JPS60246212A - Ultrafine particles of amorphous silicon nitride and its production - Google Patents
Ultrafine particles of amorphous silicon nitride and its productionInfo
- Publication number
- JPS60246212A JPS60246212A JP10435784A JP10435784A JPS60246212A JP S60246212 A JPS60246212 A JP S60246212A JP 10435784 A JP10435784 A JP 10435784A JP 10435784 A JP10435784 A JP 10435784A JP S60246212 A JPS60246212 A JP S60246212A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- hydrogen
- gas
- nitrogen
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/068—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、無定形超微粒子−状窒化珪素とその製造法に
関する。更に詳しくは、本発明は窒素と水素の混合プラ
ズマガス流中にハロゲン化珪素化合物を吹込みこれら三
種の原料を反応させてなる無定形超微粒子状窒化珪素と
その製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to amorphous ultrafine particle silicon nitride and a method for producing the same. More specifically, the present invention relates to amorphous ultrafine particulate silicon nitride produced by injecting a halogenated silicon compound into a mixed plasma gas flow of nitrogen and hydrogen and reacting these three raw materials, and a method for producing the same.
窒化珪素は、耐熱性、耐食性に優れ、特に耐熱衝撃性が
顕著に優れた材ネ4であることが知られている。そのた
め耐熱性高温用構造材料として、自動車若しくは産業用
のガスタービンまたはレシプロエンジン部品用の他、産
業用高温熱交換器用部材としての用途が期待されている
。Silicon nitride is known to be a material that is excellent in heat resistance and corrosion resistance, and particularly in thermal shock resistance. Therefore, it is expected to be used as a heat-resistant high-temperature structural material for automobile or industrial gas turbine or reciprocating engine parts, as well as for industrial high-temperature heat exchanger parts.
窒化珪素粉末を製造する従来の方法としては、次の諸方
法が知られている。すなわち、金属シリコンを直接に窒
素ガスで窒化する方法、シリカ粉末と炭素粉末の混合物
を窒素ガスで窒化する方11、若しくは四塩化珪素とア
ンモニアからシリコンイミドを形成させ、このものを熱
分解する方法等である。しかし、これ等の方法では、焼
結に適した超W1粒子が得られないという問題点がある
。The following methods are known as conventional methods for producing silicon nitride powder. That is, a method in which metallic silicon is directly nitrided with nitrogen gas, a method in which a mixture of silica powder and carbon powder is nitrided with nitrogen gas11, or a method in which silicon imide is formed from silicon tetrachloride and ammonia and this is thermally decomposed. etc. However, these methods have the problem that super W1 particles suitable for sintering cannot be obtained.
他の方法として、(1)ハロゲン化珪素若しくは水素化
珪素(シラン)とアンモニアガスを高温度に加熱された
気相反応管中で気相反応させる方法(特開昭54−13
4.089、57−82,108) 、若しくは(防同
じ原料を超高温のプラズマに接触させて反応させる方法
(特開昭55− + 16.604、同57−209,
810)が提案されている。これらの方法によれば、超
微粉末状の窒化珪素が得られることが期待される。しか
し、II的物がいずれもイミドの生成反応を経由してい
るため、得られた非晶質粉末物質中には多くのNH基が
含まれている。従って、か覧る粉末物質は、例えば吸湿
による加水分解若しくは空気中の酸素との反応がおこり
易く不安定で、そのま−では、焼結用として使用できず
、別途熱処理することによって6品化を行う必要がある
。Another method is (1) a method in which silicon halide or silicon hydride (silane) and ammonia gas are subjected to a gas phase reaction in a gas phase reaction tube heated to a high temperature (Japanese Patent Application Laid-Open No. 54-13
4.089, 57-82, 108), or (method of reacting the same raw materials by contacting them with ultra-high temperature plasma (JP-A-1983-16.604, JP-A No. 57-209,
810) has been proposed. According to these methods, it is expected that silicon nitride in the form of ultrafine powder can be obtained. However, since all of the II compounds are produced through an imide production reaction, the resulting amorphous powder material contains many NH groups. Therefore, the visible powder material is unstable, prone to hydrolysis due to moisture absorption or reaction with oxygen in the air, and cannot be used for sintering until it is produced. need to be done.
