JPS61174783A - Manufacture of superconducting circuit device - Google Patents

Manufacture of superconducting circuit device

Info

Publication number
JPS61174783A
JPS61174783A JP60014425A JP1442585A JPS61174783A JP S61174783 A JPS61174783 A JP S61174783A JP 60014425 A JP60014425 A JP 60014425A JP 1442585 A JP1442585 A JP 1442585A JP S61174783 A JPS61174783 A JP S61174783A
Authority
JP
Japan
Prior art keywords
superconducting
layer
insulating layer
film
superconducting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60014425A
Other languages
Japanese (ja)
Other versions
JPH0374512B2 (en
Inventor
Ichiro Ishida
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60014425A priority Critical patent/JPS61174783A/en
Publication of JPS61174783A publication Critical patent/JPS61174783A/en
Publication of JPH0374512B2 publication Critical patent/JPH0374512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To simplify processes, by burying the surrounding part of the first superconducting wiring layer pattern by an insulating layer, making the first superconducting layer to be an insulating film, and blocking a tunnel current between the first superconducting layer and the second superconducting layer. CONSTITUTION:A lower superconducting niobium film, which is patterned and surrounded by SiO2 3, is formed in contact with an Si substrate 1. RF plasma oxidation is performed, and an interlayer insulating film 4 comprising a niobium oxide film having a specified thickness is formed. Thereafter, an upper super conducting niobium film 5 is provided. As a result, the upper superconducting layer is formed through the interlayer insulating film, which is formed in the embedded lower superconducting layer by self-alignment. Thus a multilayer structure is implemented. In this method, the processes can be simplified, estimat ing allowance is not required and the device can be made compact.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は少なくとも超伝導体、絶縁体及びトンネル障壁
で構成される超伝導回路装置の製造方法に関する。更に
特定すれば下部超伝導層の周囲が絶縁層に埋め込まれた
後に層間絶縁膜の形成工程を有する超伝導回路装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a superconducting circuit device comprising at least a superconductor, an insulator, and a tunnel barrier. More specifically, the present invention relates to a method for manufacturing a superconducting circuit device that includes a step of forming an interlayer insulating film after the periphery of the lower superconducting layer is embedded in an insulating layer.

(従来技術とその問題点) 基板上に複数層の互に電気的に絶縁された超伝導層を重
ねた構造がジヲセフノン接合素子あるいはジョセフソン
接合集積回路等に代表される超伝導回路装置に用いられ
る。例えば幸坂らにょシ第45回応用物理学会学術講演
会12P−Y−7に平坦化構造が示されている。第3図
に互に電気的に絶縁された超伝導層の二層構造の従来例
の一つを示す。下部超伝導層18又は埋め込み絶縁層1
9に接して眉間絶縁層20を堆積した後膣層間絶縁層2
0上に接して上部超伝導層21が形成されていた。とこ
ろで例えば基板IKアース面を設けた場合の上部超伝導
層21のインダクタンス低減やコンタクトホールの作シ
易さのために、層間絶縁層20の薄型化が必要である。
(Prior art and its problems) A structure in which a plurality of mutually electrically insulated superconducting layers are stacked on a substrate is used in superconducting circuit devices, such as a Josephson junction device or a Josephson junction integrated circuit. It will be done. For example, a flattened structure is shown in Lanyoshi Kosaka's 45th Japan Society of Applied Physics Academic Conference 12P-Y-7. FIG. 3 shows a conventional example of a two-layer structure of superconducting layers electrically insulated from each other. Lower superconducting layer 18 or buried insulating layer 1
After depositing the glabella insulating layer 20 in contact with 9, the vaginal interlayer insulating layer 2
An upper superconducting layer 21 was formed in contact with the upper layer 0. By the way, it is necessary to reduce the thickness of the interlayer insulating layer 20 in order to reduce the inductance of the upper superconducting layer 21 when a substrate IK ground plane is provided and to facilitate the formation of contact holes.

第3図の構造でこの要請を満たすためには第4図に示す
如く、上部超伝導層26と下部超伝導層23が交差する
領域にのみ層間絶縁層25を残し、上部超伝導層26と
下部超伝導層23が交差しない領域の眉間絶縁層を除去
する事が考えられる。しかし、この従来の製造方法では
眉間絶縁層25を下部超伝導層23のパターンに対応し
てパターニングする工程が必要であった。
In order to satisfy this requirement with the structure shown in FIG. 3, as shown in FIG. It is conceivable to remove the glabellar insulating layer in the area where the lower superconducting layer 23 does not intersect. However, this conventional manufacturing method requires a step of patterning the glabella insulating layer 25 in correspondence with the pattern of the lower superconducting layer 23.

