JPS58209183A - Manufacture of josephson junction element - Google Patents

Manufacture of josephson junction element

Info

Publication number
JPS58209183A
JPS58209183A JP57092753A JP9275382A JPS58209183A JP S58209183 A JPS58209183 A JP S58209183A JP 57092753 A JP57092753 A JP 57092753A JP 9275382 A JP9275382 A JP 9275382A JP S58209183 A JPS58209183 A JP S58209183A
Authority
JP
Japan
Prior art keywords
electrode
tunnel junction
superconductor
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57092753A
Other languages
Japanese (ja)
Inventor
Hisanao Tsuge
久尚 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57092753A priority Critical patent/JPS58209183A/en
Priority to EP83105381A priority patent/EP0095773B1/en
Priority to DE8383105381T priority patent/DE3370901D1/en
Priority to US06/499,553 priority patent/US4548834A/en
Publication of JPS58209183A publication Critical patent/JPS58209183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Abstract

PURPOSE:To eliminate the contamination generating when an insulative layer is formed by flattening the region in the vicinity of the junction part of the titled element by a method wherein an anisotropic etching is performed on the part other than the tunnel junction part which constitutes the junction element, thereby enabling to properly specify the dimensions of the junction part and to prevent the contamination caused by etching. CONSTITUTION:The first superconductive electrode 32 consisting of Nb of prescribed measurements and the second superconductive electrode 33 consisting of Pb are formed by lamination on an insulative substrate 31, and a resist mask 34 is provided on said electrode 33 corresponding to the turnnel junction part. Then, an anisotropic etching is performed using said resist mask 34 as a mask, and first, the exposed part of the electrode 33 is removed, and then an insulative layer 35 of SiO2 and the like is coated on the whole surface. Through these procedures, the material for the electrodes 32 and 33 can be specified, and this enables to easily control the depth of the etching. Subsequently, the mask 34 is removed together with the layer 35 located above the mask 34, a tunnel junction layer 36 of several tens Angstrom is generated by performing thermal oxidation on the tunnel junction layer, and an upper superconductive electrode is coated on the surface of the layer 36 and 35.

Description

【発明の詳細な説明】 本発明はジョセフソン接合素子の製造方法に萬し、さら
に詳しくはトンネル接合型のジョセフソン接合素子の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a Josephson junction device, and more particularly to a method of manufacturing a tunnel junction type Josephson junction device.

ジョセフソン接合素子を用いて*理回路や記憶回路を構
成する場合には、トンネル接合の臨界電流すなわち零電
圧状態で流れる最大直流の各素子間におけるばらつきを
小さくするか解消することが必要である。臨界電流はト
ンネル接合部の面積、トンネル接合部の膜厚および物理
的性質によって変化するが、近年素子の微小化、高密度
化が進んで特にトンネル接合部の面積の精度を向上させ
る技術が重要となっている。
When constructing physical circuits or memory circuits using Josephson junction elements, it is necessary to reduce or eliminate variations between each element in the critical current of the tunnel junction, that is, the maximum direct current that flows in a zero voltage state. . The critical current changes depending on the area of the tunnel junction, the film thickness of the tunnel junction, and the physical properties, but in recent years, as elements have become smaller and more dense, technology that improves the accuracy of the area of the tunnel junction is especially important. It becomes.