また、これらのプラズマ利用の方法ではプラズマトーチ
(計、後述図面の説明参照)を通過するプラズマ流の速
度は、10〜20m/secのように、II常に速い。In addition, in these plasma utilization methods, the velocity of the plasma flow passing through the plasma torch (see the explanation in the drawings below) is always fast, such as 10 to 20 m/sec.
このため、反応原ネ4を該プラズマ流に導入する際に、
前述の公知技術に述へられているようなトーチ上澄の周
辺部から吹込むような力n、では、反応原料ガスがプラ
ズマ流に押し流されて中に反応器の壁面に流れるのみと
なり、温度が1分にl:ILないま一該壁面からさらに
冷却される。Therefore, when introducing the reactant source 4 into the plasma flow,
If the force n is blown from the periphery of the torch supernatant as described in the above-mentioned prior art, the reaction material gas will be swept away by the plasma flow and will only flow to the wall of the reactor, causing the temperature to drop. is further cooled from the wall by 1:IL per minute.
従って、該反応原料ガスは[分に反応することができな
い。Therefore, the reaction raw material gas cannot react in minutes.
本発明者等は、以りの問題点を検fi−j L、化学的
に安定で、そのま−焼結用に使用できる)1品質超微粒
子状窒化珪素を取得すべく鋭意研究の結果、窒素と水素
の混合プラズマガス流中に/\ロゲン化珪素化合物を吹
込んでこれら一二稀の物質を反応させることにより、前
述の従来技術の問題点が凡て解決された非晶質超微粒子
状窒化珪素が得られることを知って本発明を完成した。The inventors of the present invention have investigated the following problems, and as a result of intensive research to obtain 1-quality ultrafine particulate silicon nitride that is chemically stable and can be used for immediate sintering, All of the problems of the prior art described above have been solved by injecting a silicon halogenide compound into a mixed plasma gas flow of nitrogen and hydrogen to cause these rare substances to react. The present invention was completed knowing that silicon nitride could be obtained.
以I;の記述から明らかなように本発明の目的は、安定
的な運転条件で製造「+f能な均質な非晶質超微粒子状
窒化珪素とその製造法を提供するにある。他の目的は、
以下の記述から明らかにされる。As is clear from the description below, an object of the present invention is to provide homogeneous amorphous ultrafine particle silicon nitride that can be produced under stable operating conditions and a method for producing the same. teeth,
This will become clear from the description below.
本発明(−発明)は、下記(1)および(5)の主要構
成と (2)ないし (4)の実施態様的構成を有する
。The present invention (-invention) has the following main configurations (1) and (5) and the embodiment configurations (2) to (4).
(1)窒素と水素の混合プラズマガス流中にハロゲン化
珪素化合物を吹込み、該ハロゲン化珪素を該プラズマガ
ス流中の活性化された窒素および水素と反応させること
を特徴とする無定形超微粒子状窒化珪素の製造法。(1) An amorphous superstructure characterized by injecting a silicon halide compound into a mixed plasma gas stream of nitrogen and hydrogen, and causing the silicon halide to react with activated nitrogen and hydrogen in the plasma gas stream. A method for producing particulate silicon nitride.
(2)プラズマガス流が高周波誘導加熱により形成され
たものである前記第1項に記載の製造法。(2) The manufacturing method according to item 1 above, wherein the plasma gas flow is formed by high-frequency induction heating.
(3)ハロゲン化珪素化合物とプラズマガスの比率が標
準状態に換算した気体容積比で0.05〜0.2である
前記第1項に記載の方法。(3) The method according to item 1, wherein the ratio of the silicon halide compound to the plasma gas is 0.05 to 0.2 in terms of gas volume ratio converted to a standard state.
(4)水素ガスのモル数とハロゲン化珪素化合物分子−
中のハロゲン原子数の比率が0.3〜1.0である前記
第1項に記載の製造法。(4) Number of moles of hydrogen gas and halogenated silicon compound molecules
The manufacturing method according to the above item 1, wherein the ratio of the number of halogen atoms therein is 0.3 to 1.0.
