JPH03281747A - Sintered alloy excellent in corrosion resistance and machinability and its manufacture - Google Patents

Sintered alloy excellent in corrosion resistance and machinability and its manufacture

Info

Publication number
JPH03281747A
JPH03281747A JP8531990A JP8531990A JPH03281747A JP H03281747 A JPH03281747 A JP H03281747A JP 8531990 A JP8531990 A JP 8531990A JP 8531990 A JP8531990 A JP 8531990A JP H03281747 A JPH03281747 A JP H03281747A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
machinability
powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8531990A
Other languages
Japanese (ja)
Other versions
JP2786303B2 (en
Inventor
Keiichi Maruta
慶一 丸田
Sadakimi Kiyota
禎公 清田
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2085319A priority Critical patent/JP2786303B2/en
Publication of JPH03281747A publication Critical patent/JPH03281747A/en
Application granted granted Critical
Publication of JP2786303B2 publication Critical patent/JP2786303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered alloy having high density ratio and excellent in corrosion resistance and machinability by using the one obtd. by adding specified amounts of Mn and S being free cutting components to Ni ro Co base alloy powder as raw material powder. CONSTITUTION:Alloy powder obtd. by incorporating, by weight, <=2.0% Mn and 0.02 to 0.3% S into an Ni or Co base alloy and having <=15mu average grain size is used, which is mixed with a bond, is compacted an is dewaxed to regulate the C/O molar ratio in the green compact to 0.3 to 3. This green compact is sintered under the reduced pressure of <=1350 deg.C and <=30Torr and is furthermore sintered in a nonoxidizing atmosphere to obtain an objective sintered body having >=92% density ratio. Mn and S in the powder are combined to form MnS an to contribute to the improvement of its machinability, but in the case of >2.0%, the speheroidizing of the powder proceeds, so that the density of the sintered body does not increase and its ductility and toughness are deteriorated. S increases its machinability, but in the case of <0.02%, the desired effect can not be obtd., and in the case of >0.3%, the corrosion resistance, ductility, toughness or the like of the sintered body are reduced to deteriorate the compressibility of the powder.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、粉末冶金法によって製造される耐食性および
被削性に優れた焼結合金およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered alloy with excellent corrosion resistance and machinability produced by a powder metallurgy method, and a method for producing the same.

〈従来の技術〉 従来、耐食合金として用いられるNi。<Conventional technology> Ni is conventionally used as a corrosion-resistant alloy.

Cr、Co、Mo等を多量に含有する合金は、鍛造法ま
たは圧延法によって加工されているが、これらの合金は
難加工材であり、多大な切削が不可能であるため部品の
形状が制約される欠点がある。 また部品形状の拡大を
狙った精密鋳造法では製品の表面状態が劣悪なため5め
っきや研磨等の後加工が必要となり、耐食材料としての
適用が限定される。 さらに凝固冷却時に合金素地の結
晶粒子が粗大に成長するため、機械的特性が劣化すると
いう欠点もある。
Alloys containing large amounts of Cr, Co, Mo, etc. are processed by forging or rolling, but these alloys are difficult-to-process materials and cannot be cut to a large extent, so the shapes of parts are limited. There are some drawbacks. Furthermore, precision casting methods aimed at enlarging the shape of parts require post-processing such as plating and polishing due to the poor surface condition of the product, which limits its application as a corrosion-resistant material. Another drawback is that the crystal grains of the alloy matrix grow coarsely during solidification and cooling, resulting in deterioration of mechanical properties.

難加工であるという欠点に対しては、これらの材料に快
削性元素を添加して被削性を向上させることが考えられ
るが、上述のような加工方法ではS、Ca等の快削成分
を合金添加した場合、圧延時に割れが生じてしまい添加
できないという問題がある。
To address the drawback of difficult machining, it is possible to improve machinability by adding free-machining elements to these materials, but in the above-mentioned processing method, free-machining elements such as S and Ca When added to an alloy, there is a problem that it cannot be added because cracks occur during rolling.

これら合金の成形方法としては、例えば特公昭56−1
9392号に粉末冶金的手法によって金属酸化物の混合
物を圧縮成形する方法が提示されている。 この方法に
よれば、密度比で95%以上のNi基焼結合金が得られ
るが、通常のプレス成形によるものであり、部品形状は
金型の形状に太き(制約される。 また、焼結時の寸法
収縮にともなう形状のひずみも発生するため、適用の拡
大を図るためには材料自身の被削性を向上させることが
必須であり、この点に関しては問題が残る。
As a method for forming these alloys, for example, Japanese Patent Publication No. 56-1
No. 9392 proposes a method for compression molding a mixture of metal oxides by powder metallurgy. According to this method, a Ni-based sintered alloy with a density ratio of 95% or more can be obtained, but it is done by ordinary press forming, and the part shape is thick (restricted) by the shape of the mold. Since shape distortion occurs due to dimensional shrinkage during bonding, it is essential to improve the machinability of the material itself in order to expand its application, and problems remain in this regard.