従来、ジョセフソン接合素子の製造方法として以下に述
べる2つの方法が用いられている。まず、第1の方法を
第1図(a)〜(f)を用いて工稈埴に説明する。第1
図(&)k示すように、絶縁体基板あるいは表面に絶縁
体層を有する基板11よに1蒸着法やスパッタ法により
ニオブ、(Nb ) 、 4”(、pb ) %−cな
る第1の超伝導体電極12を形成する。第1の超伝導体
電極12のパターニングは通常のホトレジスト工程を用
いたエツチング法やv7)オフ法で行なう。次に、第1
図(b)K示すように第1の超伝導体電極12上のトン
ネル接合部となる部分にアンダーカット形状のレジスト
マスク13を形成し、第1図(c)に示すように基板表
面に蒸着法などの指向性の良い成膜法で一醗化ナイ素(
Sin)、二酸化ケイ素(SiO+)等でなる絶縁体層
14を被着し、ダ1続きリフトオフすると第1図(cl
)に示すような開口をもつトンネル抗合部が形成される
。アンダーカット形状のレジストマスク13は通常のホ
トレ′ジスト工程に加え、露光前または露光後にクロロ
ベンゼンやブロモベンゼンなどのTi ’Rm 剤に浸
すことによって得られる。次K、第1図(e)に示すよ
うに熱市化法あるいはプラズマ酸化法でトンネル接合部
に数1oXの厚さのトンネル接合層15を形成する。こ
の後、第1図(f)に示すように第1の超伝導体電極1
2の場合と同様、蒸着法やスパッタ法で第2の超伝導体
電極16を形成する。
Conventionally, the following two methods have been used to manufacture Josephson junction elements. First, the first method will be explained using FIGS. 1(a) to 1(f). 1st
As shown in FIG. A superconductor electrode 12 is formed. Patterning of the first superconductor electrode 12 is performed by an etching method using a normal photoresist process or a v7) off method.
As shown in Figure (b) K, an undercut-shaped resist mask 13 is formed on the portion of the first superconductor electrode 12 that will become the tunnel junction, and as shown in Figure 1 (c), it is deposited on the substrate surface. Nitric acid monomer (
An insulating layer 14 made of silicon dioxide (SiO+), silicon dioxide (SiO+), etc. is deposited, and when it is continuously lifted off, the structure shown in FIG.
) is formed. The undercut-shaped resist mask 13 is obtained by not only a normal photoresist process but also by immersion in a Ti'Rm agent such as chlorobenzene or bromobenzene before or after exposure. Next, as shown in FIG. 1(e), a tunnel junction layer 15 with a thickness of several 10X is formed at the tunnel junction by thermal oxidation or plasma oxidation. After this, as shown in FIG. 1(f), the first superconductor electrode 1
As in case 2, the second superconductor electrode 16 is formed by vapor deposition or sputtering.

この方法ではトンネル接合部の形成にア/ダーカ、・上
形状のレジストマスク13を必要とするが、この形状は
レジストのプリ゛ベーク条件や有機溶剤の液温、r′イ
クプ時間などの影響を受けやすい。
This method requires a resist mask 13 with an a/darker/top shape to form a tunnel junction, but this shape is influenced by resist pre-baking conditions, organic solvent liquid temperature, r' pump time, etc. Easy to accept.

特に、実際のトンネル接合部の面積を規定するレジスト
マスク下部の手法を精度よく得ることは非常に難しい 
また、トンネル接合部は周囲の絶縁体層14よりも低位
置にあるため、プラズマクリーニングやプラズマ積比時
にスパッタされた絶縁体層14の付着により汚染される
という欠点があった。従来の第2の方法を第2図(a)
〜げ)を用いて説明する。第2図(a) K示すように
、第1図(a)と同様な方法で基板21上に第1の超伝
導体電極22を形成する。その後、第2図(′b)に示
すように基板全面に蒸着法やスパッタ法でSin、St
ow等でなる絶縁体層23を被着する。次に、第2図(
c)K示すように絶縁体層23上にトンネル接合部を形
成するだめの開口を有するレジストマスク24を形成し
た後、アルゴン(Ar)などの不油性ガスを用いたイオ
ンエツチング法やフロン23 (CHF3)。
In particular, it is extremely difficult to accurately obtain the method for the lower part of the resist mask that defines the area of the actual tunnel junction.
Furthermore, since the tunnel junction is located at a lower position than the surrounding insulating layer 14, there is a drawback that it is contaminated by adhesion of the insulating layer 14 sputtered during plasma cleaning or plasma area ratio. The second conventional method is shown in Figure 2(a).
-ge) will be used to explain. As shown in FIG. 2(a), a first superconductor electrode 22 is formed on the substrate 21 in the same manner as in FIG. 1(a). Thereafter, as shown in FIG. 2('b), the entire surface of the substrate is coated with Sin and St by evaporation or sputtering.
An insulator layer 23 made of OW or the like is deposited. Next, see Figure 2 (
c) After forming a resist mask 24 having an opening for forming a tunnel junction on the insulating layer 23 as shown in K, an ion etching method using an oil-free gas such as argon (Ar) or a fluorocarbon 23 ( CHF3).