(5)窒素と水素の混合プラズマガス流中にハロゲン化
珪素化合物を吹込み、該ハロゲン化珪素を該プラズマガ
ス流中の活性化された窒素および水素と反応させてなる
無定形超微粒子状窒化珪素。(5) Amorphous ultrafine particulate nitridation obtained by blowing a silicon halide compound into a mixed plasma gas flow of nitrogen and hydrogen, and reacting the silicon halide with activated nitrogen and hydrogen in the plasma gas flow. silicon.
本発明の方法においては、窒素と水素の混合ガスを用い
て先づプラズマガス流を形成させる。そのためプラズマ
形成装置を使用する。該装置は限定されないが、本発明
の方法に使用する該装置の1例を図面により説明する。In the method of the present invention, a gas mixture of nitrogen and hydrogen is used to first form a plasma gas stream. Therefore, a plasma forming device is used. Although the apparatus is not limited, one example of the apparatus used in the method of the present invention will be explained with reference to the drawings.
図において、1は高周波誘導プラズマトーチで、]一部
にプラズマ操作ガスノズル2a、2bおよび2Cを持っ
たノズルヘッド2を装着しである。該ヘッド2には、さ
らに隔壁を設けた2重管構造を有する原料ガス供給管3
が前記ヘッド2の中心部を1−下方向に貫通して挿着さ
れている。該供給管3の外管は冷却管であり、冷却水人
口3aから供給した冷却水は、前記隔壁を通じて鎖管の
先端部に達し、つづいて該隔壁の反対側を通って上端に
戻り冷却水出r+ 3から排出される。In the figure, reference numeral 1 designates a high-frequency induction plasma torch, which is partially equipped with a nozzle head 2 having plasma-operated gas nozzles 2a, 2b, and 2C. The head 2 further includes a raw material gas supply pipe 3 having a double pipe structure with a partition wall.
is inserted through the center of the head 2 in the 1-down direction. The outer pipe of the supply pipe 3 is a cooling pipe, and the cooling water supplied from the cooling water port 3a reaches the tip of the chain pipe through the partition wall, and then returns to the upper end through the opposite side of the partition wall, and the cooling water is returned to the upper end. It is discharged from output r+3.
つづいて、4は、前記プラズマトーチl内に装着された
石英製最内筒でその外側に水冷ジャケット7を有してい
る。該ジャケットには、前記トーチlに穿設された冷却
水入ロアdおよび冷却水出[17bを有し、該トーチの
運転中は冷却水を通じる。Subsequently, 4 is the innermost cylinder made of quartz installed in the plasma torch 1, and has a water cooling jacket 7 on the outside thereof. The jacket has a cooling water inlet lower d and a cooling water outlet [17b] bored in the torch I, and the cooling water is passed therethrough during operation of the torch.
さらに、水冷ジャケット7内で最内筒4の外側には、高
周波誘導コイル5が設けられ、該コイルは、本装置外に
設けられた高周波発信機(図示せず)と導線6aおよび
6bで接続されている0本発明の実施に際して発振すべ
き高周波の周波数は1本装置の6研の大小によって変化
するが、は(数百KHz〜5 MHzの範囲である。Further, a high-frequency induction coil 5 is provided outside the innermost cylinder 4 within the water-cooling jacket 7, and the coil is connected to a high-frequency transmitter (not shown) provided outside the device using conductive wires 6a and 6b. The frequency of the high frequency to be oscillated when carrying out the present invention varies depending on the size of the device, but is in the range of several hundred KHz to 5 MHz.
プラズマの形成方法は、前記ヘッド2に装着されたノズ
ル2a、2bおよび2Cから供給されたプラズマ操作ガ
ス(註、窒素および水素)が、最内筒4内で前記コイル
5内に対応する位置を通過する際に、該コイルに負荷さ
れた高周波電流に基づくエネルギーを受けとることによ
り、環状若しくはドーナツ状の超高温部15を持ったプ
ラズマ炎14を形成する。プラズマトーチlの下部には
、予備用フィードノズル8aおよび8bが設けられ、こ
れ等のノズルは、クエンチ用のカスの供給若しくは第3
成分の添加用として使用される。プラズマトーチ1の下
端は、反応冷却装置10と着脱「1丁能に接合されてい
る。その最内筒11は、前述の最内筒4と同様に石英製
でその外側(工り冷却装置lOの本体内側)は水冷ジャ
ケラi・12となっている。該ジャケットには、前記冷
却装置10に穿設された冷却水入1:112aおよび+
2bを有し、トーチ1の運転中は、冷却水を通じる。The plasma formation method is such that plasma operating gas (note: nitrogen and hydrogen) supplied from nozzles 2a, 2b, and 2C attached to the head 2 is placed in a corresponding position in the coil 5 in the innermost cylinder 4. When passing through, the plasma flame 14 having an annular or doughnut-shaped ultra-high temperature part 15 is formed by receiving energy based on the high-frequency current applied to the coil. Preliminary feed nozzles 8a and 8b are provided at the lower part of the plasma torch l, and these nozzles are used for supplying waste for quenching or as a third feed nozzle.
