JPS61178408A - Production of silicon nitride powder - Google Patents

Production of silicon nitride powder

Info

Publication number
JPS61178408A
JPS61178408A JP60019000A JP1900085A JPS61178408A JP S61178408 A JPS61178408 A JP S61178408A JP 60019000 A JP60019000 A JP 60019000A JP 1900085 A JP1900085 A JP 1900085A JP S61178408 A JPS61178408 A JP S61178408A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
powder
gas
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60019000A
Other languages
Japanese (ja)
Other versions
JPH0536363B2 (en
Inventor
San Abe
賛 安部
Masahiro Ogawa
正宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60019000A priority Critical patent/JPS61178408A/en
Priority to DE19863602647 priority patent/DE3602647A1/en
Priority to US06/825,571 priority patent/US4719095A/en
Publication of JPS61178408A publication Critical patent/JPS61178408A/en
Publication of JPH0536363B2 publication Critical patent/JPH0536363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce finely divided uniform powder of silicon nitride efficiently and easily, by oxidizing metallic silicon powder to give finely divided particles of silicon monoxide, reducing and nitrogenizing it. CONSTITUTION:Oxygen and LPG are fed from the feed pipes 22 and 23, respectively, to the burner 20, which is ignited, so the reaction furnace 10 is dried and deoxidized. Then, metallic silicon powder (<=200 meshes) is continuously fed from the feeder 21 to the furnace, and simultaneously oxygen is fed from the feed pipe 22 to form dust cloud. The dust cloud is ignited, exploded, burned, and oxidized to give ultrafine or gaseous silicon monoxide. A mixed gas of a hydrocarbon gas and an ammonia gas heated by the preheating furnace 11 is fed to a position just before the burner 20 by the feed pipe 12. Consequently, silicon monoxide is reduced and nitrogenized, to synthesize silicon nitride powder, which is collected by the collector 31 and the bag filter 32.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微粉末状の窒化ケイ素の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing finely powdered silicon nitride.

[従来の技術] 窒化ケイ素はその熱膨張係数の低さ、高温強度等により
、各方面で利用がなされている。また、その利用の際に
は、低温での焼結性の容易さ、触媒活性の増大などの面
から、原料粒子の粒径は1000Å以下とすることが望
ましく、そのような小さい粒径を有する窒化ケイ素粉末
が望まれていた。
[Prior Art] Silicon nitride is used in various fields due to its low coefficient of thermal expansion, high temperature strength, etc. In addition, when using it, it is desirable that the particle size of the raw material particles be 1000 Å or less in terms of ease of sinterability at low temperatures and increase in catalytic activity. Silicon nitride powder was desired.

従来、窒化ケイ素の粉末を製造するにあたっては(1)
式に示すような、金属ケイ素に直接窒素を反応させ、窒
化ケイ素を製造する方法がある。
Conventionally, in manufacturing silicon nitride powder, (1)
There is a method of producing silicon nitride by directly reacting nitrogen with metal silicon, as shown in the formula below.

3Si  +2Nt →3i  3N4 ・・・ (1
)また(2)式に示すような、四塩化ケイ素にアンモニ
アを反応させて、窒化ケイ素を製造する方法もある。
3Si +2Nt →3i 3N4 ... (1
) There is also a method of producing silicon nitride by reacting silicon tetrachloride with ammonia, as shown in formula (2).

38! C14+4NH3→ Si 3N4+12HC1・・・(2)[発明が解決し
ようとする問題点] 上記した方法では、以下のような問題点があった。
38! C14+4NH3→Si 3N4+12HC1 (2) [Problems to be Solved by the Invention] The above method had the following problems.

(1)式の方法では、高純度で微細な金属ケイ素粉末を
用いる必要があった。そして得られる粉末状窒化ケイ素
の粒度分布は広くなることが多く、また、1000Å以
下の微粒子を得ることは、かなり困難であった。さらに
高純度の微細な金属ケイ素を得ることは難しく、不純物
の混入という問題が避けられなかった。
In the method of formula (1), it was necessary to use highly purified and fine metal silicon powder. The particle size distribution of the obtained powdered silicon nitride is often wide, and it is quite difficult to obtain fine particles of 1000 Å or less. Furthermore, it is difficult to obtain fine metallic silicon of high purity, and the problem of contamination with impurities cannot be avoided.

