JPH05193909A - Production of metal oxide powder - Google Patents

Production of metal oxide powder

Info

Publication number
JPH05193909A
JPH05193909A JP826192A JP826192A JPH05193909A JP H05193909 A JPH05193909 A JP H05193909A JP 826192 A JP826192 A JP 826192A JP 826192 A JP826192 A JP 826192A JP H05193909 A JPH05193909 A JP H05193909A
Authority
JP
Japan
Prior art keywords
metal oxide
powder
oxide powder
metal
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP826192A
Other languages
Japanese (ja)
Other versions
JP3229353B2 (en
Inventor
San Abe
Sumio Kamiya
Hideji Tanaka
賛 安部
秀二 田中
純生 神谷
Original Assignee
Shin Etsu Chem Co Ltd
Toyota Motor Corp
トヨタ自動車株式会社
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chem Co Ltd, Toyota Motor Corp, トヨタ自動車株式会社, 信越化学工業株式会社 filed Critical Shin Etsu Chem Co Ltd
Priority to JP00826192A priority Critical patent/JP3229353B2/en
Publication of JPH05193909A publication Critical patent/JPH05193909A/en
Application granted granted Critical
Publication of JP3229353B2 publication Critical patent/JP3229353B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity

Abstract

PURPOSE: To improve the purity of a synthesized metal oxide powder by heat- treating the metal oxide powder produced in a reactor to volatilize off the impurities.
CONSTITUTION: A metal powder and a carrier gas are supplied to a reactor filled with an oxidizing atmosphere. The powder is ignited in the reactor to form a flame, hence the powder is burned, and a metal oxide powder is synthesized. The synthesized metal oxide powder is heat-treated. In this case, the metal oxide powder is separated from the waste combustion gas and recovered at a controlled temp., and the recovered metal oxide powder is heated in a heat-treating furnace. Consequently, the volatile impurities such as fluorine, chlorine or NOx deposited or adsorbed on the metal oxide surface are volatilized off, and a high-purity metal oxide powder is obtained.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、金属粉末燃焼法により金属粉末から金属酸化物粉末を合成する金属酸化物粉末の製造方法に関する。 The present invention relates to a method for producing a metal oxide powder for synthesizing the metal oxide powder of a metal powder by the metal powder combustion method.

【0002】 [0002]

【従来の技術】近年、特開昭60−255602号公報などにみられるように、金属粉末を燃焼させて金属酸化物粉末を合成する金属粉末燃焼法が開発されている。 In recent years, as seen in such JP 60-255602, metal powder combustion method of synthesizing metal oxide powder by burning metal powder has been developed. この製造方法を説明すると、アルミニウム、珪素、マグネシウムなどの金属粉末をキャリアガスとともに酸化性雰囲気下の反応容器内に供給し、該反応容器内で着火させて火炎を形成する。 To explain this manufacturing method, aluminum, silicon, supplying metal powders such as magnesium into the reaction vessel under an oxidizing atmosphere together with a carrier gas to form a flame is ignited in the reaction vessel. この火炎中では、金属粉末、その酸化物等が固体・液体・気体として存在しており、気体の一部はプラズマ化していると考えられている。 This flame, metal powder, is present as its oxide or the like is solid, liquid and gas, a portion of the gas is believed to be plasma. この様な超高温下では酸化反応が瞬時に完結し、火炎冷却後は直ちに酸化物粉末が合成される。 Such oxidation reactions at ultra high temperature is completed instantaneously, after flame cooling is immediately oxide powder is synthesized. その後燃料排ガス中に含有される酸化物粉末はバグフィルタなどの回収装置等で分離、回収される。 Oxide powder contained in subsequent fuel exhaust gas is separated in the recovery device or the like, such as a bag filter and collected.

【0003】この製造方法によれば、アルミナ、シリカ、マグネシアなどの単独金属酸化物粉末はもとより、 [0003] According to this manufacturing method, alumina, silica, alone metal oxide powder such as magnesia, as well as
ムライト、スピネルなどの複合金属酸化物粉末も容易に製造することができる。 Mullite, can be easily produced complex metal oxide powder such as spinel.