Used for adding ingredients. The lower end of the plasma torch 1 is removably connected to a reaction cooling device 10. Its innermost cylinder 11 is made of quartz like the aforementioned innermost cylinder 4, and its outer side (engineering cooling device lO (inside the main body) is a water-cooled jacket i.12.The jacket has cooling water containers 1:112a and +112a drilled in the cooling device 10.
2b, and the cooling water is passed therethrough while the torch 1 is in operation.
前述のプラズマ炎14の下部は、トーチlと冷却袋M1
0の接合部を貫通して最内筒11のl二部に達している
。そしてIII内で冷却されてプラズマ炎から通常の混
合ガス流に戻る。冷却′!A置10のF部は、下部フラ
ンジ13となっており、粉体捕集装置(図示せず)と接
続される。か−る粉体捕集#A置としては、限定されな
いが、例えばサイクロン、バグフィルタ−および静電気
捕集装置若しくはこれ等の組合わせが利用できる。The lower part of the plasma flame 14 mentioned above is a torch L and a cooling bag M1.
It penetrates through the joint part 0 and reaches the 12 part of the innermost cylinder 11. It is then cooled in III and returns from the plasma flame to a normal mixed gas flow. cooling'! The F part of the A position 10 is a lower flange 13, and is connected to a powder collecting device (not shown). As the powder collecting device #A, for example, but not limited to, a cyclone, a bag filter, a static electricity collecting device, or a combination thereof can be used.
本発明の方法の実施に当っては、例えば前述の装置を用
い、プラズマ操作ガスノズル2a、2bおよび2Cから
、夫々水素ガス、′4!素ガス若しくは水素−窒素混合
ガスを供給する。プラズマ形成用ガスの供給可能量は、
使用する設備(プラズマトーチ)の6晴によって自づか
ら決まるが、ハロゲン化珪素化合物の供給酸は、プラズ
マガス量に対して、標準状態に換算したガス容量比で0
.05〜0.2の範囲に保つ。また、該ハロゲン化珪素
化合物とプラズマ形成ガスの混合を良好にするため例え
ば窒素或は水素のようなキャリヤーガスを同伴させて導
入してもよい。また、プラズマ形成用ガス中における水
素の使用割合は、原料として供給されるハロゲン化珪素
中に含有されるハロゲンの原子数に対して0.3〜1.
0倍モルの範囲が好ましい。In carrying out the method of the invention, for example, using the apparatus described above, hydrogen gas '4! Supply raw gas or hydrogen-nitrogen mixed gas. The amount of plasma forming gas that can be supplied is
Although it is automatically determined by the quality of the equipment (plasma torch) used, the supply acid of the silicon halide compound is 0 in terms of the gas volume ratio converted to the standard state with respect to the plasma gas amount.
.. Keep it within the range of 0.05 to 0.2. Further, in order to improve the mixing of the silicon halide compound and the plasma forming gas, a carrier gas such as nitrogen or hydrogen may be introduced together. The ratio of hydrogen used in the plasma forming gas is 0.3 to 1.0 to 1.0 to 1.0 per the number of halogen atoms contained in the silicon halide supplied as a raw material.
A range of 0 times the mole is preferred.
前述の図の説明のように供給された混合ガスは、高周波
誘導コイル5(以下RFコイル)に負荷された高周波エ
ネルギーを吸収して成分ガス夫々の原イ状態への解離お
よびイオン化が起こり、1万度を超える高温プラズマ流
となる。この状態は、 Plasma Chemist
ry and Plasma ProcessingV
ol l、 No、l、 1981のT、Yoshid
aの研究報告に示す通り、RFコイル5の高さに対応す
る最内筒4内の部分にドーナッツ状の最高温度分布部分
15が生成し、プラズマ炎14としての温度分布は、プ
ラズマ流の下流への流れに伴って平均化されて、プラズ
マトーチの出口付近ではヤ均4000〜50000にと
なる。The mixed gas supplied as explained in the above figure absorbs the high frequency energy loaded on the high frequency induction coil 5 (hereinafter referred to as RF coil), and the component gases are dissociated and ionized into their original states, and 1 It becomes a high-temperature plasma flow exceeding 10,000 degrees Celsius. This state is explained by Plasma Chemist
ry and Plasma ProcessingV
ol l, No, l, 1981 T, Yoshid
As shown in the research report of a, a donut-shaped highest temperature distribution portion 15 is generated in the innermost cylinder 4 corresponding to the height of the RF coil 5, and the temperature distribution as the plasma flame 14 is located downstream of the plasma flow. The average value is 4,000 to 50,000 near the exit of the plasma torch.
この出口部分についてもプラズマ炎の詳細な断面をみる
と同心円状に中心部分の温度が高く最内筒4の内壁面に
近い部分では急激に低い温度となっている。When looking at a detailed cross-section of the plasma flame at this exit portion, the temperature is high at the concentric central portion, and the temperature is suddenly low at the portion close to the inner wall surface of the innermost cylinder 4.
他方、トーチを通過するプラズマ流の速度は、10〜2
0m/sec程度と速いので、前述したように反応原料
をプラズマ流に導入する際にトーチド流の周辺部から導
入するような方法では、該反応原本4を十分に昇温させ
ることができないのは明らかである。On the other hand, the velocity of the plasma flow passing through the torch is 10-2
Since the speed is about 0 m/sec, the reaction master 4 cannot be sufficiently heated by the method of introducing the reaction raw material into the plasma flow from the periphery of the torched flow as described above. it is obvious.
本発明の方法の木質的特徴は、トーチ内のプラズマ炎中
の前述のドーナツ状高温部分15の直ド部分16ヘハロ
ゲン化珪素原料を導入することを木質的特徴としている
。該部分に該原料を供給することによって、プラズマの
持つ高温エネルギーを最高度に利用でき、該導入時に既
に活性状態におかれた窒素および水素とハロゲン化珪素
化合物との反応が促進される。The woody feature of the method of the present invention is that the silicon halide raw material is introduced into the straight portion 16 of the donut-shaped high temperature portion 15 in the plasma flame within the torch. By supplying the raw material to the portion, the high-temperature energy of the plasma can be utilized to the maximum extent, and the reaction between the silicon halide compound and nitrogen and hydrogen, which are already in an active state at the time of the introduction, is promoted.
本発明に使用するハロゲン化珪素としては、限定されな
いが、5iX4(た(しxは、CI 、Br若しくは■
)、5iHXi若しくはS i H2Xaを例示するこ
とができる。中でも5iCl+が好ましい、該ハロゲン
化珪素を反応装置すなわちプラズマトーチに供給する方
法としては、液状のものを噴霧させて吹込むか若しくは
、ガス状のものをそのま−で、または窒素或は水素等の
キャリヤーガスで希釈して供給することができる。The silicon halide used in the present invention is not limited to, but may be 5iX4 (where x is CI, Br or
), 5iHXi, or S i H2Xa. Among them, 5iCl+ is preferable, and the method of supplying the silicon halide to the reaction device, that is, the plasma torch, is to spray a liquid and blow it in, or to use a gas as it is, or by using nitrogen, hydrogen, etc. It can be supplied diluted with a carrier gas.
本発明方法に係る前述の諸原料に係る反応式は次の諸式
で示される。(たぐし5iCI+を使用した場合)。The reaction equations related to the above-mentioned raw materials according to the method of the present invention are shown by the following equations. (When using Tagushi 5iCI+).
3SiCI+ +4(N)+12(H)→S h N4
+12MCl ・・・(1)SiCl+ ” 4(H)
→Si(g)+4HCI ・・・(2)SiCI+
→Si(g)+4((:I) ・・・(2)。3SiCI+ +4(N)+12(H)→S h N4
+12MCl...(1)SiCl+" 4(H)
→Si(g)+4HCI...(2)SiCI+
→Si(g)+4((:I)...(2).
4(CI) + 4(H) → 4HC1・・・(2)
3Si(g) ” 4(N)” −” 5h14 −(
3)すなわち、前述のプラズマトーチ中に供給された窒
素−水素混合カスは、形成された高温のプラズマ炎中で
大部分解離し、原子状若しくはイオン状態となり、一部
にNH若しくはNH2イオンがノ1成している。窒化珪
素の生成は(1)式および、(2)式若しくは(2)°
式で生成したガス状珪素と原r状窒素が反応する(3)
式からなり立っている。4(CI) + 4(H) → 4HC1...(2)
3Si(g) ” 4(N)” −” 5h14 −(
3) In other words, most of the nitrogen-hydrogen mixture gas supplied into the plasma torch is dissociated in the formed high-temperature plasma flame and becomes atomic or ionic, with some NH or NH2 ions being no longer present. 1 has been completed. The generation of silicon nitride is expressed by equation (1) and equation (2) or (2) °
The gaseous silicon produced by the formula reacts with the raw r-form nitrogen (3)
It consists of a ceremony.
かくして得られた、窒化珪素は、 X線的には。The silicon nitride thus obtained has the following characteristics in terms of X-rays.
非晶質で粒径0.O1〜0.02 it l!−Fの超
微粉末であり、焼結して高強度の構造材ネ1を製造する
に適する。また本発明の反応によって得られた窒化11
素中には、不純物としてのN)I基が非常に少いため、
該窒化珪素が非晶質の超微粒子であるにも拘わらず、空
気中で取扱うに充分な安定性を保右している。たりし、
反応条件により該微粉末中に微品のNH基が混入して来
ることがあるが、その理由は前述のプラズマ中でN)l
イオン若しくはNH2イオンが生成しているためである
。Amorphous and particle size 0. O1~0.02 it l! It is an ultrafine powder of -F, and is suitable for producing a high-strength structural material 1 by sintering. In addition, nitrided 11 obtained by the reaction of the present invention
Because there are very few N)I groups as impurities in the element,
Although the silicon nitride is amorphous ultrafine particles, it maintains sufficient stability to be handled in air. Tarishi,
Depending on the reaction conditions, minute amounts of NH groups may be mixed into the fine powder, but the reason for this is that N)
This is because ions or NH2 ions are generated.
この非晶質超微粉末窒化珪素は、前述のように2
そのま−焼結用に使用できることは勿論であるが、また
、必要に応じて熱処理(註、後述実施例参照)すること
により、容易に高α晶含有量の窒化珪素微粉末を有るこ
とができる。This amorphous ultrafine powder silicon nitride can of course be used for sintering as described above, but it can also be heat-treated (note, see examples below) if necessary. A silicon nitride fine powder with a high α-crystal content can be easily obtained.
以F実施例によって本発明を説明する。The present invention will be explained below using Examples.
実施例
周波数4MHz、出力?OK−の高周波発振装置に図の
様なターファ社(米国TAFA Co、)製56型プラ
ズマトーチ並びに別途製作した反応冷却装置及び粉末捕
集装置を取付けた製造設備を使用した。まず系内を減圧
にしたあと、アルゴンガスで置換する。Example frequency 4MHz, output? Manufacturing equipment was used, which was equipped with an OK-high frequency oscillator, a 56-type plasma torch manufactured by TAFA Co., USA, and a separately manufactured reaction cooling device and powder collection device as shown in the figure. First, the pressure inside the system is reduced, and then the atmosphere is replaced with argon gas.
次にノズル2a (垂直方向に噴出)にアルゴンガスを
201/■1n、ノズル2c(旋回流で噴出)にアルゴ
ンガスを25文/■11夫々流して、高周波誘導コイル
の電力をあげて行き常法にてプラズマを点火する。引続
きプラズマ炎の安定性を保つために電力を徐々にあげな
がらノズル2Cへ窒素を25文/鵬1n追加し 、更に
ノズル2b(半径方向に噴出)へ窒素を35交/鵬in
流す、このあとノズル2a及び2Cに流しているアルゴ
ンガスを徐々に下げて行き、最終的に窒素単独のプラズ
マ流とした。次にノズル2aに水素15Jlj /wi
n流し窒素−水素混合ガスプラズマ流を得た。高周波誘
導コイルにかへる電力を約87KWとしてプラズマ炎の
下端が広がらない様円筒形になる様に調整した。プラズ
マ炎が安定してから原料供給管3から四塩化珪素ガス8
9/騰inとキャリヤーガスとして窒素3.1 /曹i
nの混合ガスを導入して反応させた。供給管の先端部は
RFコイル下端より51下に位置させた。その結果粉末
捕集装置で捕集された微粉末は電子顕微鏡写真で測定し
た粒子径は0.01〜0.02PでX−線回折では非晶
質であった。また元素分析の結果シリコンは59.2%
。Next, flow 201/■1n of argon gas through nozzle 2a (spouts vertically) and 25cm/■11 of argon gas through nozzle 2c (spouts in a swirling flow), raise the power of the high-frequency induction coil, and then Ignite the plasma using the method. To maintain the stability of the plasma flame, gradually increasing the power, add 25 cycles/1n of nitrogen to nozzle 2C, and then add 35 cycles/1n of nitrogen to nozzle 2b (radially ejecting).
After that, the argon gas flowing through the nozzles 2a and 2C was gradually lowered, and finally a nitrogen-only plasma flow was obtained. Next, 15Jlj/wi of hydrogen is added to the nozzle 2a.
A nitrogen-hydrogen mixed gas plasma flow was obtained. The electric power applied to the high-frequency induction coil was adjusted to about 87 KW, and the plasma flame was adjusted to have a cylindrical shape so that the lower end of the flame would not spread. After the plasma flame stabilizes, silicon tetrachloride gas 8 is supplied from the raw material supply pipe 3.
9/in and nitrogen 3.1/so as carrier gas
A mixed gas of n was introduced and reacted. The tip of the supply pipe was located 51 points below the lower end of the RF coil. As a result, the fine powder collected by the powder collector had a particle diameter of 0.01 to 0.02 P as measured by electron micrograph, and was found to be amorphous by X-ray diffraction. Also, as a result of elemental analysis, silicon is 59.2%
.
窒素は37.6%の窒化珪素であることが確認された。The nitrogen was confirmed to be 37.6% silicon nitride.
この粉末の一部を電気炉で窒素気流中にて1550℃、
2時間熱処理した粉末をX−線回折で測定した所α−晶
′含有率が約85%、残りがβ晶の窒化珪素であった・A part of this powder was heated at 1550°C in a nitrogen stream in an electric furnace.
X-ray diffraction analysis of the powder heat-treated for 2 hours revealed that the α-crystal content was approximately 85%, with the remainder being β-crystalline silicon nitride.
図は、本発明の方法の実施に用いるプラズマトーチの説
明図である。
図において、
■・・・高周波誘導プラズマトーチ
2・・・ノズルヘンド
2a、2bおよび2C・・・プラズマ操作ガスノズル3
・・・原ネz1ガス供給管 4・・・石英製最内筒5・
・・高周波誘導コイル
6aおよび6b・・・導線
7・・・水冷ジャケットIO・・・反応冷却装置11・
・・最内筒 12・・・水冷ジャケット14・・・プラ
ズマ炎 15・・・ドーナツ状高温部以 上
特許出願人 チッソ株式会社
代理人 弁理士 佐々井 弥太部
同 1− 野 中 克 彦
5The figure is an explanatory diagram of a plasma torch used to implement the method of the present invention. In the figure, ■... High frequency induction plasma torch 2... Nozzle hends 2a, 2b and 2C... Plasma operation gas nozzle 3
... raw material z1 gas supply pipe 4 ... quartz innermost cylinder 5.
・High frequency induction coils 6a and 6b ・Conductor 7 ・Water cooling jacket IO ・Reaction cooling device 11 ・
...Innermost cylinder 12...Water cooling jacket 14...Plasma flame 15...Doughnut-shaped high temperature part or above Patent applicant Chisso Corporation representative Patent attorney Yatabe Sasai 1- Katsuhiko Nonaka 5
Claims (5)
珪素化合物を吹込み、該ハロゲン化珪素を該プラズマガ
ス流中の活性化された窒素および水素と反応させること
を特徴とする無定形超微粒子状窒化珪素の製造法。(1) An amorphous superstructure characterized by injecting a silicon halide compound into a mixed plasma gas stream of nitrogen and hydrogen, and causing the silicon halide to react with activated nitrogen and hydrogen in the plasma gas stream. A method for producing particulate silicon nitride.
たものである特許請求の範囲第1項に記載の製造法。(2) The manufacturing method according to claim 1, wherein the plasma gas flow is formed by high-frequency induction heating.
準状態に換算した気体容積比で0.05〜0.2である
特許請求の範囲第1項に記載の方法。(3) The method according to claim 1, wherein the ratio of the silicon halide compound to the plasma gas is 0.05 to 0.2 in terms of gas volume ratio converted to a standard state.
のハロゲン原子数の比率が0.3〜1.0である特許請
求の範囲第1項に記載の製造法。(4) The manufacturing method according to claim 1, wherein the ratio of the number of moles of hydrogen gas to the number of halogen atoms in the halogenated silicon compound molecule is 0.3 to 1.0.
珪素化合物を吹込み、該ハロゲン化珪素を該プラズマガ
ス流中の活性化された窒素および水素と反応させてなる
無定形超微粒子状窒化f1素。(5) Amorphous ultrafine particulate nitridation obtained by blowing a silicon halide compound into a mixed plasma gas flow of nitrogen and hydrogen, and reacting the silicon halide with activated nitrogen and hydrogen in the plasma gas flow. f1 element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10435784A JPS60246212A (en) | 1984-05-23 | 1984-05-23 | Ultrafine particles of amorphous silicon nitride and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10435784A JPS60246212A (en) | 1984-05-23 | 1984-05-23 | Ultrafine particles of amorphous silicon nitride and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60246212A true JPS60246212A (en) | 1985-12-05 |
Family
ID=14378603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10435784A Pending JPS60246212A (en) | 1984-05-23 | 1984-05-23 | Ultrafine particles of amorphous silicon nitride and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60246212A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470446A (en) * | 1993-04-01 | 1995-11-28 | Tioxide Specialties Limited | Process for the production of silicon nitride |
-
1984
- 1984-05-23 JP JP10435784A patent/JPS60246212A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470446A (en) * | 1993-04-01 | 1995-11-28 | Tioxide Specialties Limited | Process for the production of silicon nitride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5486675A (en) | Plasma production of ultra-fine ceramic carbides | |
JP2002540054A (en) | Method and apparatus for producing amorphous silica from silicon and silicon-containing materials | |
JPS6112844B2 (en) | ||
JP2644620B2 (en) | Method and apparatus for producing nitride compound | |
Gitzhofer | Induction plasma synthesis of ultrafine SiC | |
US4719095A (en) | Production of silicon ceramic powders | |
Li et al. | Carbon dioxide laser synthesis of ultrafine silicon carbide powders from diethoxydimethylsilane | |
US5324494A (en) | Method for silicon carbide production by reacting silica with hydrocarbon gas | |
JPS60246212A (en) | Ultrafine particles of amorphous silicon nitride and its production | |
JP2868039B2 (en) | Method for producing lower metal oxide | |
EP0334791A1 (en) | Process for the preparation of silicon nitride | |
JP2003049201A (en) | Spherical powder of metal and metallic compound, and manufacturing method thereof | |
JP2004115334A (en) | Method of manufacturing high alpha-type silicon nitride fine powder | |
WO1992014576A1 (en) | Plama production of ultra-fine ceramic carbides | |
JP3246951B2 (en) | Method for producing silicon nitride powder | |
JPH035310A (en) | Method and continuous furnace for production of aluminium nitride | |
JPS6117764B2 (en) | ||
Bauer et al. | Laser vapor phase synthesis of submicron silicon and silicon nitride powders from halogenated silanes | |
JP4545357B2 (en) | Method for producing aluminum nitride powder | |
JPS5891018A (en) | Manufacture of fine nitride powder | |
JPS616109A (en) | Manufacture of sic | |
JPS6259507A (en) | Production of ultrafine powder of ti nitride and device therefor | |
JP3225073B2 (en) | Method for producing metal oxide powder | |
JP3907515B2 (en) | Method for producing high-purity silicon nitride fine powder | |
JPH0536363B2 (en) |