〈発明が解決しようとする課題〉 本発明の目的とするところは、Ni基またはCo基焼結
合金の被削性を向上させようとするものである。
<Problems to be Solved by the Invention> An object of the present invention is to improve the machinability of Ni-based or Co-based sintered alloys.

具体的には、粉末の段階で快削成分であるSを予合金ま
たは混粉の状態で混入し、焼結体中でMnSとして微細
分散させ、かつ密度比を92%以上有する焼結合金およ
びその製造方法を提供する。
Specifically, S, which is a free-cutting component, is mixed in the form of pre-alloy or mixed powder at the powder stage, and finely dispersed as MnS in the sintered body, and the sintered alloy has a density ratio of 92% or more. A manufacturing method thereof is provided.

く課題を解決するための手段〉 本発明者らは種々の検討を重ねた結果、次のような結論
にいたった。 粉末での添加によれば快削成分が添加で
きるため、Ni基またはCo基合金粉末にMnと快削成
分であるSを適当量添加し、平均粒径で15μm以下と
したものを原料粉末とし、これを成形、脱脂した後、真
空焼結と非酸化性雰囲気中焼結とを組み合わせることで
焼結体の密度比を向上させることができ、焼結体中には
M n Sが分散した状態となるため、耐食性の劣化を
防ぎなから被削性を著しく向上させることができること
を見出した。
Means for Solving the Problems> As a result of various studies, the present inventors came to the following conclusion. Since a free-cutting component can be added by adding powder, appropriate amounts of Mn and S, which is a free-cutting component, are added to Ni-based or Co-based alloy powder to make the average particle size 15 μm or less as a raw material powder. After molding and degreasing, the density ratio of the sintered body can be improved by combining vacuum sintering and sintering in a non-oxidizing atmosphere, and MnS is dispersed in the sintered body. It has been found that machinability can be significantly improved while preventing deterioration of corrosion resistance.

すなわち、上記目的を達成するために本発明によれば、
Niベース合金またはCoベース合金系の焼結合金であ
って、Mn:2.0重置%以下、S:0.02〜0.3
重量%、C:0.2重量%以下、0:1.0重量%以下
をそれぞれ含有し、密度比が92%以上である耐食性お
よび被削性に優れた焼結合金が提供される。
That is, according to the present invention, in order to achieve the above object,
A sintered alloy based on Ni-based alloy or Co-based alloy, Mn: 2.0% or less, S: 0.02 to 0.3
% by weight, C: 0.2% by weight or less, C: 0:1.0% by weight or less, and has a density ratio of 92% or more, and has excellent corrosion resistance and machinability.

また、本発明によりば、Niベース合金またはCoへ−
ス合金にMn:2.0重量%以下、S:0.02〜0.
3重量%を含み、平均粒径15 It m以下の合金粉
末を用い、これに結合剤を添加混合して成形した後、該
成形体中の結合剤を減圧下または非酸化性雰囲気中で加
熱して除去し、成形体中のC/Oモル比を0.3〜3に
調整し、その後1350℃以下、圧力3゜torr以下
の減圧下で焼結し、さらに非酸化付雰囲気中で焼結する
ことを特徴とする耐食性および被削性に優れた焼結合金
の製造方法が提供される。
Furthermore, according to the present invention, Ni-based alloys or Co-
Mn: 2.0% by weight or less, S: 0.02-0.
Using an alloy powder containing 3% by weight and having an average particle size of 15 It m or less, a binder is added and mixed and molded, and then the binder in the molded body is heated under reduced pressure or in a non-oxidizing atmosphere. The C/O molar ratio in the molded body was adjusted to 0.3 to 3, and then sintered at a temperature of 1350°C or less and a reduced pressure of 3°torr or less, and further sintered in a non-oxidizing atmosphere. Provided is a method for producing a sintered alloy with excellent corrosion resistance and machinability.

ここで、C/Oモル比を0.3〜3に調整する際に、湿
潤水素下または大気中で熱処理するのが好ましい。
Here, when adjusting the C/O molar ratio to 0.3 to 3, it is preferable to perform heat treatment under wet hydrogen or in the atmosphere.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において、Niベース合金系とはNi−Cr−C
o−Mo−Fe系等のハステロイ系等のNi基合金であ
り、Coベース合金系とはN 1−Cr−Mo−Fe系
等のCo基合金である。 これらのベース合金系とした
のは、優れた耐食性を得るためである。 焼結合金中の
MnおよびSの含有量を規定したのは、これらの元素は
被削性の向」二の他に、耐食性、靭性および延性に太き
(影響すると考えられるためである。
In the present invention, Ni-based alloy system refers to Ni-Cr-C
The alloy is a Ni-based alloy such as a hastelloy system such as an o-Mo-Fe system, and the Co-based alloy is a Co-based alloy such as a N1-Cr-Mo-Fe system. The reason for using these base alloys is to obtain excellent corrosion resistance. The content of Mn and S in the sintered alloy was specified because these elements are thought to have a significant effect on corrosion resistance, toughness, and ductility in addition to machinability.

MnはSと結合して、焼結体中にMnSを生成し被削性
の向上に寄与する。 しかし、Mn添加が2.0重量%
超では粉末の球状化が進行し、焼結体の密度が上昇しな
い問題がある。
Mn combines with S to produce MnS in the sintered body, contributing to improving machinability. However, Mn addition was 2.0% by weight.
If it is too thick, the powder will become spheroidized and the density of the sintered body will not increase.