【0004】 [0004]

【発明が解決しようとする課題】ところで、上記金属粉末燃焼法は合成された酸化物粉末が真球状となる特徴を有しており、半導体封止材、セラミックス原料、化粧品材料などへの応用が考えられている。 [SUMMARY OF THE INVENTION Incidentally, the metal powder combustion method has a feature that oxide powders synthesized becomes spherical, a semiconductor sealing material, ceramic material, to be applied to cosmetics material It is considered. 例えば、シリカガラス・アルミナ等については、応用のひとつとして半導体封止材が考えられている。 For example, for a silica glass-alumina or the like, a semiconductor sealing material is considered as one of the applications. ここで、半導体封止材等の半導体産業用原料には、極めて高い純度が求められることが通例である。 Here, in the semiconductor industry for raw materials such as semiconductor sealing material, it is customary that the very high purity is required.

【0005】しかし、上記従来の金属粉末燃焼法により合成された金属酸化物粉末の純度は必ずしもその要求に応え得るものではなかった。 However, the purity of the metal oxide powder synthesized by the conventional metal powder combustion method was not necessarily capable of meeting the request. このように、金属粉末燃焼法においては、合成される金属酸化物粉末の純度を向上させることが極めて重要である。 Thus, in the metal powder combustion method, it is very important to improve the purity of the metal oxide powder is synthesized. 合成された金属酸化物粉末に含まれる不純物としては、陽イオン性、陰イオン性、非イオン性の無機物又は有機物等に大別できる。 The impurities contained in the synthetic metal oxide powders, can be divided cationic, anionic, nonionic inorganic or organic material. 金属粉末燃焼法に用いられる金属粉末は、その純度制御のために、一般にフッ酸、塩酸、混酸等で酸処理が施されている。 Metal powder used in the metal powder combustion method, because of its purity control, generally hydrofluoric acid, hydrochloric acid treatment with mixed acid or the like is applied. この酸処理は、主に陽イオン性、非イオン性の無機物を除去するために行われる。 The acid treatment is performed mainly to remove cationic, nonionic inorganic. そして、金属原料が酸処理されると陰イオン性の物質で汚染されるため、酸処理後の金属原料は水洗浄が行われている。 Then, the metal material is contaminated with anionic materials when the acid treatment, metal raw material after acid treatment being carried out with water wash.

【0006】しかし、本発明者が検討した結果、このように酸処理された金属粉末を用いても、合成された金属酸化物粉末の抽出水には、フッ素イオンや塩素イオンが数ppm〜数十ppm程度含有されていることが判明した。 However, the present inventors have studied, even with an acid-treated metal powders thus, the extraction water of the synthesized metal oxide powder, ppm to the number of number fluorine ions and chloride ions it has been found that are contained about ten ppm. また、キャリアガスとして空気や窒素などを用いた場合、燃焼火炎中に汚染物質としてのNO xが生成し、 In the case of using the air or nitrogen as the carrier gas, NO x as contaminants produced during combustion flame,
その結果合成された金属酸化物粉末の表面にNO xが付着・吸着することもある。 Consequently synthesized metal oxide surface to NO x the powder is also deposited and adsorption. なお、燃焼火炎中の汚染物として、上記NO xの他に一酸化炭素、すす等があるが、 Incidentally, as a contaminant in the combustion flame, in addition to carbon monoxide of the NO x, there is a soot or the like,
これらは可燃性ガスを水素等にすることによって生成させない様にすることが出来るし、またこれらの不純物は実際の金属酸化物粉末の抽出検出では検出されない程度である。 These compounds can be made as not produced by the hydrogen or the like combustible gas, also these impurities is a degree not detected in the actual metal oxide powder extraction detection.

【0007】本発明は上記実情に鑑みてなされたものであり、合成された金属酸化物粉末の純度を向上させることを目的とする。 [0007] The present invention has been made in view of the above circumstances, and an object thereof is to improve the purity of the synthesized metal oxide powder.

【0008】 [0008]

【課題を解決するための手段】上記課題を解決する本発明は、金属粉末をキャリアガスとともに酸化性雰囲気下の反応容器内に供給し、該反応容器内で該金属粉末を燃焼させることにより、金属酸化物粉末を合成する金属酸化物粉末の製造方法において、前記合成された金属酸化物粉末を加熱処理することを特徴とする。 A solution for the present invention to solve the above problems, a metal powder with a carrier gas was supplied into the reaction vessel under an oxidizing atmosphere, by burning the metal powder in the reaction vessel, the method of manufacturing a metal oxide powder for synthesizing metal oxide powder, characterized by heating the synthesized metal oxide powder.