フロン14 (OF、) などのエツチングガスによる
反応性スパッタエツチング法で絶縁体層23を加工し、
第2図(d)に示すようなトンネル接合部を形成する。
The insulator layer 23 is processed by a reactive sputter etching method using an etching gas such as Freon 14 (OF, ),
A tunnel junction as shown in FIG. 2(d) is formed.

次に第2図(e)に示すように、第1図(e)と同様な
方法でトンネル接合部に数10Xのトンネル接合層25
を形成し、その後、第1の超伝導体電極22の場合と同
様な電極材料および成膜法で第2図(f)に示すような
第2の超伝導体電極26を形成する。この方法では、ト
ンネル接合部の絶縁体層23をイオンエツチング法や反
応性スパンタエッチング法で除去するため、トンネル接
合部における電極表面はイオン損傷を受ける。反応性ス
パッタエツチング法の場合には、電極表面は反応性のエ
ツチングガスによって汚染される。また、この方法でも
第1の方法と同様、トンネル接合部はプラズマクリーニ
ングやプラズマ酸化時に絶縁体層23の付着により汚染
されるという欠点があった。
Next, as shown in FIG. 2(e), a tunnel junction layer 25 of several tens of times is formed on the tunnel junction in the same manner as in FIG. 1(e).
Thereafter, a second superconductor electrode 26 as shown in FIG. 2(f) is formed using the same electrode material and film forming method as in the case of the first superconductor electrode 22. In this method, since the insulator layer 23 at the tunnel junction is removed by ion etching or reactive spanner etching, the electrode surface at the tunnel junction is damaged by ions. In the case of reactive sputter etching methods, the electrode surface is contaminated by a reactive etching gas. Also, this method, like the first method, has the disadvantage that the tunnel junction is contaminated by the adhesion of the insulator layer 23 during plasma cleaning or plasma oxidation.

本発明の目的は、このような従来の欠点を取り除いたジ
ョセフソン接合素子の製造方法゛を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a Josephson junction device that eliminates these conventional drawbacks.

本発明によれば、基板上に下部の超伝導体電極と前記下
部の超伝導体電極の一表面上のトンネル接合層、および
前記トンネル接合層を介して前記下部の超伝導体電極と
対向する上部の超伝導体電極を有するジョセフソン接合
素子の製造方法において、基板上に下部の超伝導体電極
として第1の超伝導体電極と該第1の超伝導体電極に対
して選択的にエツチングされる第2の超伝導体電極から
成る2層電極を形成する工程、次に前記第2の超伝導体
重l上のトンネル接合部となる領域にレジストマスクを
形成した後、前記第2の超伝導体電極をエツチング除去
する工程、引続き絶縁体層を被着、リフトオフすること
によって前記第2の超伝導体′&極の被エツチング部を
埋める工程、次に前記トンネル接合部にσカ記トンネル
接合層を形成する工程、次に前記トンネル接合層と接触
するように前記上部の超伝導体電極を形成する工程を具
備することを特徴とするジョセフソン接合素子の製造方
法が得られる。
According to the present invention, a lower superconductor electrode and a tunnel junction layer on one surface of the lower superconductor electrode are disposed on a substrate, and the tunnel junction layer faces the lower superconductor electrode via the tunnel junction layer. A method for manufacturing a Josephson junction device having an upper superconductor electrode includes a first superconductor electrode as a lower superconductor electrode on a substrate and selective etching with respect to the first superconductor electrode. a step of forming a two-layer electrode consisting of a second superconductor electrode, then forming a resist mask in a region that will become a tunnel junction on the second superconductor weight l; A step of etching away the conductor electrode, followed by a step of depositing and lifting off an insulating layer to fill the etched portion of the second superconductor'&pole; A method for manufacturing a Josephson junction device is obtained, which comprises the steps of forming a junction layer, and then forming the upper superconductor electrode in contact with the tunnel junction layer.

以下本発明の基本プロ七スについて図面を用いて説明す
る。
The basic process of the present invention will be explained below with reference to the drawings.