また、焼結体の延性および靭性が著しく低下するため、
2.0重量%以下とした。
In addition, the ductility and toughness of the sintered body are significantly reduced.
The content was 2.0% by weight or less.

Sは快削成分として焼結体の被削性を高める効果がある
。 ただし、0.02重量%未満では所望の効果が得ら
れず、また過度の添加は焼結体の耐食性を劣化させる、
粉末の圧縮性を阻害する、または焼結体の靭性や延性を
低下させる等の問題を引き起こすため、0.02〜0.
3重量%とした。
As a free-cutting component, S has the effect of improving the machinability of the sintered body. However, if it is less than 0.02% by weight, the desired effect will not be obtained, and if it is added excessively, it will deteriorate the corrosion resistance of the sintered body.
0.02 to 0.02 to 0.02 to 0.02, because it causes problems such as inhibiting the compressibility of the powder or reducing the toughness and ductility of the sintered body.
The content was 3% by weight.

また、快削成分どしてはSの他にSeまたはTeが考え
られ、SをそのままSe (0,01〜0.3重量%)
、Te (0,Ol 〜0.3重量%)に置き換えた含
有、または上記3成分中の1種または2種以上の複合含
有でも構わない。
In addition to S, Se or Te can be considered as a free-cutting component;
, Te (0,Ol to 0.3% by weight), or a combination of one or more of the above three components may be used.

C90量は、それぞれ0.2重量%、1.0重量%を越
えると耐食性が劣化するため0.2重量%以下、1.0
重量%以下とした。
The amount of C90 should be 0.2% by weight or less, and 1.0% by weight or less, since corrosion resistance deteriorates if it exceeds 0.2% by weight and 1.0% by weight, respectively.
% by weight or less.

密度比は耐食性に直接影響を及ぼす因子である。 密度
比が92%未満の焼結体では残留気孔がまだ完全に閉塞
化していないため、表面と内部の気孔が一部連結してい
ると予想され、内部も常に焼結体外部の厳しい腐食環境
にさらされることになり耐食性が不十分となる。 さら
に92%未満では残留気孔径も大きくなり、耐食性に悪
影響を及ぼす。 従って、密度比の下限を92%とした
Density ratio is a factor that directly affects corrosion resistance. In a sintered body with a density ratio of less than 92%, residual pores are not yet completely occluded, so it is expected that the surface and internal pores are partially connected, and the interior is always exposed to the harsh corrosive environment outside the sintered body. corrosion resistance becomes insufficient. Further, if it is less than 92%, the residual pore size also becomes large, which adversely affects corrosion resistance. Therefore, the lower limit of the density ratio was set to 92%.

次に、本発明の耐食性および被削性に優れた焼結合金の
製造方法について説明する。
Next, a method for producing a sintered alloy with excellent corrosion resistance and machinability according to the present invention will be described.

本発明方法において用いる合金粉末はNiベース合金ま
たはCoベース合金にMn:2.0重量%以下、S:0
.02〜0.3重量%を含むようMn、Sを添加し、平
均粒径を15μm以下としたものである。
The alloy powder used in the method of the present invention is a Ni-based alloy or a Co-based alloy with Mn: 2.0% by weight or less and S: 0.
.. Mn and S are added so as to contain 02 to 0.3% by weight, and the average particle size is set to 15 μm or less.

前記Niベース合金およびCoベース合金は、それぞれ
N 1−Cr−Co−Mo−Fe系等のハステロイ系N
i基合金およびNi−Cr−Mo−Fe系等のCo基合
金である。 これらの基合金としたのは、優れた耐食性
を得るためである。
The Ni-based alloy and the Co-based alloy are each a Hastelloy-based N
These are i-based alloys and Co-based alloys such as Ni-Cr-Mo-Fe systems. The reason for using these base alloys is to obtain excellent corrosion resistance.

本発明方法において、原料合金粉末中のM rrおよび
S含有量を規定したのは、上記焼結合金を得るために必
要だからである。
In the method of the present invention, the M rr and S contents in the raw material alloy powder are specified because they are necessary to obtain the above-mentioned sintered alloy.

上記成分の添加方法は溶湯段階で予合金化して合金粉末
とする方法でも、各成分の混合粉の状態でも、その中の
一部が予合金粉末であっても構わない。
The above-mentioned components may be added by pre-alloying at the molten metal stage to form an alloy powder, by a mixed powder of each component, or by a part of the pre-alloy powder.

原料粉末の平均粒径は焼結体の最終到達密度を決定する
大きな因子である。 粒径が細かい程、焼結は進行し密
度が上昇する。 しかし平均粒径で15μmを越えた粒
子を使用した場合には、焼結体の密度比が1昇せず焼結
体内部の空孔も大きいまま残留する。 また空孔形状も
不規則であり、焼結体の機械的特性は顕著に低下する。
The average particle size of the raw material powder is a major factor determining the final density of the sintered body. The finer the particle size, the more sintering progresses and the higher the density. However, when particles having an average particle size exceeding 15 μm are used, the density ratio of the sintered body does not increase by 1 and the pores inside the sintered body remain large. Furthermore, the shape of the pores is also irregular, and the mechanical properties of the sintered body are significantly deteriorated.