【0009】この加熱処理は、合成された金属酸化物粉末を燃焼排気ガスから分離、回収する際の回収温度を制御したり、回収した金属酸化物粉末をロータリーキルン、電気炉等の熱処理炉で加熱したりして行うことができ、連続操作、回分操作のどちらで行ってもよい。 [0009] This heat treatment separates the synthesized metal oxide powder from the combustion exhaust gases, to control the recovery temperature for collecting, heating the recovered metal oxide powder rotary kiln, in the heat treatment furnace such as an electric furnace or to be able to be carried out, it may be carried out in either of continuous operation, batch operation. 加熱処理は、処理温度を高くするほど、また処理時間を長くするほど、金属酸化物粉末に付着・吸着した揮発性不純物を除去できるので好ましい。 Heat treatment, the higher the processing temperature, also the longer the processing time, it is possible to remove volatile impurities adhering and adsorption to the metal oxide powder preferably. なお、処理温度を100 In addition, the processing temperature of 100
0℃以上にすることは、合成された金属酸化物粉末の融着等をひきおこすので、好ましくない。 Possible to 0 ℃ or more, since cause fusion or the like of the synthesized metal oxide powder is not preferable.

【0010】例えば、金属粉末燃焼法により合成したシリカガラス粉末について、回収温度とシリカガラス粉末の吸着NO x濃度との関係を、異なった燃焼排気ガスのNO [0010] For example, the silica glass powder synthesized by metal powder combustion method, the relationship between the adsorption concentration of NO x recovery temperature and the silica glass powder, the different combustion exhaust gas NO x濃度について実験した結果を図2に示すように、 The results of the experiments on x concentration as shown in FIG. 2,
回収温度を高くするほどシリカガラス粉末の吸着NO x Adsorption NO x of the silica glass powder The higher the recovery temperature
濃度を低下させることが可能である。 It is possible to reduce the concentration. なおNO xは、可燃性ガス燃焼に伴う水分や過剰酸素の存在により、そのほとんどがNO 2やHNO 3の形態で存在していると考えられ、これらは共に水に良く溶ける。 Note NO x due to the presence of moisture and excess oxygen with flammable gas combustion, most are considered to be present in the form of NO 2 and HNO 3, which together highly soluble in water. このため、加熱処理後の金属酸化物粉末について、塩素、フッ素やNO Therefore, the metal oxide powder after the heat treatment, chlorine, fluorine or NO
xなどの揮発性不純物の除去程度を検出するには、金属酸化物粉末の抽出水電気伝導度を測定するのが判定を迅速に行えて好ましい。 To detect the extent removal of volatile impurities such as x is to measure the extraction water electric conductivity of the metal oxide powder is preferably quickly performed determination.

【0011】本発明では、従来と同様の金属粉末燃焼法により金属酸化物粉末が合成される。 In the present invention, the metal oxide powder is synthesized by the conventional manner of metal powder combustion method. すなわち、金属粉末をキャリアガスとともに酸化性雰囲気下の反応容器内に供給し、該反応容器内で着火させて火炎を形成して該金属粉末を燃焼させることにより、金属酸化物粉末が合成される。 That is, the metal powder was fed into the reaction vessel under an oxidizing atmosphere together with a carrier gas, by burning the metal powder to form a flame is ignited in the reaction vessel, the metal oxide powder is synthesized . 金属粉末の種類としては、珪素、アルミニウム、マグネシウム、チタン、珪素、ジルコニウム、その他ムライト組成に調合した珪素とアルミニウムとの混合物、スピネル組成に調合したマグネシウムとアルミニウムとの混合物、コージェライト組成に調合したアルミニウムとマグネシウムとシリコンとの混合物などを用いることができる。 As the type of metal powder, silicon, mixtures of aluminum, magnesium, titanium, silicon, zirconium, and silicon and aluminum were formulated into other mullite composition, a mixture of magnesium and aluminum was prepared in the spinel composition was formulated cordierite composition such as a mixture of aluminum and magnesium and silicon may be used. また、これらの組成に調合した合金粉末であってもよい。 Further, it may be an alloy powder obtained by compounding these compositions. この金属粉末の粒度分布は、爆燃を形成できる範囲であればよい。 Particle size distribution of the metal powder may be in a range capable of forming a deflagration. しかし、400μmより大きな粒径の金属粉末は、完全に酸化されずに分離、回収されることがあるため、金属粉末の粒径は400μm以下であることが好ましく、金属粉末の平均粒径が数μm However, large particle size of the metal powder than 400μm are separated without being fully oxidized, because it can be recovered, it is preferable that the particle size of the metal powder is 400μm or less in number average particle diameter of the metal powder μm
から数10μmであることがより好ましい。 And more preferably from a few 10 [mu] m.