第3図(a)に示すように、絶縁体基板あるいt′i表
面に絶縁体層を有する基板31上K、蒸着法やスパッタ
法により第1の超伝導体電極32とこれよりもエツチン
グ速度が大きい第2の超伝導体電極33から成る2層電
樋を形成する。電極材料にはNb、Pb等の超伝導体が
使用されるが、第1の超伝導体電極32と第2の超伝導
体電極330組合せはトンネル接合部形成時のエツチン
グ方法に依存する。2層電極のバターニングは通常のレ
ジスト工程を用いたエツチング法やリフトオフ法で行な
う。次に、第3図(b)に示すように第2の超伝導体電
極33上の1・しネル接合部となる部分にし・シストマ
スク34を形成した後、第3図(c)に示すように反応
性スパッタエツチング法やイオノエツチングなどの異方
性エツチング法で第2の超伝導体電極33をエツチング
除去する。この際、第1の超伝導体電極32に対して第
2の超伝導体電極33が選択的にエンチングされるよう
に電極材料およびエツチング法を選ぶことによって、エ
ツチング深さの制御が容易となる。次Km第3図(d)
に示すように基板表面に&着法やイオンビームスパッタ
法などの指向性の良い成膜法によりSin、 5i02
等でなる絶縁体層35を被着する。レジストマスク34
をり7トオフした後、トンネル接合部を熱酸化またはプ
ラズマ酸化し、’)’+ 31”l Cej +’示す
ような数10Aのトンネル接合層36を形成する。この
後、第3f’J(f)に示すよって、第1.第2の超伝
導体電極32.33の場合と同様に蒸着法やスパッタ法
で−L部の超伝導体電極37を形成する。この方法では
、トンネル暗合部の形成に再現性の良い矩形レジストマ
スクが利用できること、エツチング方法およびエツチン
グ条件の最適化によりレジストマスク34から第2の超
伝導体電極33への高精度のパターン転写が可能である
ことから、従来のリフトオフ法を用いた方法(第1図)
に比ベトンネル接合部の寸法を制御し易い。また、トン
ネル接合部はレジストマスクとの接触部で規定されるた
め従来のエツチングを用いた方法(第2図)よりも高精
度のトンネル接合部か得られる。
As shown in FIG. 3(a), an insulating substrate or a substrate 31 having an insulating layer on the surface thereof is etched with a first superconductor electrode 32 by vapor deposition or sputtering. A two-layer electric trough is formed with a second superconductor electrode 33 having a high velocity. A superconductor such as Nb or Pb is used as the electrode material, and the combination of the first superconductor electrode 32 and the second superconductor electrode 330 depends on the etching method used when forming the tunnel junction. Patterning of the two-layer electrode is performed by an etching method or a lift-off method using a normal resist process. Next, as shown in FIG. 3(b), a cyst mask 34 is formed on the part of the second superconductor electrode 33 that will become the 1-channel junction, and then a cyst mask 34 is formed on the second superconductor electrode 33 as shown in FIG. 3(c). The second superconductor electrode 33 is etched away using an anisotropic etching method such as reactive sputter etching or iono etching. At this time, the etching depth can be easily controlled by selecting the electrode material and etching method so that the second superconductor electrode 33 is etched selectively with respect to the first superconductor electrode 32. . Next Km Figure 3 (d)
As shown in Figure 5, Sin, 5i02, is deposited on the substrate surface using a film formation method with good directionality such as & deposition method or ion beam sputtering method.
An insulator layer 35 made of, etc. is deposited. resist mask 34
After the 7-off process, the tunnel junction is thermally oxidized or plasma oxidized to form a tunnel junction layer 36 of several tens of amps as shown in ')' + 31"l Cej +'. After this, the third f'J ( f), the -L portion of the superconductor electrode 37 is formed by vapor deposition or sputtering in the same way as in the case of the first and second superconductor electrodes 32 and 33. In this method, the tunnel darkening portion Because a rectangular resist mask with good reproducibility can be used for forming the etching process, and by optimizing the etching method and etching conditions, highly accurate pattern transfer from the resist mask 34 to the second superconductor electrode 33 is possible. A method using the lift-off method (Fig. 1)
It is easier to control the dimensions of the tunnel junction. Further, since the tunnel junction is defined by the contact portion with the resist mask, a tunnel junction with higher precision can be obtained than in the conventional method using etching (FIG. 2).

