JPS61177413A - Heating and cooling device of microscope - Google Patents

Heating and cooling device of microscope

Info

Publication number
JPS61177413A
JPS61177413A JP1877085A JP1877085A JPS61177413A JP S61177413 A JPS61177413 A JP S61177413A JP 1877085 A JP1877085 A JP 1877085A JP 1877085 A JP1877085 A JP 1877085A JP S61177413 A JPS61177413 A JP S61177413A
Authority
JP
Japan
Prior art keywords
optical axis
disc
plate
heater
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1877085A
Other languages
Japanese (ja)
Other versions
JPH0718977B2 (en
Inventor
Yoshihiro Shimada
佳弘 島田
Yasuo Inoue
康夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1877085A priority Critical patent/JPH0718977B2/en
Publication of JPS61177413A publication Critical patent/JPS61177413A/en
Publication of JPH0718977B2 publication Critical patent/JPH0718977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To reduce thermal deformation in case of heating or cooling by making the sectional shape in the direction perpendicular to the optical axis of a plate-shaped member uneven in the direction of the optical axis. CONSTITUTION:This device consists of the plate-shaped member which is arranged vertically with respect to the optical axis and has one face, to which a heating body and/or a cooling body are joined, at least, and the sectional shape in the direction perpendicular to the optical axis of the plate-shaped member is made uneven in the direction of the optical axis. When power is supplied to a film heater 13 to heat a midseat heater 3 and an incubation observing vessel 4 is controlled to a set temperature, the lower face, which is brought into contact with the film heater 13 of a disc 11, of the heater 3 has a temperature higher than that of the upper face of the disc 11 and is more expanded thermally therefore, but the stress due to the difference of thermal expansion between the upper face and the lower face of the disc 11 is concentrated to two ring-shaped grooves 11b and 11c provided on the lower face of the disc 11, and thermal distortion is absorbed by ring-shaped grooves, and thus, downward deformation of the disc 11 is reduced.

Description

【発明の詳細な説明】 且亙豆更 本発明は、顕微鏡の加熱冷却装置に関するものである。[Detailed description of the invention] 佔亙ますさら The present invention relates to a heating and cooling device for a microscope.

m目」 、一般に、板状部材を所望の温度に制御するための方法
として、例えば第3図に示すようなヒーターの如き熱源
を接触させるようにした方法が多用されており、Pは板
状部材、Hは板状部材Pの下面に適宜な方法で接合され
た熱源例えばヒーターである。第3図(A)に示された
状態から熱源Hに通電を行なうと、該板状部材Pの熱源
Hに接している下面と上面との間に温度差が生じ−1従
って熱膨張の差によって板状部材Pが第3図CB)に示
した如く変形してしまう、特に、板状部材Pを所望の一
定温度に保持するために熱源Hをオンオフ制御する場合
第4図に示すように熱源Hの周期的なオンオフ動作(A
)に同期して板状部材Pが第4図(B)に示すように周
期的に変形することになる。このような板状部材Pの変
形は、例えば該板状部材が顕微鏡のステージに設けられ
た培養標本を載置するための載物台である場合には観察
像のボケを生ずる。これを防止するために板状部材Pの
厚さを増すことによって、ボケ量を減少することができ
る。ところが、厚さを増すと、ステージSf)移動、 
 レボルバ−回動または対物レンズ0の交換の際に対物
レンズ0と載物台Pとが干渉しやすくなったり(第5図
(A)参照)、載物台Pの上面がステージSの上面より
高くなって(第5図(B)参照)例えば(第5図(C)
に示すような)標本移動用のアタッチメントAが使用で
きなくなったり、また正立型顕微鏡の場合にはコンデン
サレンズCと載物台Pとが干渉しやすくなってしまう(
第5図(D)参照)等、問題があった。
In general, as a method for controlling a plate-shaped member to a desired temperature, a method is often used in which a heat source such as a heater is brought into contact with the plate-shaped member as shown in FIG. The member H is a heat source, such as a heater, which is joined to the lower surface of the plate-like member P by an appropriate method. When the heat source H is energized from the state shown in FIG. As a result, the plate-like member P deforms as shown in Fig. 3 CB). Particularly when the heat source H is controlled on and off to maintain the plate-like member P at a desired constant temperature, as shown in Fig. 4. Periodic on/off operation of heat source H (A
), the plate member P deforms periodically as shown in FIG. 4(B). Such deformation of the plate-like member P causes blurring of the observed image, for example, when the plate-like member is a stage for mounting a culture specimen provided on the stage of a microscope. In order to prevent this, the amount of blur can be reduced by increasing the thickness of the plate member P. However, when the thickness is increased, the stage Sf) moves;
When rotating the revolver or replacing objective lens 0, objective lens 0 and stage P may easily interfere (see Figure 5 (A)), or the top surface of stage P may be lower than the top surface of stage S. (See Figure 5 (B)) For example, (Figure 5 (C)
Attachment A for moving the specimen (as shown in Figure 1) may become unusable, and in the case of an upright microscope, condenser lens C and stage P may easily interfere (
(See Figure 5 (D)).

尚、上記問題は、熱源としてサーモモジュールを使用し
て板状部材又は載物台を冷却する場合にも発生する。
Note that the above problem also occurs when a thermo module is used as a heat source to cool a plate member or a stage.

1−豊 本発明は、以上の点に鑑み、厚さを増すことなく加熱ま
たは冷却の際の熱変形を減少せしめるようにした顕微鏡
の加熱冷却装置を提供することを目的としている。
1-Yutaka In view of the above points, it is an object of the present invention to provide a heating/cooling device for a microscope that reduces thermal deformation during heating or cooling without increasing the thickness.

l この目的は、光軸に対して垂直に配設されていて且つ少
なくとも一面に加熱体及び/または冷却体が接合されて
いる板状部材から構成されており、該板状部材の光軸に
対して垂直な方向の断面形状が光軸方向に不均一である
ことを特徴とする、顕微鏡の加熱冷却装置により解決さ
れる。
l This purpose consists of a plate-like member arranged perpendicularly to the optical axis and to which a heating element and/or a cooling element are joined on at least one surface, and which is arranged perpendicularly to the optical axis. This problem is solved by a heating/cooling device for a microscope, which is characterized in that the cross-sectional shape in the direction perpendicular to the optical axis is non-uniform.

、11豆 すれば、第1図は本発明による加熱冷却装置を取付けた
倒立型顕微鏡を示しており、1は倒立型顕微鏡、2は水
平方向に移動可能なステージ、3はステージ2の一部と
して構成されまたはこれに取付けられ且つ載物台として
形成された中座ヒーター、4は中座ヒーター3上に載置
された培養観察容器、5はレボルバ−に装着された対物
レンズ、6は中座ヒーター3を設定温度にオンオフ制御
するための温度コントローラである。さらに、中座ヒー
ター3は、第2図に示すように中心に観察用の開口11
aを有するアルミニウムの円板11から構成されており
、その下面には同心円状の二つの環状溝11b、11c
が形成されていると共に温度センサー12が内蔵されて
いる。13は円板11の下面に接着されたフィルムヒー
ターで、温度センサー12からの信号に基づき温度コン
トローラ6により設定温度にオンオフ制御される。14
はフィルムヒーター13を保護するために備えられたカ
バーである。
, 11 Figure 1 shows an inverted microscope equipped with a heating and cooling device according to the present invention, where 1 is an inverted microscope, 2 is a horizontally movable stage, and 3 is a part of stage 2. 4 is a culture observation container placed on the middle seat heater 3; 5 is an objective lens attached to a revolver; This is a temperature controller for controlling the seat heater 3 on and off to a set temperature. Furthermore, the middle seat heater 3 has an observation opening 11 in the center as shown in FIG.
It is composed of an aluminum disk 11 having a radius of
is formed, and a temperature sensor 12 is built-in. A film heater 13 is bonded to the lower surface of the disk 11, and is controlled on and off to a set temperature by a temperature controller 6 based on a signal from a temperature sensor 12. 14
is a cover provided to protect the film heater 13.

本発明実施例は以上のように構成されているから、フィ
ルムヒーター13に通電することにより中座ヒーター3
を加熱して培養観察容器4を設定温度に制御すると、中
座ヒーター3の円板11のフィルムヒーター13に接し
ている下面は該円板11の上面に比べて温度が高く従っ
て熱膨張が大きいが、該円板11の上面及び下面におけ
る熱膨張の差による応力は円板11の下面に設けられた
二つの環状溝11b、11Cに集中して熱歪みが該環状
溝で吸収されるために、円板11の上下方向の変形が減
少せしめられる。
Since the embodiment of the present invention is constructed as described above, by energizing the film heater 13, the middle seat heater 3
When the culture observation container 4 is controlled to the set temperature by heating, the lower surface of the disc 11 of the intermediate heater 3 that is in contact with the film heater 13 has a higher temperature than the upper surface of the disc 11, and therefore has a large thermal expansion. However, the stress due to the difference in thermal expansion between the upper and lower surfaces of the disk 11 is concentrated in the two annular grooves 11b and 11C provided on the lower surface of the disk 11, and the thermal strain is absorbed by the annular grooves. , vertical deformation of the disc 11 is reduced.

以下に具体的な実験例を示せば、第6図(A)に示した
寸法の中座ヒーター3を用いた場合フィルムヒーター1
30オンオフ制御に同期した円板11の中心から距離r
(wm)の部分での上方即ち2方向への変位量は第6図
(B)に実線で示すようになり、環状溝のない円板の場
合の変位量(点線図示)に比べて大幅に減少している。
To show a specific experimental example below, when using the intermediate heater 3 with the dimensions shown in FIG. 6(A), the film heater 1
30 Distance r from the center of the disk 11 synchronized with on/off control
The amount of upward displacement in the two directions (wm) is shown by the solid line in FIG. is decreasing.

従って、フィルムヒーター13のオンオフ制御による載
物台の上下方向の変位が少なくなり、培養観察容器4と
対物レンズ5との距離の変動も減少し、かくして像のボ
ケが減少する。尚、第6図(B)において鎖線Aは40
×の対物レンズの場合の焦点深度(約1.5μ)を示し
ており、上記中座ヒーター3の変位量は焦点深度内に納
まっている。
Therefore, vertical displacement of the stage due to on/off control of the film heater 13 is reduced, and fluctuations in the distance between the culture observation container 4 and the objective lens 5 are also reduced, thus reducing image blurring. In addition, in FIG. 6(B), the chain line A is 40
The depth of focus (approximately 1.5 μ) is shown for the objective lens marked with ×, and the amount of displacement of the seat heater 3 is within the depth of focus.

第7図及び第8図は本発明の他の実施例を示しており、
第2図(B)の環状溝11b、llcを備えた円板11
の代わりに使用される、同一円周上に配設された複数の
(図面では八個の)円形凹部15aを備えた円板15(
第7図参照)または同心円上で複数に(図面では四つに
)分割された弧状溝16a、16bを有する円板16(
第8図参照)が示されている。これらの実施例によれば
熱膨張の差による応力が凹部15aまたは弧状溝16a
、16bに集中するため、第2図の実施例の場合と同様
に熱歪みが該凹部または溝で吸収され、円板15または
16の上下方向の変形が減少せしめられる。
7 and 8 show other embodiments of the present invention,
Disc 11 with annular grooves 11b and llc in FIG. 2(B)
A disk 15 (which is used instead of
(see FIG. 7) or a disc 16 (see FIG.
8) is shown. According to these embodiments, the stress due to the difference in thermal expansion is applied to the recess 15a or the arcuate groove 16a.
, 16b, the thermal strain is absorbed by the recesses or grooves, as in the embodiment of FIG. 2, and the vertical deformation of the disk 15 or 16 is reduced.

l豆旦盈1 以上述べたように本発明によれば、光軸に対して垂直に
配設されていて且つ少なくとも一面に加熱体及び/また
は冷却体が接合されている板状部材から構成されており
、その該板状部材の光軸に対して垂直な方向の断面形状
が光軸方向に不均一であるように顕微鏡の加熱冷却装置
を構成したから、加熱または冷却の際に板状部材に生じ
る温度差による熱膨張の差によって発生する応力は不均
一な部分即ち溝または凹部に集中する結果、熱歪みがこ
の部分で吸収され、かくして板状部材の上下方向の変形
が減少せしめられ、而もその光軸方向の厚さを増す必要
がないので観察に影響を及ぼすようなことはない。
1 As described above, according to the present invention, it is composed of a plate-like member arranged perpendicularly to the optical axis and having a heating element and/or a cooling element joined to at least one surface. Since the heating and cooling device of the microscope is configured so that the cross-sectional shape of the plate-like member in the direction perpendicular to the optical axis is non-uniform in the optical axis direction, the plate-like member is heated or cooled. The stress generated by the difference in thermal expansion due to the temperature difference that occurs in the plate is concentrated in the non-uniform portion, that is, the groove or the recess, and as a result, the thermal strain is absorbed in this portion, thus reducing the vertical deformation of the plate member. However, since there is no need to increase the thickness in the optical axis direction, it does not affect observation.

尚、実施例ではフィルムヒーターにより加熱する場合に
ついて述べたが、サーモモジュールにより冷却する場合
にも本発明を適用し得ることはいうまでもない。
Incidentally, in the embodiment, the case where heating is performed by a film heater has been described, but it goes without saying that the present invention can also be applied to a case where cooling is performed by a thermo module.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による加熱冷却装置を実装した倒立型顕
微鏡の概略側面図、第2図は本発明の一実施例を示す(
A)一部破断側面図及び(B)円板の底面図、第3図は
板状部材の熱変形を説明する概略図、第4図は第3図の
板状部材のオンオフ制御時の変位量を示すタイムチャー
ト、第5図は各々従来の顕微鏡の加熱冷却装置でその厚
さを増したときの不具合を示す図、第6図は第2図の実
施例の具体的な実施形態の(A)寸法及び(B)熱変形
による変位量を示す図、第7図及び第8図は本発明の他
の実施例を示す図である。 1・・・・倒立型顕微鏡、2・・・・ステージ、3・・
・・中座ヒーター、4・・・・培養観察容器、5・・・
・対物レンズ、6・・・・温度コントローラ、11,1
5゜16・・・・円板、11b、11C・・・・環状溝
、12・・・・温度センサー、13・・・・フィルムヒ
ーター、14・・・・カバー、15a・・・・円形凹部
、16a。 16b・・・・弧状溝。 矛2図 (B) (A)               (B)、?5W
J (A) (D)
Fig. 1 is a schematic side view of an inverted microscope equipped with a heating/cooling device according to the present invention, and Fig. 2 shows an embodiment of the present invention.
A) Partially cutaway side view, (B) Bottom view of the disc, Figure 3 is a schematic diagram illustrating thermal deformation of the plate member, Figure 4 is the displacement of the plate member in Figure 3 during on/off control. FIG. 5 is a time chart showing the amount, FIG. A) A diagram showing dimensions and (B) a displacement amount due to thermal deformation, and FIGS. 7 and 8 are diagrams showing other embodiments of the present invention. 1... Inverted microscope, 2... Stage, 3...
...Nakaza heater, 4...Culture observation container, 5...
・Objective lens, 6... Temperature controller, 11, 1
5゜16... Disc, 11b, 11C... Annular groove, 12... Temperature sensor, 13... Film heater, 14... Cover, 15a... Circular recess , 16a. 16b...Arc-shaped groove. Spear 2 (B) (A) (B),? 5W
J (A) (D)

Claims (1)

【特許請求の範囲】[Claims] 光軸に対して垂直に配設されていて且つ少なくとも一面
に加熱体及び/または冷却体が接合されている板状部材
から構成されており、該板状部材の光軸に対して垂直な
方向の断面形状が光軸方向に不均一であることを特徴と
する、顕微鏡の加熱冷却装置。
Consisting of a plate-shaped member arranged perpendicular to the optical axis and having a heating element and/or cooling element joined to at least one surface, the direction perpendicular to the optical axis of the plate-shaped member A heating and cooling device for a microscope, characterized in that its cross-sectional shape is non-uniform in the optical axis direction.
JP1877085A 1985-02-04 1985-02-04 Microscope heating and cooling device Expired - Lifetime JPH0718977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877085A JPH0718977B2 (en) 1985-02-04 1985-02-04 Microscope heating and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877085A JPH0718977B2 (en) 1985-02-04 1985-02-04 Microscope heating and cooling device

Publications (2)

Publication Number Publication Date
JPS61177413A true JPS61177413A (en) 1986-08-09
JPH0718977B2 JPH0718977B2 (en) 1995-03-06

Family

ID=11980866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877085A Expired - Lifetime JPH0718977B2 (en) 1985-02-04 1985-02-04 Microscope heating and cooling device

Country Status (1)

Country Link
JP (1) JPH0718977B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502165B2 (en) * 2006-07-26 2009-03-10 Carl Zeiss Microimaging Gmbh Arrangement for regulating the temperature of the sample space of a microscope
JP2013044825A (en) * 2011-08-23 2013-03-04 Tokai Hit:Kk Heating device for microscopic observation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502165B2 (en) * 2006-07-26 2009-03-10 Carl Zeiss Microimaging Gmbh Arrangement for regulating the temperature of the sample space of a microscope
JP2013044825A (en) * 2011-08-23 2013-03-04 Tokai Hit:Kk Heating device for microscopic observation

Also Published As

Publication number Publication date
JPH0718977B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JPH0675150A (en) Temperature compensating optical assembly
JP2009507383A (en) Optical mount for laser rod
JPH06215398A (en) Temperature-compensated optical assembly
JPS61177413A (en) Heating and cooling device of microscope
JP2003029162A (en) Objective lens for microscope and microscope
US5992172A (en) Fast thin-plate cooling apparatus
US4239343A (en) Actuator configuration for a deformable mirror
JP4745191B2 (en) Heat treatment equipment
US6729143B1 (en) Thermo-electric cooler for use in an optical assembly
JP2003226967A (en) Film deposition apparatus
CN102251944B (en) Mechanical temperature compensation device and means, method for assembling the device
JP2005152972A (en) Laser beam machining apparatus
JP4025877B2 (en) Refrigeration chuck device
JPH0482649A (en) Control unit for posture of machine tool
JP2002098909A (en) Main body section of temperature controller for microscopic observation
US20070291352A1 (en) Monitoring Device and Stage Unit
JP4547176B2 (en) Sample temperature controller
KR100889980B1 (en) Two-axis actuator, optical pickup device, and optical information processor
JP2002207175A (en) Microscope
JPH11326970A (en) Nonlinear crystal holder
JPH0210190A (en) Nuclear fusion device
JP3657236B2 (en) Heating device
JP2874921B2 (en) Superconducting ring coil support device
JPH04125917A (en) Manufacture and manufacturing equipment of semiconductor device
JP2006346974A (en) Molding method and molding apparatus