【0012】金属粉末を分散させて反応容器内に導入するキヤリアガスとしては、空気、窒素、酸素、ヘリウム、アルゴン等を使用することができる。 [0012] As Kiyariagasu introduced into the reaction vessel by dispersing metal powder can be used air, nitrogen, oxygen, helium, argon and the like. また、可燃性のキャリアガスを用いることもできる。 It is also possible to use a combustible carrier gas. キャリアガスとともに反応容器内に導入された金属粉末は、バーナなどの化学炎、抵抗加熱、アーク放電、プラズマフレーム、 Metal powder introduced into the reaction vessel together with a carrier gas, chemical flame such as a burner, resistance heating, arc discharge, plasma flame,
レーザ、高周波誘導加熱、電子ビーム等の熱源を利用して着火され、爆発燃焼によって初期火炎を形成する。 Laser, high-frequency induction heating, is ignited using a heat source such as an electron beam, to form an initial flame by explosive combustion. 金属粉末は火炎中で初期酸化燃焼によって液状の不完全燃焼金属酸化物粉末を形成する。 Metal powder to form an incomplete combustion metal oxide powder of the liquid by the initial oxidative combustion in a flame.

【0013】例えば、着火の熱源としてバーナを利用した場合、金属粉末は支燃性ガス及び可燃性ガスにより形成されたバーナ火炎などにより着火され、爆発燃焼によって初期火炎を形成する。 [0013] For example, when using the burner as an ignition source of heat, the metal powder is ignited by such a burner flame formed by combustion-supporting gas and combustible gas to form an initial flame by explosive combustion. 初期火炎を形成するための支燃性ガスは、酸素・空気及びその混合ガスが使用可能である。 Combustion-supporting gas for forming the initial flame, oxygen, air and a mixed gas thereof can be used. また種火としての可燃性ガスは、メタン、エタン、プロパンなどの化学式C n H2 n+2で示される炭化水素ガス、又は水素ガスを用いることができる。 The combustible gas as the pilot flame is methane, ethane, can be used a hydrocarbon gas, or hydrogen gas represented by the chemical formula C n H2 n + 2 such as propane. なお、 It should be noted that,
可燃性ガスによる種火用の燃焼火炎は、初期粉塵爆発を形成するのに必要最低限の着火エネルギーを有すればよい。 Combustion flame for seed fire by flammable gas may if it has a minimum ignition energy required to form the initial dust explosion. また可燃性ガスは、金属粉末の燃焼中、常に供給し続けてもよいし、燃焼火炎安定以後に供給を停止してもよい。 The combustible gas during the combustion of the metal powder, always may be continuously supplied, it may stop supplying the combustion flame stability since. ただし、可燃性ガス量は金属酸化物粉末の粒径に若干影響するので、その量は所望の粒径に応じて適宜選択する必要がある。 However, the combustible gas quantity will affect slightly the particle size of the metal oxide powder, the amount should be suitably selected according to the desired particle size.

【0014】この金属粉末及び燃焼用ガスは通常室温で反応容器内に供給されるが、反応容器は燃焼火炎温度が1000℃以上になるためにアルミナなどの耐熱材料で内張りされていることが望ましい。 [0014] This metal powder and combustion gas is fed into the reaction vessel at normal room temperature, the reaction vessel desirably is lined with refractory material such as alumina in the combustion flame temperature is equal to or higher than 1000 ° C. . また反応容器内は、 The reaction vessel,
排気側に排風機等を設けて吸引し、圧力が大気圧基準でー200〜ー10mmAq程度の負圧となることが好ましい。 Aspirated provided exhauster like the exhaust side, it is preferable that the pressure is a negative pressure of about over 200 over 10mmAq at atmospheric pressure basis.

【0015】反応容器内で合成された金属酸化物粉末は、反応容器の排気側に設けられた回収装置により分離、回収される。 The metal oxide powder synthesized in the reaction vessel, separated by a recovery device provided in the exhaust side of the reaction vessel, is collected. 回収装置は、集塵機を用いることができる。 Collecting device can be used dust collector. 集塵機としては、電気式集塵機、バグフィルタ、 The dust collector, an electric dust collector, bag filter,
捕集ドラム式微粉末捕集装置などを用いることができる。 And the like can be used collecting drums Shikibi powder collecting device.

【0016】 [0016]

【作用】本発明の金属酸化物粉末の製造方法は、合成された金属酸化物粉末を加熱処理することにより、金属酸化物粉末の表面に付着、吸着しているフッ素、塩素やN Method for producing a metal oxide powder of the effects of the present invention, by heating the synthesized metal oxide powder, deposited on the surface of the metal oxide powder, fluorine adsorbed, chlorine or N
xなどの揮発性不純物を揮発除去することができ、高純度の金属酸化物粉末を得ることが可能である。 Volatile impurities such as O x can be volatilized and removed, it is possible to obtain a high purity metal oxide powder.

【0017】 [0017]

【実施例】以下、本発明の実施例を説明する。 EXAMPLES Hereinafter, an embodiment of the present invention. (実施例1)図1に概略的に示す製造装置は、内壁がアルミナれんがで内張りされた反応容器1と、反応容器1 (Example 1) production apparatus shown schematically in Figure 1, a reaction vessel 1 inner wall was lined with alumina brick, the reaction vessel 1
の上流側に連結された金属粉末供給装置2と、反応容器1と金属粉末供給装置2との間に配設されたバーナ3 A metallic powder supply device 2 on the upstream side are connected in the reaction vessel 1 and the burner 3 which is disposed between the metallic powder supply apparatus 2
と、反応容器1の下流側に連結された回収装置4とから構成されている。 When, and a concatenated recovery device 4 which on the downstream side of the reaction vessel 1.

【0018】金属粉末供給装置2は、一端がバルブ21 [0018] Metal powder feeder 2 has one end valve 21
を介してキャリアガスボンベ(図示せず)に接続され他端がバーナ3に接続されて、金属粉末を分散したキャリアガスをバーナ3に導入する導入管22と、この導入管21に下端が連結され、金属粉末を収納したホッパ23 The and the other end connected to a carrier gas cylinder (not shown) is connected to the burner 3 through a feed pipe 22 for introducing a dispersed carrier gas metal powder to the burner 3, the lower end is connected to the inlet pipe 21 hopper 23 housing a metal powder
とを備えている。 It is equipped with a door. バーナ3には、バルブ31を介してL The burner 3 via a valve 31 L
PGガスボンベ(図示せず)に接続された可燃性ガス供給管32と、バルブ33を介して酸素ボンベ(図示せず)に接続された支燃性ガス供給管34とが接続されている。 And PG bomb combustible gas are connected to (not shown) supply pipe 32, and the oxygen bomb combustion supporting gas supply pipe 34 connected to a (not shown) is connected via a valve 33. なお、この可燃性ガス供給管32、支燃性ガス供給管34から供給される可燃性ガス、支燃性ガスは反応容器1内に供給される。 Incidentally, the combustible gas supply pipe 32, the combustible gas supplied from a combustion supporting gas supply pipe 34, combustion-supporting gas is fed into the reaction vessel 1.

【0019】回収装置4は、反応容器1の側壁に開口する捕集管41と、この捕集管41の下流側に配設されたバグフィルタ42と、バグフィルタ42の下流側に接続管43を介して配設された排気ガス処理装置44と、排気ガス処理装置の下流側に同じく接続管43を介して配設された排風機45とを備えている。 The recovery device 4 includes a collecting tube 41 which opens in the side wall of the reaction vessel 1, a bag filter 42 disposed on the downstream side of the collecting tube 41, connecting tube 43 to the downstream side of the bag filter 42 an exhaust gas treatment apparatus 44 disposed through, and an exhaust fan 45 which is likewise disposed through the connecting pipe 43 on the downstream side of the exhaust gas treatment device. バグフィルタ42 Bag filter 42
は耐熱性のもので、加熱用のヒータ42aを備えている。 Intended heat resistance, and a heater 42a for heating.

【0020】このように構成された製造装置を用いて、 [0020] Using the configured manufacturing apparatus in this manner,
約2mmに調整された市販の粉粒状金属珪素を平均粒径15μmに粒度調整した金属珪素粉末からシリカガラス粉末を合成した。 It was synthesized silica glass powder from metallic silicon powder particle size adjustment to an average particle size of 15μm commercial granular metallic silicon which is adjusted to about 2 mm. バルブ31を開いて可燃性ガス供給管32からLPGガスを1Nm 3 /hrの流量で供給し、 By opening the valve 31 the LPG gas from the combustible gas supply pipe 32 and supplied at a flow rate of 1 Nm 3 / hr,
バルブ33を開いて支燃性ガス供給管32から酸素を1 Oxygen from combustion-supporting gas supply pipe 32 by opening the valve 33 1
5Nm 3 /hrの流量で供給し、図示しない着火手段により着火して種火としてのLPG火炎を形成しておく。 Was supplied at a flow rate of 5 nm 3 / hr, previously formed the LPG flame as the pilot flame ignites the ignition means (not shown).
そして、バルブ21を開いてキャリアガスとしての空気を4Nm 3 /hrの流量で供給するとともに、ホッパ2 Then, while supplying air as the carrier gas at a flow rate of 4 Nm 3 / hr by opening the valve 21, the hopper 2
2から金属珪素粉末を9kg/hrの流量で供給した。 The metallic silicon powder from 2 was supplied at a flow rate of 9 kg / hr.
これにより、キャリアガスとともに金属珪素粉末はバーナ3に導入され、LPG火炎と接触して、燃焼火炎を形成し、金属酸化物粉末としてのシリカガラス粉末を合成した。 Thus, the metal silicon powder with the carrier gas is introduced into the burner 3, in contact with LPG flame to form a combustion flame was synthesized silica glass powder as the metal oxide powder. そして、排風機45の吸引力によりシリカガラス粉末を含む燃焼排気ガスを吸引し、バグフィルタ42でシリカガラス粉末を分離、回収した。 Then, the combustion exhaust gas containing a silica glass powder sucked by the suction force of the exhaust fan 45, the silica glass powder separated and collected by a bag filter 42. このとき、バグフィルタ42のヒータ42aの制御により、回収温度は所定温度に制御されている。 At this time, by controlling the heater 42a of the bag filter 42, the recovery temperature is controlled to a predetermined temperature. なお、反応容器1内の圧力は、排風機45の吸引力により大気圧基準で−100m The pressure in the reaction container 1, -100M at atmospheric pressure reference by a suction force of the exhaust fan 45
mAqに設定されている。 It is set to mAq. また、回収されたシリカガラス粉末のBET比表面積は9m 2 /gであり、排気ガスのNO x濃度は1620ppmだった。 Further, BET specific surface area of the recovered silica glass powder is 9m 2 / g, NO x concentration of the exhaust gas was 1620Ppm. (評価1)上記回収温度を種々変更して、それぞれのシリカガラス粉末の10%スラリー溶液(抽出水電気伝導度が1.1μs/cmのイオン交換水)の抽出水電気伝導度、及び硝酸イオン、フッ素イオン、塩素イオンの濃度を測定したところ、以下の結果を得た。 (Evaluation 1) the recovery temperature with various changes, extraction water electric conductivity of 10% slurry solution of each of the silica glass powder (ion exchange water extraction water electric conductivity is 1.1 s / cm), and nitrate ions , where fluorine ions, the concentration of chlorine ions was measured with the following results.

【0021】 [0021]

【表1】 [Table 1] このように、合成された金属酸化物粉末の回収温度を直接制御することにより、金属酸化物粉末の抽出水純度を大幅に改善できた。 Thus, by controlling the recovery temperature of the synthesized metal oxide powder was directly can significantly improve extraction water purity metal oxide powder. (実施例2)上記実施例1と同様の製造装置を用いて、 Using the same manufacturing apparatus (Example 2) Example 1,
約2mmに調整された市販の粉粒状金属珪素を平均粒径15μmに粒度調整した金属珪素粉末からシリカガラス粉末を合成した。 It was synthesized silica glass powder from metallic silicon powder particle size adjustment to an average particle size of 15μm commercial granular metallic silicon which is adjusted to about 2 mm. なお、各ガスの流量は、キャリアガス:4Nm 3 /hr、LPGガス:1Nm 3 /hr、酸素ガス:15Nm 3 /hrとし、金属珪素粉末の供給量は9kg/hrとした。 The flow rate of each gas, carrier gas: 4 Nm 3 / hr, LPG gas: 1 Nm 3 / hr, oxygen gas: and 15 Nm 3 / hr, feed rate of the metal silicon powder was 9 kg / hr. そして、バグフィルタ42のヒータ42aにより回収温度を60℃として、BET比表面積15m 2 /gのシリカガラス粉末を回収した。 Then, the 60 ° C. The recovery temperature by the heater 42a of the bag filter 42 to recover the silica glass powder having a BET specific surface area of 15 m 2 / g.

【0022】この回収したシリカガラス粉末を、所定の温度に保持されたφ150mmの石英管を有するロータリーキルンへ30kg/hrで供給し、向流により空気を100リットル/hrの流量で掛け流しながら加熱処理した。 [0022] The silica glass powder thus recovered, heat treatment was fed at 30kg / hr to a rotary kiln while flowing over the air at a flow rate 100 l / hr by countercurrent with quartz tube φ150mm held at a predetermined temperature did. (評価2)ロータリーキルンの保持温度を100℃、2 (Evaluation 2) a rotary kiln 100 ° C. The holding temperature, 2
00℃、400℃、500℃とした場合の、硝酸イオン、フッ素イオン、塩素イオンの濃度と10%スラリー溶液(抽出水電気伝導度が1.1μs/cmのイオン交換水)の抽出水電気伝導度を測定したところ、以下の結果を得た。 00 ° C., 400 ° C., in the case of a 500 ° C., extraction water electric conductivity of nitrate ions, fluoride ion, chloride ion concentration of 10% slurry solution (ion-exchanged water extraction water electric conductivity is 1.1 s / cm) It was measured in degrees, and the following results were obtained.

【0023】 [0023]

【表2】 [Table 2] このように回収したシリカガラス粉末を加熱処理することによって、シリカガラス粉末の抽出水純度を大幅に改善できた。 By heat-treating the recovered silica glass powder thus, could significantly improve the extraction water purity silica glass powder.

【0024】 [0024]

【発明の効果】以上詳述したように本発明の金属酸化物粉末の製造方法によれば、合成した金属酸化物粉末を加熱処理するという簡単な手法により、フッ素、塩素等のハロゲン元素やNO xが含有しない、極めて高純度の金属酸化粒粉末を得ることができる。 According to the manufacturing method of the metal oxide powder of the present invention as described in detail above, the simple method of heat-treating the synthesized metal oxide powder, fluorine, halogen or NO such as chlorine x is not contained, it is possible to obtain a very high purity metal oxide particle powder.

【0025】したがって、本発明方法により得られた金属酸化物粉末は、特に高純度が求められる半導体封止材等の半導体産業用原料にも有効に利用することが可能である。 [0025] Thus, the metal oxide powder obtained by the method of the present invention can be effectively used in particular in the semiconductor industry for raw material encapsulating a semiconductor material or the like which is required high purity.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】実施例で用いた製造装置の模式図である。 1 is a schematic view of a production apparatus used in Example.

【図2】金属粉末燃焼法により合成したシリカガラス粉末について、回収温度とシリカガラス粉末の吸着NO x Silica glass powder for synthesized by [2] Metal powder combustion method, adsorption NO x recovery temperature and the silica glass powder
濃度との関係を、異なった燃焼排気ガスのNO x濃度について実験した結果を示す線図である。 The relationship between the concentration, a graph showing the results of experiments on the concentration of NO x different combustion exhaust gases.

【符号の説明】 DESCRIPTION OF SYMBOLS

1は反応容器、2は金属粉末供給装置、3はバーナ、4 1 reaction vessel, 2 is a metal powder feeder, 3 burner, 4
は回収装置、23はホッパ、32は可燃性ガス供給管、 Recovery device, 23 hopper 32 is flammable gas supply pipe,
34は支燃性ガス供給管、42はバグフィルタである。 34 combustion-supporting gas supply pipe, 42 is a bag filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 賛 東京都新宿区西新宿1丁目22番地2号 株 式会社アドマテックス内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Abe Chan Tokyo Nishi-Shinjuku, Shinjuku-ku 1-chome 22 address No. 2 Co., Ltd. Admatechs in

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 金属粉末をキャリアガスとともに酸化性雰囲気下の反応容器内に供給し、該反応容器内で該金属粉末を燃焼させることにより、金属酸化物粉末を合成する金属酸化物粉末の製造方法において、 前記合成された金属酸化物粉末を加熱処理することを特徴とする金属酸化物粉末の製造方法。 1. A metallic powder was fed into the reaction vessel under an oxidizing atmosphere together with a carrier gas, by burning the metal powder in the reaction vessel, the production of metal oxide powders for synthesizing the metal oxide powder in the method, the metal oxide producing method of powder, which comprises heating the synthesized metal oxide powder.
JP00826192A 1992-01-21 1992-01-21 The method of producing a metal oxide powder Expired - Fee Related JP3229353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00826192A JP3229353B2 (en) 1992-01-21 1992-01-21 The method of producing a metal oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00826192A JP3229353B2 (en) 1992-01-21 1992-01-21 The method of producing a metal oxide powder

Publications (2)

Publication Number Publication Date
JPH05193909A true JPH05193909A (en) 1993-08-03
JP3229353B2 JP3229353B2 (en) 2001-11-19

Family

ID=11688209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00826192A Expired - Fee Related JP3229353B2 (en) 1992-01-21 1992-01-21 The method of producing a metal oxide powder

Country Status (1)

Country Link
JP (1) JP3229353B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲーSd Lizenzverwertungsgesellschaft Mbh & Co.Kg Optimization method of chemical treatment in consideration of the safety of a chemical processing plant
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
CN104229744A (en) * 2014-08-26 2014-12-24 洛阳市方德新材料科技有限公司 Preparation method for nanocrystalline metal oxide powder
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
JP2016083619A (en) * 2014-10-27 2016-05-19 大陽日酸株式会社 Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
JP2015231626A (en) * 2007-05-11 2015-12-24 エスディーシーマテリアルズ, インコーポレイテッド Gas supply system and gas supply method
JP2014000571A (en) * 2007-05-11 2014-01-09 Sdc Materials Inc Gas supply system and gas supply method
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲーSd Lizenzverwertungsgesellschaft Mbh & Co.Kg Optimization method of chemical treatment in consideration of the safety of a chemical processing plant
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN104229744A (en) * 2014-08-26 2014-12-24 洛阳市方德新材料科技有限公司 Preparation method for nanocrystalline metal oxide powder
JP2016083619A (en) * 2014-10-27 2016-05-19 大陽日酸株式会社 Inorganic spheroidized particle manufacturing apparatus and inorganic spheroidized particle manufacturing method

Also Published As

Publication number Publication date
JP3229353B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
Yalcin et al. Studies on silica obtained from rice husk
Meng et al. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles
US5213767A (en) Dry exhaust gas conditioning
US5486675A (en) Plasma production of ultra-fine ceramic carbides
US7749322B2 (en) Aluminium oxide powder produced by flame hydrolysis and having a large surface area
JP2683727B2 (en) How to create a non-porous body of high purity fused silica glass
JP3014914B2 (en) Furnaces and methods of use thereof using a zircon refractory body and it
US7064094B2 (en) Highly durable silica glass, process and apparatus for producing same, and member and apparatus provided with same
US4721610A (en) Process for producing metal oxide particles having a very small and uniform size
Pratsinis et al. The role of gas mixing in flame synthesis of titania powders
JP4381512B2 (en) Method of processing a silica granules using a porous graphite crucible
US6328944B1 (en) Doped, pyrogenically prepared oxides
US3130008A (en) Method of preparing metallic oxides by hydrolysis of metallic halides
JP2503370B2 (en) Titanium dioxide - mixed oxides and their preparation
US3954945A (en) Process for the production of finely divided oxides
US5424258A (en) Silicon-aluminum mixed oxide
WO2002072471A2 (en) Method for producing multinary metal oxide powders in a pulsed reactor
HU0201259A2 (en) Method and apparatus for heating glass melting furnaces by fossil combustible
JP2002355531A (en) Method of treating exhaust gas in cement production
EP0209298A2 (en) Process for the preparation of submicron-sized titanium diboride powders
JP3519263B2 (en) Preparation of pyrogenic oxides, oxides and their use of such
US2862792A (en) Process and apparatus for the production of finely divided powders
CN1062914C (en) Method for producing magnesium
US2819151A (en) Process for burning silicon fluorides to form silica
US4705762A (en) Process for producing ultra-fine ceramic particles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090907

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100907

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110907

LAPS Cancellation because of no payment of annual fees