 よって、使用する合金粉末の平均粒径は15μm以下
と規定した。
Therefore, the average particle size of the alloy powder used was specified to be 15 μm or less.

使用する合金粉末の粒径が小さいため粉末単独では成形
が困難であり、成形しても成形体に割れが生じたり、金
型を傷めたりする等の問題がある。 そこで本発明では
前記合金粉末に結合剤を添加混合して成形をおこなう。
Since the particle size of the alloy powder used is small, it is difficult to mold the powder alone, and even when molded, there are problems such as cracks in the molded product and damage to the mold. Therefore, in the present invention, a binder is added to and mixed with the alloy powder and then molded.

 結合剤はワックス、樹脂またはこれらの混合物を用い
ても成形は可能である。 その添加量は成形方法によっ
て異なり、例えば射出成形では/O〜15重量%必要で
あり、金型成形では0.5〜2重量%程度である。 成
形方法は射出成形、金型成形、プレスによる押出成形の
いずれでもよい。
Molding is also possible using wax, resin, or a mixture thereof as the binder. The amount added varies depending on the molding method, and for example, in injection molding, /O to 15% by weight is required, and in mold molding, it is approximately 0.5 to 2% by weight. The molding method may be injection molding, mold molding, or extrusion molding using a press.

成形後、結合剤を除去するために減圧化または非酸化性
雰囲気中で加熱する。 加熱温度および昇温速度は結合
剤の種類によって適当に選択される。
After molding, it is heated under reduced pressure or in a non-oxidizing atmosphere to remove the binder. The heating temperature and heating rate are appropriately selected depending on the type of binder.

結合剤を除去した後、C/Oモル比を0.3〜3の範囲
に調整する。 焼結体中には還元の難しいCrを含有す
る。 Crは減圧下で焼結することで含有Cによって還
元できるが、その際、焼結の前段階でC/Oモル比が適
切である必要がある。 焼結体中のC1O量が各々0.
2重量%、1.0重量%を越えると耐食性が劣化するが
、成形体中のC/Oモル比が0.3未満では焼結後の0
量が1.0重量%を越え、また3、0を越えた場合には
焼結後のC量が0.2重量%を越える結果となり、耐食
性が劣化する。 そこで、焼結する前にC/Oモル比が
0.3〜3となるよう調整する。 その方法は成形脱脂
体を湿潤水素または大気中で加熱しておこなう。 加熱
温度は脱脂体のC/Oレベルによって適正なものが選択
されるが、通常、300〜450℃の範囲で選ばれる。
After removing the binder, the C/O molar ratio is adjusted to a range of 0.3-3. The sintered body contains Cr, which is difficult to reduce. Cr can be reduced by the contained C by sintering under reduced pressure, but in this case, the C/O molar ratio needs to be appropriate in the step before sintering. The amount of C1O in the sintered body is 0.
If it exceeds 2% by weight or 1.0% by weight, the corrosion resistance will deteriorate, but if the C/O molar ratio in the compact is less than 0.3, the corrosion resistance will deteriorate after sintering.
If the amount exceeds 1.0% by weight or exceeds 3.0% by weight, the amount of C after sintering will exceed 0.2% by weight, resulting in poor corrosion resistance. Therefore, the C/O molar ratio is adjusted to 0.3 to 3 before sintering. The method involves heating the shaped degreased body in wet hydrogen or air. An appropriate heating temperature is selected depending on the C/O level of the degreased body, and is usually selected in the range of 300 to 450°C.

 その後、焼結を施す。 その際、30torr以上の
減圧下で/O50〜1350℃の温度で焼結し、引き続
いて非酸化性雰囲気中1250〜1350℃で焼結する
ことで、焼結体の密度比=92%以上を達成することが
できる。
After that, sintering is performed. At that time, the density ratio of the sintered body is 92% or more by sintering at a temperature of /O50 to 1350°C under reduced pressure of 30 torr or more, and then sintering at 1250 to 1350°C in a non-oxidizing atmosphere. can be achieved.

焼結の前段は、添加されている元素中での難還元性であ
るCrの還元が目的である。
The purpose of the first stage of sintering is to reduce Cr, which is difficult to reduce among the added elements.

/O50℃未満では焼結体中のCr酸化物の還元が充分
に進行せず酸素が残留して、その後の焼結を阻害するの
で好ましくない。 また、1350℃より高温では焼結
体の表面よりCrが蒸発して耐食性が劣化するため上限
温度を1350℃とした。  Cr酸化物の還元には減
圧下が適しているが、その圧力が30torrを越える
と還元が進行しにくいため、圧力の上限を30torr
とした。
/O of less than 50° C. is not preferable because the reduction of Cr oxide in the sintered body does not proceed sufficiently and oxygen remains, which inhibits subsequent sintering. Further, at a temperature higher than 1350°C, Cr evaporates from the surface of the sintered body and corrosion resistance deteriorates, so the upper limit temperature was set at 1350°C. Reduced pressure is suitable for reducing Cr oxide, but if the pressure exceeds 30 torr, reduction will be difficult to proceed, so the upper limit of the pressure should be set to 30 torr.
And so.