この事は型造工程の複雑さを招き更に目合せ余裕度が必
要であシ装置の小型化を妨げるものであった。
This complicates the molding process and requires a margin for alignment, which hinders miniaturization of the device.

(発明の目的) 本発明は上述の従来の欠点を除去せしめて、層間絶縁層
のパターニングをセルファラインで実現できる超伝導回
路装置の製造方法を提供する事にある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a superconducting circuit device that eliminates the above-mentioned conventional drawbacks and can realize patterning of an interlayer insulating layer by self-line.

(発明の構成) 本発明によれば第1の超伝導配線層と、第1の超伝導配
線層上に絶縁層を介して位置する第2の超伝導配線層を
有する超伝導回路装置の製造において、パターン化され
た第1の超伝導配線層の周囲を絶縁層で埋め込んだ後、
第1の超伝導配線層の表面を第1と第2の超伝導配線層
間に流れるトンネル電流を阻止するに充分な厚さにまで
絶縁層術の問題点を解決した。
(Structure of the Invention) According to the present invention, a superconducting circuit device having a first superconducting wiring layer and a second superconducting wiring layer located on the first superconducting wiring layer with an insulating layer interposed therebetween is manufactured. After filling the periphery of the patterned first superconducting wiring layer with an insulating layer,
The problems of the insulating layer technique have been solved by making the surface of the first superconducting wiring layer thick enough to prevent tunneling current flowing between the first and second superconducting wiring layers.

第1図は本発明による超伝導回路装置の製造工程を示す
断面図である。パターニングされ、周囲が埋め込み絶縁
層3で囲まれた下部超伝導層2が基板1上に接して設け
られている第1図(al、次に下部超伝導層2の表面を
絶縁層化し層間絶縁層4この結果、埋め込まれた下部超
伝導層にセルファラインで形成された眉間絶縁層を介し
て下部超伝導層上に上部超伝導層が形成された多層構造
が実現゛できる。
FIG. 1 is a sectional view showing the manufacturing process of a superconducting circuit device according to the present invention. A patterned lower superconducting layer 2 surrounded by a buried insulating layer 3 is provided in contact with a substrate 1 (al). Next, the surface of the lower superconducting layer 2 is made into an insulating layer to provide interlayer insulation. Layer 4 As a result, a multilayer structure can be realized in which the upper superconducting layer is formed on the lower superconducting layer via the glabella insulating layer formed by self-aligning the buried lower superconducting layer.

以下本発明の実施例について図面を参照して詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の実施例を示すジョセフソン接合素子の
製造工程図である。ジョセフソン接合素子の製造工程は
すでに良く知られておシ、例えば第2図(a)に示す対
向電極平坦化までは容易に実現できる。例えば表面を酸
化したシリコンウエノ・を基板6に用い、基板6上に例
えばニオブの300nrri厚のグランドプレーン7を
設けた後、該グランド次に、例えばニオブスパッタ膜を
用いた基部電極9と該基部電極表面を酸化して得られる
トンネル障壁10と更にニオブスパッタ膜で対向電極1
1を同一装置内で一括して形成した後、必要な領域の基
部電極9、トンネル障壁10と対向電極11を残すよう
に例えばドライエツチング法を用いてパターニングを行
う。一般にジョセフソン電極密度を10’〜10”A/
d  と設計すればトンネル障壁10の厚さはおよそI
OA〜20Aの範囲である。
FIG. 2 is a manufacturing process diagram of a Josephson junction device showing an embodiment of the present invention. The manufacturing process of the Josephson junction element is already well known, and for example, the process up to the flattening of the counter electrode shown in FIG. 2(a) can be easily realized. For example, a silicon wafer with an oxidized surface is used as the substrate 6, and a ground plane 7 made of, for example, niobium with a thickness of 300 nm is provided on the substrate 6. Next, a base electrode 9 using, for example, a niobium sputtered film and a base electrode 9 made of, for example, a niobium sputtered film are formed. A tunnel barrier 10 obtained by oxidizing the electrode surface and a counter electrode 1 made of a niobium sputtered film
1 is formed all at once in the same apparatus, and then patterning is performed using, for example, a dry etching method so as to leave the base electrode 9, tunnel barrier 10, and counter electrode 11 in required areas. Generally, the Josephson electrode density is 10'~10''A/
d, the thickness of the tunnel barrier 10 is approximately I
It ranges from OA to 20A.

その後基板6からの距離が対向電極11の上表面と同じ
位置まで例えばSIOを蒸着し、絶縁層8上の基部電極
qのない領域を埋め込み絶縁層(1)12で埋め込み、
この工程までの装置表面を平坦する。
After that, for example, SIO is deposited up to the same distance from the substrate 6 as the upper surface of the counter electrode 11, and the region on the insulating layer 8 where the base electrode q is not provided is buried with the insulating layer (1) 12.
The surface of the device up to this step is flattened.

(第2図(a))  次に該装置表面に接して対向電極
配線層13を例えばニオブスパッタ膜で形成し必要な領
域を残すように例えばドライエツチング法でパターニン
グした後、対向電極配線層13をエツチングで除去した
領域に例えば810蒸着膜で埋め込み絶縁層(2) 1
4を形成し、対向電極配線層13と埋め込み絶縁層r2
)14の上表面が同一平面内にあるように平坦化する。
(FIG. 2(a)) Next, a counter electrode wiring layer 13 is formed of, for example, a niobium sputtered film in contact with the surface of the device, and is patterned by, for example, a dry etching method so as to leave a necessary area. The insulating layer (2) 1 is filled with, for example, a 810 vapor deposited film in the area where the etching has been removed by etching.
4, and a counter electrode wiring layer 13 and a buried insulating layer r2.
) 14 so that their top surfaces are in the same plane.

(第2図(b))  その極配線層13表面上に形成さ
れ、絶縁層15を得る。(第2図(C))  この場合
、絶縁層15を流れるジョセフソン電流密度は10−’
A/d以下と考えられ、トンネル障壁10を流れるジョ
セフソン電極密度をおよそ10’A〜10”A/dと設
計した場合、絶縁層15による漏れ電流は無視できる。
(FIG. 2(b)) The insulating layer 15 is formed on the surface of the electrode wiring layer 13. (Figure 2 (C)) In this case, the Josephson current density flowing through the insulating layer 15 is 10-'
If the density of the Josephson electrode flowing through the tunnel barrier 10 is designed to be approximately 10' A/d to 10'' A/d, the leakage current due to the insulating layer 15 can be ignored.

尚この酸化条件は一例にすぎずRF電圧、ガス種、ガス
圧酸化時間をそれぞれ最適化する事により更に高品質な
絶縁層15を得る事ができる。
Note that these oxidation conditions are only an example, and an even higher quality insulating layer 15 can be obtained by optimizing the RF voltage, gas type, and gas pressure oxidation time.

次に例えばニオブスパッタ膜を堆積し、バターニングし
て制御線16を形成する。(第2図(d))更に必要な
らば制御線16形成後に図には示されていないが、例え
ばSiOで保護膜を設けてもよい。
Next, for example, a niobium sputtered film is deposited and patterned to form the control line 16. (FIG. 2(d)) Furthermore, if necessary, a protective film made of SiO, for example, may be provided, although not shown in the figure, after the control line 16 is formed.

以上の結果、周囲が埋め込まれた対向電極配線層上に絶
縁層を介して制御線を形成する構造において、該絶縁層
をセルファラインによって形成している。以上実施例で
述べた製造工程の自装置構造、超伏導材料、絶縁層材料
、あるいはそれ等の製造方法、バターニング方法等には
多くのバリエーションが考えられるが、本発明はいずれ
の場合も有効に用いる事ができる。
As a result of the above, in a structure in which a control line is formed via an insulating layer on a counter electrode wiring layer whose periphery is buried, the insulating layer is formed by a self-line. Although there may be many variations in the structure of the manufacturing process itself, the superconducting material, the insulating layer material, the manufacturing method thereof, the buttering method, etc. in the above embodiments, the present invention applies to any of the above. It can be used effectively.

(発明の効果) 本発明によれば、周囲が埋め込まれた下部超伝導層上に
形成された絶縁層を介して上部超伝導層を設ける場合、
該絶縁層が下部超伝導層にセルファラインで形成される
ので、該絶縁層のバターニング工程が不要になシ、工程
の簡略化でき、更に目合せ余裕度が不要になシ装置の小
型化を可能Kにする。
(Effects of the Invention) According to the present invention, when an upper superconducting layer is provided via an insulating layer formed on a lower superconducting layer in which the periphery is embedded,
Since the insulating layer is formed on the lower superconducting layer by self-alignment, there is no need for a patterning process for the insulating layer, which simplifies the process, and also eliminates the need for alignment margins, making the device more compact. Make it possible K.

示すためのジョセフソン接合素子の製造工程図、第3図
は従来の超伝導回路装置の一つを示すための構造断面図
、第4図は別の従来の超伝導回路装置を示すための構造
断面図である。
3 is a cross-sectional view of the structure of one of the conventional superconducting circuit devices, and FIG. 4 is the structure of another conventional superconducting circuit device. FIG.

図において、1.6,17.22は基板、2,18゜2
3は下部超伝導層、3.19.24は埋め込み絶縁層、
4 、20 、25は眉間絶縁層、5.21.26は上
部超伝導層、7はグランドプレーン、8.15は絶縁層
、9は基部電極、10はトンネル障壁、11は対向電極
、12は埋め込み絶縁層(1)、13は対向1框配線層
、14は埋め込み絶縁層(2)、16は制御線である。
In the figure, 1.6, 17.22 are the substrates, 2, 18°2
3 is the lower superconducting layer, 3.19.24 is the buried insulating layer,
4, 20, 25 are insulating layers between eyebrows, 5, 21, 26 are upper superconducting layers, 7 is a ground plane, 8.15 is an insulating layer, 9 is a base electrode, 10 is a tunnel barrier, 11 is a counter electrode, 12 is A buried insulating layer (1), 13 is an opposing one-frame wiring layer, 14 is a buried insulating layer (2), and 16 is a control line.

工業技?’i’:l’f’完長 オ 1 図 (b) (C) 第2図 Y    to        u オ 3 図 オ 4 図Industrial technology? 'i': l'f' full length Figure 1 (b) (C) Figure 2 Y to u Figure 3 E 4 Figure

Claims (1)

【特許請求の範囲】[Claims]  第1の超伝導配線層と、第1の超伝導配線層上に絶縁
層を介して位置する第2の超伝導配線層を有する超伝導
回路装置の製造において、パターン化された第1の超伝
導配線層の周囲を絶縁層で埋め込んだ後、第1の超伝導
配線層の表面を第1と第2の超伝導配線層間に流れるト
ンネル電流を阻止するに充分な厚さにまで絶縁層化する
事を特徴とする超伝導回路装置の製造方法。
In manufacturing a superconducting circuit device having a first superconducting wiring layer and a second superconducting wiring layer located on the first superconducting wiring layer with an insulating layer interposed therebetween, a patterned first superconducting wiring layer is formed. After filling the periphery of the conductive wiring layer with an insulating layer, the surface of the first superconducting wiring layer is made into an insulating layer to a thickness sufficient to block tunnel current flowing between the first and second superconducting wiring layers. A method for manufacturing a superconducting circuit device characterized by:
JP60014425A 1985-01-30 1985-01-30 Manufacture of superconducting circuit device Granted JPS61174783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014425A JPS61174783A (en) 1985-01-30 1985-01-30 Manufacture of superconducting circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014425A JPS61174783A (en) 1985-01-30 1985-01-30 Manufacture of superconducting circuit device

Publications (2)

Publication Number Publication Date
JPS61174783A true JPS61174783A (en) 1986-08-06
JPH0374512B2 JPH0374512B2 (en) 1991-11-27

Family

ID=11860662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014425A Granted JPS61174783A (en) 1985-01-30 1985-01-30 Manufacture of superconducting circuit device

Country Status (1)

Country Link
JP (1) JPS61174783A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209183A (en) * 1982-05-31 1983-12-06 Nec Corp Manufacture of josephson junction element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209183A (en) * 1982-05-31 1983-12-06 Nec Corp Manufacture of josephson junction element

Also Published As

Publication number Publication date
JPH0374512B2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US4430662A (en) Superconductive tunnel junction integrated circuit
US6656814B2 (en) Methods of fabricating integrated circuit devices including distributed and isolated dummy conductive regions
KR960001595B1 (en) Diamond-coated sintered body excellent in adhesion and the
JPS6146081A (en) Manufacture of josephson junction element
JPS61174783A (en) Manufacture of superconducting circuit device
JPH05335585A (en) Manufacture of insulated gate type power semiconductor element
JPH04346277A (en) Layer superconductor circuit and manufacture thereof
JPH0426162A (en) Floating gate semiconductor memory and manufacture thereof
JPS6047478A (en) Josephson junction element
JPH0687483B2 (en) Semiconductor device
JPH0247862A (en) Semiconductor integrated circuit device
JP2727773B2 (en) Method of manufacturing Josephson integrated circuit
JPH05102547A (en) Manufacture of josephson integrated circuit device
JPS58125880A (en) Josephson junction element
JP2981855B2 (en) Superconducting circuit structure and fabrication method
JP2535539B2 (en) Josephson circuit manufacturing method
JPH04188850A (en) Contact hole and manufacture thereof
JP2000012683A (en) Integrated circuit and manufacture thereof
JPS61244078A (en) Manufacture of superconducting lines
JPH0322710B2 (en)
JPS63224273A (en) Josephson junction element and its manufacture
JPS6149439A (en) Manufacture of semiconductor device
JPS60113484A (en) Manufacture of josephson ic device
JPS5889877A (en) Superconductive circuit device
JPH0797583B2 (en) Method for forming interlayer insulating film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term