いた原料粉末を用意し、crise
s粉末:100重量% Cr粉末ニア重量係、 W粉末:18.5重量%、 1’e粉末:2.0重量%、 Co粉末:62.5重量% (以上、100重量4)となるように配合し、この配合
組成物100重量%(二対してCが0.5重量%となる
ようにC粉末を添加し、以下、仮焼結温度を1030℃
1本焼結温度を1260℃とすることを除いて、実施例
1と同様に行ない、本発明合金3を得た。
Example 3 The raw material powder used in Examples 1 and 2 was prepared and crise
S powder: 100% by weight, near weight of Cr powder, W powder: 18.5% by weight, 1'e powder: 2.0% by weight, Co powder: 62.5% by weight (over 100% by weight). C powder was added so that C was 0.5% by weight relative to 100% by weight of this blended composition, and the preliminary sintering temperature was set at 1030°C.
Invention alloy 3 was obtained in the same manner as in Example 1 except that the single sintering temperature was 1260°C.

比較例 遊離のCを添加しないことを除いては、本発明合金lを
得るための配合組成と同じ組成の圧縮成形体を、本発明
合金lを得るための製造条件と同じ条件で仮焼結、本焼
結して製造された比較合金1;仮焼結工程の真空度が2
 torr で温度が800* ℃であることを除いて本発明合金1を得るための製造条
件と同じ条件で製造された比較合金2;仮焼結工程の真
空度が3 X ] O−’torrで温度が900℃で
あることを除いて、本発明合金1を得るための製造条件
と同じ条件で製造された比較合金3;仮焼結温度116
0℃とすることを除いて、本発明合金1を得るための製
造条件と同じ条件で製造された比較合伊4;Cr炭化物
を用いないが、本発明合金1を得るための配合組成の換
算組成と同じである、Cr粉末: 29.89&、C粉
末:1.21W粉末:to、ss、Ni粉末:1.5係
、Co粉末:571からなる配合組成物に、前記配合組
成物100憾に対してC粉末が0.3 ’1となるよう
にC粉末を添加し混合して得られた配合組成物の圧縮成
形体を用いる他は本発明合金1を得るための製造条件と
同じ条件で製造された比較合金5;Cr炭化物としてC
F、C,を用いるが、本発明合金1を得るための配合組
成の換算組成と同じである、Cr、C,粉末=996、
Cr粉末:2296.W粉末:10.54、Ni粉末:
1.51%Co粉末:574からなる配合組成物に、前
記配合組成物100重量係に対してCが0、3重量係と
なるようにC粉末を添加混合して得られた配合組成物の
圧縮成形体を用いる他は本発明合金1を得るための製造
条件と同じ条件で製造された比較合金6;Cr炭化物と
してCr、C,を用いるが、本発明合金1を得るための
配合組成の換算組成と同じである4cr、c、粉末:1
2.14.Cr粉末:17.7憾、W粉末:10.5憾
、Ni粉末:1.51co粉末:57慢からなる配合組
成物に、前記配合組成物100重量憾に対してCが0.
3重量係となるようE C粉末を添加混合して得られた
配合組成物の圧縮成形体を用いる他は本発明合金1を得
るための製造条件と同じ条件で製造された比較合金7を
も製造した。(*は、この発明の製造条件から外れるこ
とを示す。) 更に、本発明合金1と同一組成の鋳造合金を精密鋳造法
(二より製造し、従来合金を得た。
Comparative Example A compression molded body having the same composition as the composition for obtaining the invention alloy 1 was pre-sintered under the same manufacturing conditions as the production conditions for obtaining the invention alloy 1, except that free C was not added. , Comparative alloy 1 manufactured by main sintering; degree of vacuum in preliminary sintering step is 2
Comparative alloy 2 was manufactured under the same manufacturing conditions as those for obtaining alloy 1 of the present invention, except that the temperature was 800*°C at a temperature of 800*°C; Comparative alloy 3 manufactured under the same manufacturing conditions as those for obtaining invention alloy 1, except that the temperature was 900°C; preliminary sintering temperature 116
Comparative alloy 4 manufactured under the same manufacturing conditions as those for obtaining the invention alloy 1 except that the temperature was 0°C; conversion of the blending composition to obtain the invention alloy 1 without using Cr carbide. 100% of the above blended composition was added to a blended composition consisting of Cr powder: 29.89&, C powder: 1.21W powder: to, ss, Ni powder: 1.5%, Co powder: 571. The manufacturing conditions are the same as those for obtaining Invention Alloy 1, except that a compression molded body of a blended composition obtained by adding and mixing C powder so that the C powder is 0.3'1 is used. Comparative alloy 5 manufactured with C as Cr carbide
Cr, C, powder = 996, which is the same as the converted composition of the blending composition for obtaining the present invention alloy 1, although F and C are used.
Cr powder: 2296. W powder: 10.54, Ni powder:
1.51% Co powder: A blended composition obtained by adding and mixing C powder to a blended composition consisting of 574 so that C is 0.3% by weight per 100% by weight of the blended composition. Comparative Alloy 6 manufactured under the same conditions as those used to obtain Alloy 1 of the present invention except that a compression molded body was used; Cr and C were used as Cr carbides, but the composition was Same as converted composition 4cr, c, powder: 1
2.14. In a blended composition consisting of Cr powder: 17.7%, W powder: 10.5%, Ni powder: 1.51, and Co powder: 57%, 0.0% C was added to 100% of the blended composition by weight.
Comparative alloy 7 was also manufactured under the same manufacturing conditions as those for obtaining alloy 1 of the present invention, except that a compression molded body of a blended composition obtained by adding and mixing E C powder so that the weight ratio was 3. Manufactured. (* indicates that the manufacturing conditions of the present invention were not met.) Further, a cast alloy having the same composition as the alloy 1 of the present invention was manufactured by a precision casting method (2) to obtain a conventional alloy.

以上の実施例1〜3及び比較例(二より得られた合金の
密度、密度比、抗折力、ロックウェルC硬さ及び腐食率
を第1表に示した。
Table 1 shows the density, density ratio, transverse rupture strength, Rockwell C hardness, and corrosion rate of the alloys obtained from Examples 1 to 3 and Comparative Example 2 above.

腐食率は、20℃の温度に保たれた24HCt水溶液中
;:24時間浸漬した後の腐食減量を1−p−y。
The corrosion rate is 1-p-y as the corrosion loss after 24-hour immersion in a 24HCt aqueous solution maintained at a temperature of 20°C.

(inch pev year)で表わした。Expressed in (inch pev year).

〔発明の効果〕〔Effect of the invention〕

第1表からもわかるように1本発明合金は、従来合金に
比較して、抗折力、ロックウェルC硬さ及び腐食率の点
で、特に抗折力と腐食率の点では格段に、優れている。
As can be seen from Table 1, the alloy of the present invention is significantly superior to conventional alloys in terms of transverse rupture strength, Rockwell C hardness, and corrosion rate, especially in terms of transverse rupture strength and corrosion rate. Are better.

これは、この発明の製造方法で得られた焼結CO基合金
には、大きな巣も方向性も殆んど認められないためと考
えられる。そして、寸法精度も収縮が均一であるため、
仕上げ加工の負荷が小さくなり、製造コストを低くする
ことが可能となった。
This is considered to be because the sintered CO-based alloy obtained by the manufacturing method of the present invention has almost no large cavities or directionality. In addition, dimensional accuracy and shrinkage are uniform, so
The burden of finishing work has been reduced, making it possible to lower manufacturing costs.

父、比較合金に比べても、耐食性に優れた材料であるこ
とがわかる。
It can be seen that this material has excellent corrosion resistance compared to comparative alloys.