焼結の後段は焼結体の緻密化および合金元素の均一化が
目的である。 焼結温度の上限は限定しないが、高密度
を達成するには1250℃以上の温度が必要である。 
しかし、1350℃以上では焼結体表面よりCrが過度
に蒸発したり、焼結体形状が崩れる等の問題が出てくる
ため、上限温度は1350℃とした。 また、雰囲気を
非酸化性としたのは高温でのCrの蒸発を抑制するため
であり、Ar、He、N2などの不活性ガスまたはH,
、Co、CH,などの還元ガスまたは燃焼排ガスを用い
る。
The purpose of the subsequent stage of sintering is to densify the sintered body and homogenize the alloying elements. Although there is no upper limit to the sintering temperature, a temperature of 1250° C. or higher is required to achieve high density.
However, at temperatures above 1350°C, problems such as excessive evaporation of Cr from the surface of the sintered body and deterioration of the shape of the sintered body occur, so the upper limit temperature was set at 1350°C. In addition, the reason why the atmosphere was made non-oxidizing was to suppress the evaporation of Cr at high temperatures.
, Co, CH, etc. or combustion exhaust gas is used.

以上のようにして本発明の耐食性および被削性に優れた
焼結合金を製造することができる。
As described above, the sintered alloy of the present invention having excellent corrosion resistance and machinability can be manufactured.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) Mn、Sの被削性、耐食性に対する効果を調べるために
、Ni基合金およびCo基合金に各々Mn=1.0重量
%、S:、0.02〜0.3重量%の範囲で含有する合
金粉末を水アトマイズで噴震し、製造した。 表1にそ
の組成を示す。 また、はぼ同じ成分系でSを添加しな
い合金粉末および0.3重量%を越えて添加した合金粉
末を比較例として準備した。 粉末の平均粒径なマイク
ロトラックで測定し表1に示すが、いずれも15μm以
下になっている。 これらの粉末に結合剤(ポリマー、
ワックス、パラフィンの混合物)を/O〜15重量%の
範囲で適当量加え混練してコンパウンドを製造した。 
このコンパウンドを用いて射出成形により、シャルピー
試験片および直径6mm、高さ50mmの円柱試験片を
成形した。
(Example 1) In order to investigate the effects of Mn and S on machinability and corrosion resistance, Mn = 1.0% by weight and S: 0.02 to 0.3% by weight were added to a Ni-based alloy and a Co-based alloy, respectively. It was produced by atomizing alloy powder containing within the range of . Table 1 shows its composition. In addition, alloy powders with approximately the same composition system but without the addition of S and alloy powders in which S was added in excess of 0.3% by weight were prepared as comparative examples. The average particle size of the powder was measured using a Microtrack and is shown in Table 1, and all were 15 μm or less. These powders are combined with binders (polymer,
A compound was prepared by adding and kneading an appropriate amount of a mixture of wax and paraffin in the range of /O to 15% by weight.
Using this compound, a Charpy test piece and a cylindrical test piece with a diameter of 6 mm and a height of 50 mm were molded by injection molding.

結合剤の除去は窒素雰囲気中/O℃/hの昇温速度で6
00℃まで加熱しておこなった。
The binder was removed in a nitrogen atmosphere at a heating rate of 6°C/h.
This was done by heating to 00°C.

結合剤除去の後、C/Oモル比が0.5〜1.0の範囲
にあることを確認して、0. 1torr以下の真空中
で1150℃の温度で60m1n焼結し、引き続いてA
r雰囲気中1350℃の温度で60m1n焼結し供試材
とした(本発明例1〜6、比較例1〜4)。
After binder removal, ensure that the C/O molar ratio is in the range of 0.5-1.0, and 0. 60ml1n sintered at a temperature of 1150°C in a vacuum of 1 torr or less, followed by A
60ml1n was sintered at a temperature of 1350° C. in an r atmosphere to obtain test materials (Inventive Examples 1 to 6, Comparative Examples 1 to 4).

得られた焼結体を用いて耐食性、被削性お上び機械的特
性の評価をおこなった。 耐食性はシャルピー試験片を
各/O個ずつ5%NaCβ水溶液中(pH:4)に温度
50℃で保持し、試験片全量に錆が認められない場合を
良好、その一部にでも鎖が出た場合な発錆として評価し
た。 切削性試験はシャルピー試験片を用いて1mmφ
ドリル(ハイス製)による穴開は試験をおこなった。 
切削条件はドリル回転数300Orpm、送り速度15
 ff1m/win、ドリル穴開は深さ5mm、乾式切
削とし、ドリルが使用不可能になり破断するまでの穴個
数で被削性を評価した。 また、機械的特性はシャルピ
ー試験を用いたロックウェル硬さ(HRc)と温度80
0℃に/O0hr保持した時のクリープ破断応力で評価
した。
The obtained sintered body was used to evaluate corrosion resistance, machinability, and mechanical properties. Corrosion resistance is determined by holding each Charpy test piece in a 5% NaCβ aqueous solution (pH: 4) at a temperature of 50°C. If no rust is observed in the entire test piece, it is considered good, and even a part of it has chains. It was evaluated as rusting when The machinability test was conducted using a Charpy test piece with a diameter of 1 mm.
A test was conducted on drilling holes using a drill (made of high-speed steel).
Cutting conditions are drill rotation speed 300 rpm, feed rate 15
ff1m/win, the drill hole was drilled to a depth of 5 mm, dry cutting was performed, and the machinability was evaluated by the number of holes until the drill became unusable and broke. In addition, the mechanical properties are Rockwell hardness (HRc) using Charpy test and temperature 80
Evaluation was made by creep rupture stress when maintained at 0°C/00hr.