しかも、トンネル接合部eまエツチング雰囲気にざらさ
れないため、イメン損傷の問題や反応性エツチングガス
による汚染の問題がない。さらに、トンネル接合部と周
凹の絶縁体層35を平坦化することによって、プラズマ
クリーニングやプラズマ酸化時に発生する絶縁体層34
によるトンネル接合部の汚染を減少できる。
Furthermore, since the tunnel junction is not exposed to the etching atmosphere, there is no problem of damage to the surface or contamination by reactive etching gas. Furthermore, by flattening the tunnel junction and the insulator layer 35 in the circumferential recess, the insulator layer 35 generated during plasma cleaning and plasma oxidation can be removed.
contamination of tunnel junctions due to

次に本発明の一芙施例を示す。Next, one embodiment of the present invention will be shown.

表面が熱酸化Sin、で被接され罠シリコン(si’)
基板上に、電子ビーム蒸着法により基板湿度300℃で
Nbl1!2000A120℃で金−船−インジウム合
金(Au −Pb−In) 2000λを連続被着する
Trap silicon (si') whose surface is coated with thermally oxidized Sin
On the substrate, Nbl1!2000A is continuously deposited by electron beam evaporation at a substrate humidity of 300°C and 2000λ of gold-particle-indium alloy (Au-Pb-In) at 120°C.

この膜上にポジ型ホトレジスト(ンノプレー社製AZ 
1350 J )を用いた通常のホトレジスト工程でレ
ジストマスクを形成し、アルゴン(Ar)’にエツチン
グカスとするイオンエツチング法でNb 。
A positive photoresist (AZ manufactured by Nnopre Co., Ltd.) is applied on this film.
A resist mask is formed using a normal photoresist process using 1350 J), and Nb is etched using an ion etching method using argon (Ar) as an etching residue.

Pbの2層膜を加工して下部の超伝導体電極を形成する
。次にこの電極上のトンネル接合部となる部分に直径2
μm 膜厚15μmのレジストマスクを形成した後、A
rを用いたイオンエツチング法でPb膜をエツチング除
去する。AZ1350J。
The two-layer Pb film is processed to form a lower superconductor electrode. Next, place a diameter of 2 mm on the part that will become the tunnel junction on this electrode.
μm After forming a resist mask with a film thickness of 15 μm, A
The Pb film is etched away by an ion etching method using r. AZ1350J.

Nb膜に対するPb膜のエツチング速度比はそれぞれ1
1.15であるため、レジストマスクに対するパターン
寸法変化を生じることな(Pb膜を選択的にエツチング
することができる。次に基板全面に電子ビーム蒸着法に
よりSiOを2000′A被着した後、レジストマスク
をアセトン中の超音波洗浄でリフトオフする15次にク
ロロベンゼン処理を用いて基板上にアンダーカット形状
のレジストマスクを形成する、この基板をAr雰囲気中
でプラズマクリーニングし7た後、紳酸素02によるプ
ラズマ酸化法で20〜30Xのトン魚ル接合層を形成す
る。引続き、真空を保持したまま鉛−ビスマス合金(P
b−Bi)  を6000!蒸着L、リフトオフして上
部の超伝導体電極を形成する。
The etching rate ratio of the Pb film to the Nb film is 1.
1.15, the Pb film can be selectively etched without causing pattern dimension changes with respect to the resist mask.Next, after depositing SiO at 2000'A on the entire surface of the substrate by electron beam evaporation, The resist mask is lifted off by ultrasonic cleaning in acetone. 15 Next, a resist mask with an undercut shape is formed on the substrate using chlorobenzene treatment. After plasma cleaning of this substrate in an Ar atmosphere, 7 A 20 to 30X thick bonding layer is formed using the plasma oxidation method.Subsequently, a lead-bismuth alloy (P
b-Bi) 6000! Deposit L and lift off to form the upper superconductor electrode.

本実施例では、第1の超伝導体電極、第2の超伝導体電
極としてそれぞれNb、 Au−Pb−Inを用いた場
合について説明しだが、エツチング法およびエツチング
カスの選択により他の超伝導体の組合せが可能である。
In this example, the case where Nb and Au-Pb-In are used as the first superconductor electrode and the second superconductor electrode, respectively, is explained, but other superconductors may be used depending on the etching method and etching residue selection. Any combination of bodies is possible.

上部電極にはPb−B1を用いたが、他の超伝導体材料
を用いることもできる。
Although Pb-B1 was used for the upper electrode, other superconductor materials may also be used.

このバターニングにエツチング法が適用できることは言
うまでもない。また、本実施例でにトン・ネル接合部を
形成するためのレジストマスクと1.てAZ1350J
を使用しだが、他の有機レジスト、無機レジスト、さら
にはこれらのレジストの転υにより形成したよりエツチ
ング耐性のある金属マスクなども用いることができる。
Needless to say, the etching method can be applied to this buttering. In addition, in this embodiment, a resist mask for forming a tunnel junction and 1. AZ1350J
However, other organic resists, inorganic resists, and even more etching-resistant metal masks formed by inversion of these resists can also be used.

以上説明したように本発明によれば、トンネル接合部以
外の部分を異方性エツチングすることによってトンネル
接合部を規定するため、高精度でしかもエツチングによ
る汚染のないトンネル接合部を得ることができる。さら
に、トンネル接合部近傍を平坦化できるため、プラズマ
クリーニングやプラズマ酸化時に周囲の絶縁体層のスパ
ッタによって生じるトンネル接合部の汚染を低減できる
1゜
As explained above, according to the present invention, since the tunnel junction is defined by anisotropically etching the portion other than the tunnel junction, it is possible to obtain a tunnel junction with high precision and without contamination due to etching. . Furthermore, since the area near the tunnel junction can be flattened, contamination of the tunnel junction caused by sputtering of the surrounding insulator layer during plasma cleaning or plasma oxidation can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) −(f)、第2図(a)、 −(f)は
従来のジョセフソン接合素子の製造方法を工程順に説明
するための素子断面図、第3図(a)〜(f)は本発明
のジョセフソン接合素子の製造方法を説明するだめの主
要工程における素子断面図である。 図において、11,21.31は基板、12゜22は下
部の超伝導体電極、13,24.34はレジストマスク
、14,23.35は絶縁体層、15.25.36はト
ンネル接合層、16,26゜37は上部の超伝導体’K
M、32は第1の超伝導体電極、33は第2の超伝導体
電極である。 丈− 男1図
FIGS. 1(a)-(f), FIGS. 2(a),-(f) are device cross-sectional views for explaining the conventional Josephson junction device manufacturing method in the order of steps, and FIGS. 3(a)-(f). (f) is a cross-sectional view of the device at the main steps for explaining the method for manufacturing the Josephson junction device of the present invention. In the figure, 11, 21, 31 are the substrate, 12, 22 are the lower superconductor electrodes, 13, 24, 34 are resist masks, 14, 23, 35 are insulator layers, 15, 25, 36 are tunnel junction layers , 16,26°37 is the upper superconductor 'K
M, 32 is a first superconductor electrode, and 33 is a second superconductor electrode. Length - Male 1 figure

Claims (1)

【特許請求の範囲】[Claims] 基板上に下部の超伝導体電極と前記下部の超伝導体電極
の一表面上のトンネル接合層、およびiII記トンネル
接合層を介して前記下部の超伝導体電極と対向する上部
の超伝導体電極を有するジョセフソン接合素子の製造方
法において、基板上に下部の超伝導体電極として第1の
超伝導体電極と該第1の超伝導体電極に対[7て選択的
にエツチングされる第2の超伝導体電極から成る21m
’ti極を形成する工程、次に前記第2の超伝導体Vt
w上のトンネル接合部となる領域にレジストマスクを形
成した後、前記第2の超伝導体電極をエツチング除失す
る工程、引続き絶縁体層を被着、リフトオフすることに
よって前記第2の超伝導体電極の被エツチング部を埋め
る工程、次に前記トンネル接合部に前記トンネル接合層
を形成する工程、次に前記トンネル接合層と接触するよ
うに前記上部の超伝導体電極を形成する工程を具備する
ことを特徴とするジョセフソン接合素子の製造方法。
A lower superconductor electrode on a substrate, a tunnel junction layer on one surface of the lower superconductor electrode, and an upper superconductor facing the lower superconductor electrode via the tunnel junction layer iii. In a method of manufacturing a Josephson junction device having an electrode, a first superconductor electrode is formed on a substrate as a lower superconductor electrode, and a first superconductor electrode is selectively etched with respect to the first superconductor electrode. 21m consisting of 2 superconductor electrodes
'ti pole forming step, then the second superconductor Vt
After forming a resist mask in the region that will become the tunnel junction on w, the second superconductor electrode is removed by etching, and then an insulator layer is deposited and lifted off to form the second superconductor electrode. burying the etched portion of the body electrode, then forming the tunnel junction layer at the tunnel junction, and then forming the upper superconductor electrode so as to be in contact with the tunnel junction layer. A method for manufacturing a Josephson junction element, characterized by:
JP57092753A 1982-05-31 1982-05-31 Manufacture of josephson junction element Pending JPS58209183A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57092753A JPS58209183A (en) 1982-05-31 1982-05-31 Manufacture of josephson junction element
EP83105381A EP0095773B1 (en) 1982-05-31 1983-05-31 Method of producing josephson tunnel barrier
DE8383105381T DE3370901D1 (en) 1982-05-31 1983-05-31 Method of producing josephson tunnel barrier
US06/499,553 US4548834A (en) 1982-05-31 1983-05-31 Method of producing a Josephson tunnel barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57092753A JPS58209183A (en) 1982-05-31 1982-05-31 Manufacture of josephson junction element