Claims (1)

【特許請求の範囲】[Claims] Cr_2_3C_6粉末とCr粉末とW粉末と、Ni粉
末及びFe粉末のうちの1種又は2種と、Co粉末とを
、換算すると公知のステライトの組成範囲になるように
配合し、この配合組成物100重量%に対してCが1重
量%以下の割合となるようにC粉末を添加し混合し、こ
の混合物を圧縮成形したのち、10^−^1〜10^−
^6Torrの真空中において900〜1100℃の範
囲内の温度で仮焼結して、原料金属粉末表面の酸化物層
をCによつて還元・除去し、引き続き、真空中において
1210〜1280℃の範囲内の温度で焼結することを
特徴とする耐食性に優れた焼結Co基合金の製造方法。
Cr_2_3C_6 powder, Cr powder, W powder, one or two of Ni powder and Fe powder, and Co powder are blended so as to have a known composition range of stellite, and this blended composition 100 C powder is added and mixed so that the ratio of C to weight% is 1% by weight or less, and after compression molding this mixture, 10^-^1 to 10^-
Preliminary sintering is performed at a temperature within the range of 900 to 1100°C in a vacuum of ^6 Torr, and the oxide layer on the surface of the raw metal powder is reduced and removed by C, followed by sintering at a temperature of 1210 to 1280°C in a vacuum. A method for producing a sintered Co-based alloy with excellent corrosion resistance, characterized by sintering at a temperature within a range.
JP1739885A 1985-01-31 1985-01-31 Production of sintered co-base alloy having excellent corrosion resistance Granted JPS61179825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1739885A JPS61179825A (en) 1985-01-31 1985-01-31 Production of sintered co-base alloy having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1739885A JPS61179825A (en) 1985-01-31 1985-01-31 Production of sintered co-base alloy having excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61179825A true JPS61179825A (en) 1986-08-12
JPS6365738B2 JPS6365738B2 (en) 1988-12-16

Family

ID=11942885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1739885A Granted JPS61179825A (en) 1985-01-31 1985-01-31 Production of sintered co-base alloy having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61179825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786777A (en) * 2022-11-25 2023-03-14 江苏美特林科特殊合金股份有限公司 Cobalt-carbon intermediate alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786777A (en) * 2022-11-25 2023-03-14 江苏美特林科特殊合金股份有限公司 Cobalt-carbon intermediate alloy and preparation method thereof
CN115786777B (en) * 2022-11-25 2024-01-23 江苏美特林科特殊合金股份有限公司 Cobalt-carbon intermediate alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS6365738B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
JPS6152108B2 (en)
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPS6029443A (en) Golden sintered alloy for decoration
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
JPS61179825A (en) Production of sintered co-base alloy having excellent corrosion resistance
JPH0447020B2 (en)
JP2654043B2 (en) Heat resistant parts and their manufacturing method
JPS5949297B2 (en) Hard sintered alloy for decorative parts
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH0881742A (en) Production of fe-cr-al alloy foil material excellent in high temperature oxidation resistance
JPH0827536A (en) Production of sintered compact of stainless steel
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH06279124A (en) Production of silicon nitride sintered compact
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP2011025388A (en) Cermet sintered body and cutting tool
JPS5823450B2 (en) Production method of C↓o-based sintered alloy for decorative parts with good machinability
JP2000054090A (en) Metal-ceramics composite and its manufacture
JPS58213859A (en) Corrosion-resistant sintered material
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JP3135555B2 (en) High speed tool steel sintered body
JPH03122258A (en) Alloy steel for injection molding powder metallurgy excellent in hardenability
JPS61270353A (en) Sintered compact of ni3al intermetallic compound and its production
JPH03281747A (en) Sintered alloy excellent in corrosion resistance and machinability and its manufacture
JPH09110530A (en) Titanium nitride sintered material and its production
JPS5948948B2 (en) Sintered hard alloy with excellent corrosion resistance