表2に各焼結合金の実験結果を示す(本発明例1〜6、
比較例1〜4)。 各焼結体ともC,O量は適正値が得
られており、また焼結体密度比は各合金とも92%以上
が達成されている。
Table 2 shows the experimental results for each sintered alloy (invention examples 1 to 6,
Comparative Examples 1 to 4). Appropriate amounts of C and O were obtained for each sintered body, and a sintered body density ratio of 92% or more was achieved for each alloy.

焼結体の被削性については、M n、Sを添加した合金
(本発明例1〜6)は添加しないもの(比較例]、3)
に比較してドリル穴個数が増加しており、添加したMn
、Sの効果が認めらねる。 また穴個数はSの添加量に
従って増加しているが、S添加量が0.3重量%を越え
る(比較例2.4)と、発錆が認められ耐食性が劣化し
ている。
Regarding the machinability of the sintered body, alloys with Mn and S added (invention examples 1 to 6) and those without addition (comparative examples), 3)
The number of drilled holes has increased compared to the
, the effect of S is not recognized. Further, the number of holes increases with the amount of S added, but when the amount of S added exceeds 0.3% by weight (Comparative Example 2.4), rusting is observed and corrosion resistance deteriorates.

(実施例2) 表3に示すようにNf基合金およびCo基合金各々につ
いて、平均粒径が15μm以下のものと20μm前後の
ものとの2種類を水アトマイズで噴霧し製造した(本発
明例7.8、比較例5.6)。 これらの粉末を用いて
実施例1と同じ条件で試験片を準備し、実施例1と同じ
ようにして耐食性、被削性および機械的特性を測定、評
価した。 結果を表4に示す。 平均粒径が15μm以
下のもの(本発明例7.8)は焼結体密度比も92%以
上を達成し、特性も良好であるが、Ni基、Co基とも
に平均粒径が15μmを越える(比較例5.6)と焼結
体密度が上昇せず、その結果として耐食性および機械的
特性が顕著に劣化している。 また、被削性も低下して
いる。
(Example 2) As shown in Table 3, two types of Nf-based alloys and Co-based alloys, those with average particle diameters of 15 μm or less and those around 20 μm, were manufactured by spraying with water atomization (Example of the present invention) 7.8, Comparative Example 5.6). Test pieces were prepared using these powders under the same conditions as in Example 1, and the corrosion resistance, machinability, and mechanical properties were measured and evaluated in the same manner as in Example 1. The results are shown in Table 4. Those with an average particle size of 15 μm or less (Example 7.8 of the present invention) achieve a sintered body density ratio of 92% or more and have good properties, but the average particle size of both Ni and Co groups exceeds 15 μm. (Comparative Examples 5 and 6), the sintered body density did not increase, and as a result, the corrosion resistance and mechanical properties were significantly deteriorated. Moreover, machinability is also reduced.

(実施例3) 表1 (本発明例2.5)に示す合金粉末を用いて、実
施例1と同じ条件で試験片の成形と結合剤除去をおこな
った。 焼結は、それぞれ■1150℃Xlh (</
O−’torr)−+1350℃X1h(Ar)、01
350”Cx1、h (0,1torr)、01350
℃X1h(/O0torr)、■1350℃Xlh (
水素中、露点−40℃)、の4条件でおこなった。 実
験結果を表5に示す(表1本発明例2に対応する本発明
例9、比較例7〜9および表1本発明例5に対応する本
発明例1O1比較例/O〜12)。 上述の■の条件で
焼結したもの(本発明例9./O)のみが良好な特性を
示し、他の条件(比較例7〜12)では焼結体のC,O
量が適正値とならず耐食性の劣化がみられる。
(Example 3) Using the alloy powder shown in Table 1 (Inventive Example 2.5), a test piece was molded and the binder was removed under the same conditions as in Example 1. Sintering is performed at ■1150℃Xlh (</
O-'torr)-+1350℃X1h(Ar), 01
350"Cx1, h (0,1torr), 01350
℃X1h (/O0torr), ■1350℃Xlh (
The test was carried out under four conditions: hydrogen (dew point -40°C). The experimental results are shown in Table 5 (Table 1 Invention Example 9 corresponding to Invention Example 2, Comparative Examples 7 to 9 and Table 1 Invention Example 1 O1 Comparative Example/O to 12 corresponding to Invention Example 5). Only the product sintered under the above conditions (invention example 9./O) showed good properties, and under other conditions (comparative examples 7 to 12), the C, O
The amount does not reach an appropriate value, and corrosion resistance deteriorates.