Publications (1)

Publication Number Publication Date
JPS58209183A true JPS58209183A (en) 1983-12-06

Family

ID=14063172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57092753A Pending JPS58209183A (en) 1982-05-31 1982-05-31 Manufacture of josephson junction element

Country Status (1)

Country Link
JP (1) JPS58209183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174783A (en) * 1985-01-30 1986-08-06 Agency Of Ind Science & Technol Manufacture of superconducting circuit device
JPS6233485A (en) * 1985-08-07 1987-02-13 Agency Of Ind Science & Technol Fabrication of flat josephson junction element
JPS62195190A (en) * 1986-02-21 1987-08-27 Agency Of Ind Science & Technol Formation of planar type josephson junction device
JPH05145062A (en) * 1991-11-18 1993-06-11 Nec Corp Manufacture of single electron transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174783A (en) * 1985-01-30 1986-08-06 Agency Of Ind Science & Technol Manufacture of superconducting circuit device
JPH0374512B2 (en) * 1985-01-30 1991-11-27
JPS6233485A (en) * 1985-08-07 1987-02-13 Agency Of Ind Science & Technol Fabrication of flat josephson junction element
JPH0513395B2 (en) * 1985-08-07 1993-02-22 Kogyo Gijutsuin
JPS62195190A (en) * 1986-02-21 1987-08-27 Agency Of Ind Science & Technol Formation of planar type josephson junction device
JPH05145062A (en) * 1991-11-18 1993-06-11 Nec Corp Manufacture of single electron transistor

Similar Documents

Publication Publication Date Title
US5369053A (en) Method for patterning aluminum metallizations
JPS58200586A (en) Josephson tunnel junction device of niob-insultor-niob and method of producing same
JPS58202545A (en) Manufacture of semiconductor device
JPS58209183A (en) Manufacture of josephson junction element
US5427982A (en) Method for fabricating a semiconductor device
JPS60208873A (en) Manufacture of josephson junction element
JPS58209176A (en) Manufacture of josephson junction element
JPS58209184A (en) Manufacture of josephson junction element
JPS58209181A (en) Manufacture of josephson junction element
JPS60208875A (en) Manufacture of josephson junction element
JPS61144083A (en) Forming method of josephson junction element
JPS58209179A (en) Manufacture of josephson junction element
JPS60208874A (en) Manufacture of josephson junction element
JPS59104143A (en) Forming method for wiring
JPS61263179A (en) Manufacture of josephson junction element
JPS60210887A (en) Manufacture of josephson junction element
JPS61272981A (en) Manufacture of josephson device
JPS6029234B2 (en) Microbridge type Josephson device, its manufacturing method, and its manufacturing device
JPS6147679A (en) Production of josephson junction element
JPS58209180A (en) Manufacture of josephson junction element
JPS6167975A (en) Manufacture of josephson junction element
JPS58209182A (en) Manufacture of josephson junction element
JPH0481876B2 (en)
JPS6074489A (en) Formation of superconductive ground contact
JPS62224988A (en) Manufacture of tunnel type josephson device