また(2)式の製造方法では、原料である四塩化ケイ素
が高価であり、従って得られる窒化ケイ素も高価となっ
ていた。また有害な塩化水素ガスが発生し、その処理に
°工数がかかるという問題点があった。
Furthermore, in the manufacturing method of formula (2), silicon tetrachloride as a raw material is expensive, and thus the silicon nitride obtained is also expensive. Another problem is that harmful hydrogen chloride gas is generated, and its treatment requires a lot of man-hours.

本発明は上記問題点に鑑みてなされたものであり、容易
に微粒子状の窒化ケイ素粉末を得る製造方法を提供する
ものである。
The present invention has been made in view of the above-mentioned problems, and provides a manufacturing method for easily obtaining fine particulate silicon nitride powder.

[問題点を解決するための手段] 本発明の製造方法は、金属ケイ素粉末を酸化性ガス雰囲
気中で酸化して超微粒子状あるいはガス状の一酸化ケイ
素とする酸化工程と、 該一酸化ケイ素を窒素を含む還元性ガス雰囲気中で窒化
する窒化工程とからなることを特徴とする。
[Means for Solving the Problems] The production method of the present invention includes an oxidation step of oxidizing metal silicon powder in an oxidizing gas atmosphere to form ultrafine particulate or gaseous silicon monoxide, and the silicon monoxide. and a nitriding step of nitriding in a reducing gas atmosphere containing nitrogen.

本発明にいう酸化工程は本発明の1つの特色を成すもの
であり、金属ケイ素粉末を酸化性ガス雰囲気中で酸化し
て一酸化ケイ素とする工程である。
The oxidation step referred to in the present invention is one of the features of the present invention, and is a step in which metallic silicon powder is oxidized in an oxidizing gas atmosphere to form silicon monoxide.

この金属ケイ素粉末は、粒子が細かい方が好ましく、2
00メツシュ以下のものが特に望ましい。
It is preferable that this metal silicon powder has fine particles, and 2
00 mesh or less is particularly desirable.

このような粒子の金属ケイ素粉末を使用すれば、得られ
る窒化ケイ素粉末の粒度も100人〜1000人と好ま
しい範囲となる。なお、金貨ケイ素粉末は純度の特に高
いものを用いるような必要はない。
If metal silicon powder with such particles is used, the particle size of the obtained silicon nitride powder will also be in a preferable range of 100 to 1000 particles. Note that it is not necessary to use gold coin silicon powder with particularly high purity.

酸化性ガスには代表的なものに酸素ガス、オゾンガス等
があり、金属ケイ素粉末を酸化して一酸化ケイ素とする
ものを用いることができる。そして金属ケイ素粉末と酸
化性ガスとを反応させるに当っては、種々の方法が考え
られるが、金属ケイ素粉末と酸化性ガスとによって、粉
塵雲を形成させ、この粉a雲に着火して爆発、燃焼させ
ることにより、酸化することが望ましい。この方法によ
れば、酸化反応の際に生ずる発熱により、他の金属ケイ
素粉末の酸化が促進され、高温となって超微粒子状、あ
るいはガス状の一酸化ケイ素が生成する。そして酸化の
際の反応炎の熱エネルギーを利用して後述の窒化工程を
行なうことが可能となる。この着火手段としては、バー
ナー、プラズマジェット、アーク放電、レーザー光など
を使用す゛ ることができる。また粉塵雲の濃度は用い
る金属ケイ素粉末の粒径および着火手段等によって、最
適濃度を決めることが好ましい。なお、金属ケイ素粉末
は、極く短い時間を区切って、間欠的に供給してもよい
し、連続的に供給してもよい。ただし熱効率の面から、
反応炎は連続的に形成することが望ましい。
Typical oxidizing gases include oxygen gas, ozone gas, etc., and those that oxidize metal silicon powder to form silicon monoxide can be used. Various methods can be considered to cause the metal silicon powder and the oxidizing gas to react, but the metal silicon powder and the oxidizing gas form a dust cloud, and this dust cloud is ignited to cause an explosion. , it is desirable to oxidize it by burning it. According to this method, the heat generated during the oxidation reaction promotes the oxidation of other metal silicon powders, and the resulting high temperature produces ultrafine particle or gaseous silicon monoxide. Then, it becomes possible to carry out the nitriding process described later using the thermal energy of the reaction flame during oxidation. As this ignition means, a burner, plasma jet, arc discharge, laser light, etc. can be used. Further, it is preferable to determine the optimum concentration of the dust cloud depending on the particle size of the metal silicon powder used, the ignition means, etc. Note that the metal silicon powder may be supplied intermittently over very short periods of time, or may be supplied continuously. However, from the standpoint of thermal efficiency,
It is desirable that the reaction flame be formed continuously.

窒化工程は上記酸化工程により得られた一酸化ケイ素を
還元し、かつ窒化して窒化ケイ素とする工程である。こ
の窒化工程に用いられる窒素を含む還元性ガスは、還元
性と窒化性の両方の機能を有するガスであり、−優類も
しくは複数種類の物質の組み合わせを種々選択すること
ができる。例えば還元性ガスとしては、一酸化炭素ガス
、水素ガス、炭化水素系ガス等が利用できる。また窒化
性のガスとしては、アンモニアガス、アミンガス等を用
いることができる。また炭化水素系化合物の分子に窒素
元素を有する化合物を利用することも可能である。この
場合には一種類のガスで、炭素元素および水素元素によ
り還元反応が生じ、窒素元素により窒化反応が生ずる。
The nitriding step is a step in which the silicon monoxide obtained in the oxidation step is reduced and nitrided to form silicon nitride. The nitrogen-containing reducing gas used in this nitriding step is a gas that has both reducing and nitriding functions, and various combinations of the dominant class or a plurality of substances can be selected. For example, carbon monoxide gas, hydrogen gas, hydrocarbon gas, etc. can be used as the reducing gas. Further, as the nitriding gas, ammonia gas, amine gas, etc. can be used. It is also possible to use a compound having a nitrogen element in the molecule of a hydrocarbon compound. In this case, with one type of gas, a reduction reaction occurs with the carbon element and the hydrogen element, and a nitriding reaction occurs with the nitrogen element.

なお、これらの場合に、炭素元素を還元反応当量よりも
過剰に用いることで、炭化ケイ素を生成せしめ、窒化ケ
イ素と炭化ケイ素の混合体を製造することも可能である
。また、この混合体の組成比は、窒素元素と炭素元素と
の当量比により、自由に調節が可能である。なお、窒素
を含む還元性ガスにより反応系が冷却するのを防ぐため
に、該ガスを予め加熱しておくことが望ましい。
In addition, in these cases, by using the carbon element in excess of the reduction reaction equivalent, it is also possible to generate silicon carbide and produce a mixture of silicon nitride and silicon carbide. Further, the composition ratio of this mixture can be freely adjusted by adjusting the equivalent ratio of nitrogen element and carbon element. Note that in order to prevent the reaction system from being cooled by the reducing gas containing nitrogen, it is desirable to heat the gas in advance.

一酸化ケイ素は、高温で上記窒素を含む還元性ガスと接
触することにより、還元、窒化されて窒化ケイ素となる
。この場合、酸化工程の熱を利用する意味において、酸
化工程と窒化工程とは連続して行なうことが望ましい。
When silicon monoxide comes into contact with the nitrogen-containing reducing gas at high temperature, it is reduced and nitrided to become silicon nitride. In this case, it is desirable to carry out the oxidation step and the nitridation step successively in order to utilize the heat of the oxidation step.

酸化工程で金属ケイ素粉末と酸化性ガスとによる粉塵雲
を形成した場合には、金属ケイ素粉末と酸化性ガスとに
よる、−1ift化ケイ素を多聞に含む連続反応炎が形
成される。従って、この連続反応炎を上記還元性雰囲気
中で生ぜしめるこ、とにより、この連続反応炎の熱エネ
ルギーによって連続的に還元、窒化反応が進み、追徴粒
子状あるいはガス状の一酸化ケイ素は微細な粉末状の窒
化ケイ素とすることができる。
When a dust cloud is formed by the metal silicon powder and the oxidizing gas in the oxidation step, a continuous reaction flame is formed by the metal silicon powder and the oxidizing gas, which contains a large amount of -1ift silicon. Therefore, by generating this continuous reaction flame in the above-mentioned reducing atmosphere, the reduction and nitriding reactions proceed continuously due to the thermal energy of this continuous reaction flame, and the additional particulate or gaseous silicon monoxide is It can be made into powdered silicon nitride.

1qられた窒化ケイ素は、バグフィルタ−等周知の捕集
装置によって捕集することができる。なお捕集装置を通
過したガス体には通常、未反応の酸化性ガス、および窒
素を含む還元性ガスが含まれているので、燃焼等の処理
後排出することが望ましい。
1q of silicon nitride can be collected by a well-known collection device such as a bag filter. Note that since the gas that has passed through the collection device usually contains unreacted oxidizing gas and reducing gas containing nitrogen, it is desirable to discharge it after processing such as combustion.

[発明の作用及び効果] 本発明の製造方法によれば、バーナー、プラズマジェッ
ト等の着火手段を用いるのみで、金属ケイ素粉末と酸化
性ガスの反応の除虫じる発熱により、他の金属ケイ素粉
末の反応が促進される。従って熱効率が極めて高(、低
コスト化が図れる。
[Operations and Effects of the Invention] According to the manufacturing method of the present invention, by simply using an ignition means such as a burner or a plasma jet, the heat generated by the reaction between the metal silicon powder and the oxidizing gas can be used to ignite other metal silicon powder. Powder reaction is accelerated. Therefore, thermal efficiency is extremely high (and costs can be reduced).

そして超微粒子状、あるいはガス状の一酸化ケイ素を含
む反応炎が連続的に形成され、この反応炎に窒素を含む
還元性ガスを接触させる事で、連続的に大量の微粒子状
の窒化ケイ素粉末が製造される。従って、極めて効率よ
く、均質な窒化ケイ素粉末が量産性よく得られる等本発
明の効果は大きい。
Then, a reaction flame containing ultrafine particulate or gaseous silicon monoxide is continuously formed, and by contacting this reaction flame with a reducing gas containing nitrogen, a large amount of fine particulate silicon nitride powder is continuously formed. is manufactured. Therefore, the effects of the present invention are significant, such as the ability to obtain homogeneous silicon nitride powder extremely efficiently and with good mass productivity.

[実施例] 第1図に本発明の製造方法に係わる製造装置を示す。こ
の製造装置は、内壁を耐熱レンガ15で囲まれ、一方の
側壁に排出通路30を有する反応炉10と、反応炉10
の他方の側壁に設けられ、反応炉10に火炎を送るバー
ナー20とから主として構成されている。バーナー20
には金属ケイ素粉末を供給する粉末供給装置21と、酸
素を供給する酸素供給管22及び種火用のLPGを供給
するLPd供給管23が配設されている。反応炉10上
壁には全熱炉11を介してメタンガスとアンモニアガス
の混合ガスを供給する還元・窒化ガス供給管12が反応
炉10内に開口するように設けられている。
[Example] FIG. 1 shows a manufacturing apparatus related to the manufacturing method of the present invention. This manufacturing apparatus includes a reactor 10 whose inner wall is surrounded by heat-resistant bricks 15 and which has a discharge passage 30 on one side wall;
The burner 20 is provided on the other side wall of the reactor 10 and sends flame to the reactor 10. burner 20
A powder supply device 21 for supplying metal silicon powder, an oxygen supply pipe 22 for supplying oxygen, and an LPd supply pipe 23 for supplying LPG for a pilot flame are disposed in the fuel cell. A reducing/nitriding gas supply pipe 12 for supplying a mixed gas of methane gas and ammonia gas through the total heat furnace 11 is provided on the upper wall of the reactor 10 so as to open into the reactor 10 .

また排出通路30には粉末捕集装置31が設けられ、粉
末捕集装[31の後方には未捕集の窒化ケイ素粉末粉末
を捕集するバグフィルタ−32が設けられている。そし
てバグフィルタ−32を通過してきた排ガスは、ブロア
33により燃焼処理部34を通過後、屋外へ排出される
ように構成されている。
Further, a powder collecting device 31 is provided in the discharge passage 30, and a bag filter 32 for collecting uncollected silicon nitride powder is provided behind the powder collecting device [31]. The exhaust gas that has passed through the bag filter 32 is configured to be discharged outdoors after passing through a combustion processing section 34 by a blower 33.

上記のように構成された反応装置により、以下のように
して反応を行ない、窒化ケイ素粉末を製造した。
Using the reaction apparatus configured as described above, a reaction was carried out in the following manner to produce silicon nitride powder.

まず酸素供給管22とLPG供給管23のバルブ24.
25を開き、バーナー20に着火して反応炉10内を充
分に乾燥させ、脱酸素を行なった。
First, the valves 24 of the oxygen supply pipe 22 and the LPG supply pipe 23.
25 was opened and the burner 20 was ignited to sufficiently dry the inside of the reactor 10 and deoxidize it.

その後、粉末供給装置21により、金属ケイ素粉末を1
0〜30 kQ/時の供給速度で連続的に供給し、同時
に酸素供給管22より、酸素を金属ケイ素粉末の反応当
量分(4〜12Nm3/時)供給した。そして還元・窒
化ガス供給管12のバルブ13を開き、予熱炉11によ
り約1000℃に加熱されたメタンガスとアンモニアガ
スの混合ガスを、メタンガスを8〜24Ns3/時、お
よびアンモニアガスを11〜32N13/時の流量で供
給した。
After that, the powder supply device 21 supplies 1 portion of metal silicon powder.
It was continuously supplied at a supply rate of 0 to 30 kQ/hour, and at the same time, oxygen was supplied from the oxygen supply pipe 22 in an amount corresponding to the reaction equivalent of the metal silicon powder (4 to 12 Nm<3>/hour). Then, the valve 13 of the reducing/nitriding gas supply pipe 12 is opened, and a mixed gas of methane gas and ammonia gas heated to about 1000°C by the preheating furnace 11 is supplied at a rate of 8 to 24 Ns3/hour of methane gas and a rate of 11 to 32Ns3/hour of ammonia gas. It was supplied at a flow rate of

この時バーナ−20前面では連続的に金属ケイ素粉末の
酸化反応による反応炎26が形成され、その熱エネルギ
ーを得てメタンガスの炭素元素と水素元素、およびアン
モニアガスの水素元素によって還元され、アンモニアガ
スの窒素元素によつて窒化されて合成された窒化ケイ素
粉末が、粉末捕集装置31およびバグフィルタ−32に
16〜40 kM時の収岱で捕集された。
At this time, a reaction flame 26 is continuously formed in front of the burner 20 due to the oxidation reaction of the metal silicon powder, and the thermal energy is obtained and reduced by the carbon element and hydrogen element of methane gas and the hydrogen element of ammonia gas, and the ammonia gas Silicon nitride powder synthesized by nitriding with nitrogen element was collected in a powder collector 31 and a bag filter 32 at a collection rate of 16 to 40 km hours.

またバグフィルタ−32を通過した排ガスは、ブロア3
3により燃焼処理部34へ送られて燃焼処理された後、
屋外へ排出された。
Furthermore, the exhaust gas that has passed through the bag filter 32 is transferred to the blower 3
After being sent to the combustion processing section 34 by 3 and subjected to combustion processing,
It was discharged outdoors.

電子顕微鏡観察及びX線回折により得られた粉末を分析
したところ、粒径は100人〜1000人の間の粒度分
布を有し、アモルファス構造を有する窒化ケイ素粉末で
あった。
When the obtained powder was analyzed by electron microscopy and X-ray diffraction, it was found to be a silicon nitride powder with a particle size distribution between 100 and 1000 particles and an amorphous structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る製造装置の系統図であ
る。
FIG. 1 is a system diagram of a manufacturing apparatus according to an embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)金属ケイ素粉末を酸化性ガス雰囲気中で酸化して
超微粒子状あるいはガス状の一酸化ケイ素とする酸化工
程と、 該一酸化ケイ素を窒素を含む還元性ガス雰囲気中で窒化
する窒化工程とからなることを特徴とする窒化ケイ素粉
末の製造方法。
(1) An oxidation process in which metallic silicon powder is oxidized in an oxidizing gas atmosphere to form ultrafine particle or gaseous silicon monoxide, and a nitriding process in which the silicon monoxide is nitrided in a reducing gas atmosphere containing nitrogen. A method for producing silicon nitride powder, comprising:
(2)窒素を含む還元性ガスは炭化水素系ガスとアンモ
ニアガスの混合ガスである特許請求の範囲第1項記載の
窒化ケイ素粉末の製造方法。
(2) The method for producing silicon nitride powder according to claim 1, wherein the reducing gas containing nitrogen is a mixed gas of a hydrocarbon gas and an ammonia gas.
(3)酸化工程は、金属ケイ素粉末と酸化性ガスとで粉
塵雲を形成し、該粉塵雲に着火して爆発、燃焼させるこ
とにより行なう特許請求の範囲第1項記載の窒化ケイ素
粉末の製造方法。
(3) Production of silicon nitride powder according to claim 1, wherein the oxidation step is performed by forming a dust cloud with metal silicon powder and an oxidizing gas, and igniting the dust cloud to cause it to explode and burn. Method.
(4)着火はバーナあるいはプラズマジェットにより行
なう特許請求の範囲第3項記載の窒化ケイ素粉末の製造
方法。
(4) The method for producing silicon nitride powder according to claim 3, wherein ignition is performed using a burner or a plasma jet.
(5)金属ケイ素粉末は粒度が200メッシュ以下であ
る特許請求の範囲第1項記載の窒化ケイ素粉末の製造方
法。
(5) The method for producing silicon nitride powder according to claim 1, wherein the metal silicon powder has a particle size of 200 mesh or less.
(6)窒素を含む還元性ガスはあらかじめ加熱後供給す
る特許請求の範囲第1項記載の窒化ケイ素粉末の製造方
法。
(6) The method for producing silicon nitride powder according to claim 1, wherein the reducing gas containing nitrogen is heated in advance and then supplied.
JP60019000A 1985-02-02 1985-02-02 Production of silicon nitride powder Granted JPS61178408A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60019000A JPS61178408A (en) 1985-02-02 1985-02-02 Production of silicon nitride powder
DE19863602647 DE3602647A1 (en) 1985-02-02 1986-01-29 PRODUCTION OF SILICONE CERAMIC POWDERS
US06/825,571 US4719095A (en) 1985-02-02 1986-02-03 Production of silicon ceramic powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019000A JPS61178408A (en) 1985-02-02 1985-02-02 Production of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS61178408A true JPS61178408A (en) 1986-08-11
JPH0536363B2 JPH0536363B2 (en) 1993-05-28

Family

ID=11987273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019000A Granted JPS61178408A (en) 1985-02-02 1985-02-02 Production of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS61178408A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240031296A (en) 2021-07-05 2024-03-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing silicon monoxide
JP2023036398A (en) 2021-09-02 2023-03-14 信越化学工業株式会社 Silicon monoxide powder, and negative electrode active material for lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913611A (en) * 1982-07-08 1984-01-24 Fumio Hori Hyperfine powder of si3n4, method and apparatus for manufacturing it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913611A (en) * 1982-07-08 1984-01-24 Fumio Hori Hyperfine powder of si3n4, method and apparatus for manufacturing it

Also Published As

Publication number Publication date
JPH0536363B2 (en) 1993-05-28

Similar Documents

Publication Publication Date Title
EP0151490B1 (en) Process for producing ultra-fine ceramic particles
JPS60255602A (en) Preparation of ultrafine particle of oxide
JPH05193909A (en) Production of metal oxide powder
US4719095A (en) Production of silicon ceramic powders
JPS61178408A (en) Production of silicon nitride powder
JPH01131100A (en) Production of silicon carbide whisker
JP2868039B2 (en) Method for producing lower metal oxide
JPS61178413A (en) Production of silicon carbide powder
JPH05193928A (en) Production of silica glass powder
JP2929815B2 (en) Method for producing carbide powder
JPS63176303A (en) Production of silicon carbide powder
JP3225073B2 (en) Method for producing metal oxide powder
WO2023282136A1 (en) Method for manufacturing silicon monoxide
JPS60251112A (en) Process and device for preparing silicon
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPH01167215A (en) Method and apparatus for manufacturing highly dispersed aluminium oxide particles
JPS6257642A (en) Method and apparatus for producing ultrafine powder
JPS62283805A (en) Production of extremely fine aluminum nitride powder
JPS60246212A (en) Ultrafine particles of amorphous silicon nitride and its production
JPH02217308A (en) Production of oxide powder
JPS6117764B2 (en)
JPS6479001A (en) Production of composite oxide powder
JPS63201011A (en) Production of silicon carbide powder
JPS60166025A (en) Preparation of ceramic ultrafine particle
CN114174217A (en) Method and apparatus for preparing silicon-containing materials