(実施例4) 表6に示す合金粉末を用いて、実施例1と同じ条件で試
験片の成形をおこなった。 その後、窒素雰囲気中昇温
速度lO℃/hで600℃まで加熱して結合剤を除去し
た。 この段階でのC/Oモル比は3.2である。 次
に、この中の一部の試験片について、■湿潤水素中50
0℃で/Om1n保持、■大気中350℃でlomin
保持の2条件でC/O調整をおこなった。 その後、実
施例1と同じ条件で焼結し、特性の評価をおこなった。
(Example 4) Using the alloy powder shown in Table 6, test pieces were molded under the same conditions as in Example 1. Thereafter, the binder was removed by heating to 600° C. at a temperature increase rate of 10° C./h in a nitrogen atmosphere. The C/O molar ratio at this stage is 3.2. Next, for some of the test pieces,
/Om1n held at 0℃, lomin at 350℃ in air
C/O adjustment was performed under two retention conditions. Thereafter, it was sintered under the same conditions as in Example 1, and its properties were evaluated.

 表7に結果を示す(Ni基による比較例13、本発明
例11.12およびCo基による比較例14、本発明例
13.14)。 C/O調整したもの(本発明例11〜
14)は適正なC/Oモル比が得られ、その結果焼結体
のC/O量も適正であり、耐食性が良好であるが、C/
O調整しなかったもの(比較例13.14)は、残留C
によって耐食性が劣化していることがわかる。
The results are shown in Table 7 (Comparative Example 13 with Ni group, Inventive Example 11.12 and Comparative Example 14 with Co group, Inventive Example 13.14). C/O adjusted (invention example 11~
14), an appropriate C/O molar ratio is obtained, and as a result, the amount of C/O in the sintered body is also appropriate, and the corrosion resistance is good.
Those without O adjustment (Comparative Example 13.14) had residual C
It can be seen that the corrosion resistance has deteriorated.

(実施例5) 表8に示す組成の合金粉末を水アトマイズで噴霧し製造
した(本発明例15〜21.比較例15〜21)。 各
粉の平均粒径は15μm以下の適正な微粉である。 こ
れらの合金粉末を用いて実施例1と同じ条件で成形、結
合剤除去、焼結をおこない、実施例1と同じようにして
特性の評価をおこなった(本発明例15〜21、比較例
15〜21)。 表9に実験結果を示す、 各焼結体と
もSを添加することで被削性の顕著な向上効果が確証さ
れた(本発明例15〜21)、 また耐食性および機械
的特性の劣化はほとんどなかった。
(Example 5) Alloy powders having the compositions shown in Table 8 were sprayed and manufactured by water atomization (Invention Examples 15 to 21; Comparative Examples 15 to 21). Each powder is a suitable fine powder with an average particle size of 15 μm or less. Using these alloy powders, molding, binder removal, and sintering were performed under the same conditions as in Example 1, and properties were evaluated in the same manner as in Example 1 (Inventive Examples 15 to 21, Comparative Example 15). ~21). The experimental results are shown in Table 9. It was confirmed that adding S to each sintered body significantly improved machinability (Inventive Examples 15 to 21), and there was almost no deterioration in corrosion resistance and mechanical properties. There wasn't.

〈発明の効果〉 本発明は、以上説明したように構成されているので、耐
食性および被削性に優れた焼結合金を得ることができる
<Effects of the Invention> Since the present invention is configured as described above, a sintered alloy with excellent corrosion resistance and machinability can be obtained.

また、本発明の製造方法によりNi基またはCo基合金
にMn、Sを適正量添加することで、耐食性および被削
性に優れた焼結合金を容易に得ることができる。
Further, by adding appropriate amounts of Mn and S to a Ni-based or Co-based alloy using the manufacturing method of the present invention, a sintered alloy with excellent corrosion resistance and machinability can be easily obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)Niベース合金またはCoベース合金系の焼結合
金であって、Mn:2.0重量%以下、S:0.02〜
0.3重量%、C:0.2重量%以下、O:1.0重量
%以下をそれぞれ含有し、密度比が92%以上である耐
食性および被削性に優れた焼結合金。
(1) Ni-based alloy or Co-based sintered alloy, Mn: 2.0% by weight or less, S: 0.02~
A sintered alloy containing 0.3% by weight or less, C: 0.2% by weight or less, and O: 1.0% by weight or less, and having a density ratio of 92% or more and excellent in corrosion resistance and machinability.
(2)Niベース合金またはCoベース合金にMn:2
.0重量%以下、S:0.02〜0.3重量%を含み、
平均粒径15μm以下の合金粉末を用い、これに結合剤
を添加混合して成形した後、該成形体中の結合剤を減圧
下または非酸化性雰囲気中で加熱して除去し、成形体中
のC/Oモル比を0.3〜3に調整し、その後1350
℃以下、圧力30torr以下の減圧下で焼結し、さら
に非酸化性雰囲気中で焼結することを特徴とする請求項
1記載の耐食性および被削性に優れた焼結合金の製造方
法。
(2) Mn:2 in Ni-based alloy or Co-based alloy
.. 0% by weight or less, S: 0.02 to 0.3% by weight,
Using an alloy powder with an average particle size of 15 μm or less, a binder is added and mixed into the powder, and then the binder in the compact is removed by heating under reduced pressure or in a non-oxidizing atmosphere. The C/O molar ratio of was adjusted to 0.3-3, and then 1350
2. The method for producing a sintered alloy with excellent corrosion resistance and machinability according to claim 1, wherein the sintering is performed under reduced pressure of 30 torr or less at a temperature of 30 torr or less, and further sintering in a non-oxidizing atmosphere.
(3)C/Oモル比を0.3〜3に調整する際に、湿潤
水素下で熱処理する請求項2記載の耐食性および被削性
に優れた焼結合金の製造方法。
(3) The method for producing a sintered alloy with excellent corrosion resistance and machinability according to claim 2, wherein heat treatment is performed under wet hydrogen when adjusting the C/O molar ratio to 0.3 to 3.
(4)C/Oモル比を0.3〜3に調整する際に、大気
中で熱処理する請求項2記載の耐食性および被削性に優
れた焼結合金の製造方法。
(4) The method for producing a sintered alloy with excellent corrosion resistance and machinability according to claim 2, wherein heat treatment is performed in the atmosphere when adjusting the C/O molar ratio to 0.3 to 3.
JP2085319A 1990-03-29 1990-03-29 Method for producing sintered alloy with excellent corrosion resistance and machinability Expired - Fee Related JP2786303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085319A JP2786303B2 (en) 1990-03-29 1990-03-29 Method for producing sintered alloy with excellent corrosion resistance and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085319A JP2786303B2 (en) 1990-03-29 1990-03-29 Method for producing sintered alloy with excellent corrosion resistance and machinability

Publications (2)

Publication Number Publication Date
JPH03281747A true JPH03281747A (en) 1991-12-12
JP2786303B2 JP2786303B2 (en) 1998-08-13

Family

ID=13855296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085319A Expired - Fee Related JP2786303B2 (en) 1990-03-29 1990-03-29 Method for producing sintered alloy with excellent corrosion resistance and machinability

Country Status (1)

Country Link
JP (1) JP2786303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610084A (en) * 1992-06-29 1994-01-18 Kawasaki Steel Corp High hardness sintered alloy excellent in corrosion resistance and machinability and its manufacture
JPH07138713A (en) * 1993-11-15 1995-05-30 Daido Steel Co Ltd Production of fe-based alloy powder and high corrosion resistant sintered compact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172916A (en) * 1974-12-23 1976-06-24 Daido Steel Co Ltd
JPS5472716A (en) * 1977-11-22 1979-06-11 Tetsuya Watanabe High nickel alloy for spectacles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172916A (en) * 1974-12-23 1976-06-24 Daido Steel Co Ltd
JPS5472716A (en) * 1977-11-22 1979-06-11 Tetsuya Watanabe High nickel alloy for spectacles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610084A (en) * 1992-06-29 1994-01-18 Kawasaki Steel Corp High hardness sintered alloy excellent in corrosion resistance and machinability and its manufacture
JPH07138713A (en) * 1993-11-15 1995-05-30 Daido Steel Co Ltd Production of fe-based alloy powder and high corrosion resistant sintered compact

Also Published As

Publication number Publication date
JP2786303B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
JPH11501700A (en) Stainless steel powder and products manufactured by powder metallurgy from the powder
JP3856294B2 (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
US4491477A (en) Anti-wear sintered alloy and manufacturing process thereof
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US7300488B2 (en) Powder metal composition and method for producing components thereof
JPS599152A (en) Wear-resistant sintered alloy
JPS6365051A (en) Manufacture of ferrous sintered alloy member excellent in wear resistance
JP4668620B2 (en) Powder composition and method for producing high-density green compact
TW200426226A (en) Powder metal composition and method for producing components thereof
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JP2002047502A (en) Cr-CONTAINING Fe-BASED ALLOY POWDER AND Cr-CONTAINING Fe-BASED ALLOY SINTERED BODY USING THE SAME
JP2010274346A (en) Cutting tool
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPS62287041A (en) Production of high-alloy steel sintered material
JPH03247743A (en) Sintered alloy steel excellent in corrosion resistance, machinability and mirror finishing property and its manufacture
WO2020069795A1 (en) Composition comprising high melting iron alloy powder and modified high speed steel powder, sintered part and manufacturing method thereof, use of the high speed steel powder as additive for sintering
JPS635441B2 (en)
JPH10317009A (en) Production of stainless sintered body
JPH11181541A (en) Production of stainless steel sintered body
JPH0121856B2 (en)
JPH07233402A (en) Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
JPH0892708A (en) Mixed iron powder for powder metallurgy and production of sintered steel excellent in cuttability
JP3341675B2 (en) Iron-based sintered alloy excellent in strength and toughness and method for producing the same
JPH04147950A (en) Sintered alloy steel excellent in machinability and corrosion resistance and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees