JPS60208875A - Manufacture of josephson junction element - Google Patents

Manufacture of josephson junction element

Info

Publication number
JPS60208875A
JPS60208875A JP59066302A JP6630284A JPS60208875A JP S60208875 A JPS60208875 A JP S60208875A JP 59066302 A JP59066302 A JP 59066302A JP 6630284 A JP6630284 A JP 6630284A JP S60208875 A JPS60208875 A JP S60208875A
Authority
JP
Japan
Prior art keywords
electrode
tunnel barrier
layer
resist mask
superconducting electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59066302A
Other languages
Japanese (ja)
Inventor
Hisanao Tsuge
拓植 久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59066302A priority Critical patent/JPS60208875A/en
Publication of JPS60208875A publication Critical patent/JPS60208875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enhance dimensional accuracy, to eliminate different in steps completely and to prevent short circuits caused by a poor step coverage, by forming a tunnel barrier part by anisotropic etching. CONSTITUTION:On an insulating substrate 11, three-layer films, i.e., a first super- conductive electrode 12 of Nb, a tunnel barrier layer 15 and a second superconductive electrode 21 of Pb, are formed. A first insulator layer 23 comprising SiO and the like having good directivity is deposited on the entire surface of the substrate. Then a resist mask 22 is lifted off. Thereafter, a resist mask 24 is formed at a place, which is to become a tunnel barrier part on the second superconductive electrode 21. The second superconductive electrode 21 is completely etched by an ion etching method. The interface part between the first superconductive electrode 12 and the first insulator layer 23 is flattened. Then a second insulator layer 25, whose thickness is the same as that of the second superconductive electrode 21, is deposited. The resist mask 24 is lifted off and a pattern is formed. Thereafter a third superconductive electrode 26 is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はジョセフソン接合素子の製造方法に関し、特に
段差部分をなくしたトンネル障壁層のジョセフソン接合
素子の製造方法に関するものである0 (従来技術とその問題点) 一般に、ジョセフソン接合素子から構成される論理回路
や記憶回路には、接合特性が優れ、この特性の各素子間
でのばらつきが小さく、シかも熱サイクルによる特性劣
化の小さい素子が要求される。これら優れた接合特性と
高信頼性という両方の集積化条件を満たす素子として、
第1の超伝導体電極にニオブ(Nb)またはNb化合物
を、第2の超伝導体電極に鉛(pb )またはPb合金
を用いたものが注目されている。しかしながら、このP
b系材料は化学的に不安定であるため、従来このパー 
ターニング方法としてはリフトオフ法に限られていた。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a Josephson junction device, and more particularly to a method for manufacturing a Josephson junction device having a tunnel barrier layer that eliminates step portions. Technology and its problems) In general, logic circuits and memory circuits made of Josephson junction elements have excellent junction characteristics, small variations in these characteristics between elements, and little characteristic deterioration due to thermal cycles. element is required. As an element that satisfies both the integration requirements of these excellent bonding characteristics and high reliability,
A method using niobium (Nb) or a Nb compound for the first superconductor electrode and lead (pb) or a Pb alloy for the second superconductor electrode is attracting attention. However, this P
Since b-based materials are chemically unstable, this type of material has traditionally been
The turning method was limited to the lift-off method.

従来例として、H+・F−Broom等にjって198
0年10月に米国雑誌” IEEB Transact
ions onElectron Devices ”
の第ED−27巻第10号1998〜2008頁に発表
された論文などがある。
As a conventional example, J is 198 for H+, F-Broom, etc.
US magazine in October 2009” IEEB Transact
ions on Electron Devices”
There are papers published in Vol. ED-27, No. 10, pp. 1998-2008.

この論文方法を第1図(a)〜(f)の断面図を用いて
工程順に説明する。
This paper method will be explained step by step using cross-sectional views of FIGS. 1(a) to 1(f).

まず、第1図(a)に示すように、絶縁体基板あるいは
表面に絶縁体層を有する基板11上に、蒸着法やスバ、
り法によfiNbからなる第1の超伝導体電極12を形
成する。第1の超伝導体電極12のパターニングは通常
のホトレジスト工程ヲ用いた工、チング法やリフトオフ
法で行なう。次に第1図(b)に示すように第1の超伝
導体電極12上のトンネル障壁部となる部分にアンダー
カット形状のレジストマスク13を形成し、第1図(切
に示すように基板表面に蒸着法などの指向性の良い成膜
法で一酸化ケイ素(8i0)、二酸化ケイ素(Sin、
)等からなる絶縁体層14を被着し、引続きす7トオ7
すると第1図(d)に示すような開口部をもつトンネル
障壁部が形成される。アンダーカット形状のレジストマ
スク13は通常のホトレジスト工程に加え、露光前また
は露光後にクロロベンゼンやブロモベンゼンなどの有機
溶剤に浸すことによって得られる。次に、第1図(e)
に示すように熱酸化法あるいはプラズマ酸化法でトンネ
ル障壁部に数10に厚さのトンネル障壁層15を形成す
る。この後、第1図(f)に示すように、蒸着法および
リフトオフ法で第2の超伝導体電極16を形成する。
First, as shown in FIG. 1(a), an insulating substrate or a substrate 11 having an insulating layer on its surface is coated with a vapor deposition method or a substrate 11.
A first superconductor electrode 12 made of fiNb is formed by a method. Patterning of the first superconductor electrode 12 is performed using a conventional photoresist process, a ching method, or a lift-off method. Next, as shown in FIG. 1(b), an undercut-shaped resist mask 13 is formed on the portion of the first superconductor electrode 12 that will become the tunnel barrier portion, and as shown in FIG. Silicon monoxide (8i0), silicon dioxide (Sin,
) etc., and then the insulating layer 14 made of
Then, a tunnel barrier section having an opening as shown in FIG. 1(d) is formed. The undercut-shaped resist mask 13 can be obtained not only by a normal photoresist process but also by immersion in an organic solvent such as chlorobenzene or bromobenzene before or after exposure. Next, Figure 1(e)
As shown in FIG. 2, a tunnel barrier layer 15 having a thickness of several tens of times is formed in the tunnel barrier portion by thermal oxidation or plasma oxidation. Thereafter, as shown in FIG. 1(f), a second superconductor electrode 16 is formed by a vapor deposition method and a lift-off method.

この製造方法は、トンネル障壁部の形成にアンダーカッ
ト形状のレジストマスク13を必要とするが、このマス
クの形状はレジストのズリベーク条件や有機溶剤の液温
、ディ、プ時間などの影響を受けやすい。特に、トンネ
ル障壁部の有効面積を規定するレジストマスク13下部
の寸法を精度よく得ることは非常に難しい。また、トン
ネル障壁部のスバ、タクリーニングやプラズマ酸化時に
、絶縁体層14からのスバ、り物にょシトンネル障壁部
が汚染されるという問題がある。さらに、第1の超伝導
体電極12のパターンエツジ部では、絶縁体層14や第
2の超伝導体電極16のステ。
This manufacturing method requires an undercut-shaped resist mask 13 to form the tunnel barrier portion, but the shape of this mask is easily influenced by resist shear baking conditions, organic solvent temperature, dipping time, etc. . In particular, it is very difficult to accurately obtain the dimensions of the lower part of the resist mask 13 that define the effective area of the tunnel barrier section. Further, there is a problem in that the tunnel barrier section is contaminated by the substrate from the insulating layer 14 during cleaning or plasma oxidation of the tunnel barrier section. Further, at the pattern edge portion of the first superconductor electrode 12, the insulator layer 14 and the step of the second superconductor electrode 16 are formed.

プカバレッジが不充分なために、種々の素子特性の悪化
の問題を生じたシ、第1の超伝導体電極12と第2の超
伝導体電極16がショートしたシ、第2の超伝導体電極
16に弱結合部が発生したりする欠点があった。
The first superconductor electrode 12 and the second superconductor electrode 16 were short-circuited, and the second superconductor electrode There was a drawback that a weak coupling portion was generated in the electrode 16.

(発明の目的) 本発明の目的は、このような従来の欠点を取除き、段差
部をなくシ、寸法精度よくトンネル障壁部を形成できる
ジョセフソン接合素子の製造方法を提供することにある
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a Josephson junction element that eliminates such conventional drawbacks, eliminates step portions, and forms a tunnel barrier portion with high dimensional accuracy.

(発明の構成) 本発明のジョセフソン接合素子の製造方法の構成は、基
板上にNbまたはNb化合物からなる所定パターンの第
1の超電導電極、この第1の超電導電極上にトンネル障
壁層、このトンネル障壁層上にpbまたはPb合金から
なる第2の超電導電極の三層膜を連続して形成する第1
の工程と、前記三層i上t−レジストマスクで覆りて前
記第2の超電導電極と同じ厚さの第1の絶縁体層を被着
しそのレジストマスクを除く第2の工程と、前記第2の
超電導電極上のトンネル障壁層となる個所にエツチング
マスクを形成しこのエツチングマスク以外の個所の第2
の超電導電極部分をエツチングする第3の工程と、前記
第2の超電導電極の被エツチング部と前記第1の絶縁体
層とを埋めるように第2の絶縁体層を被着しその後前記
エツチングマスクを除く第4の工程と、前記第2の超電
導電極と接触する個所を含んで前記第2の絶縁本層上に
第3の超電導電極を被着する第5の工程とを備えること
を特徴とする。
(Structure of the Invention) The structure of the method for manufacturing a Josephson junction element of the present invention is such that a first superconducting electrode of a predetermined pattern made of Nb or a Nb compound is formed on a substrate, a tunnel barrier layer is formed on the first superconducting electrode, and a tunnel barrier layer is formed on the first superconducting electrode. A first step in which a three-layer film of a second superconducting electrode made of pb or a Pb alloy is successively formed on the tunnel barrier layer.
a second step of covering the three layers i with a T-resist mask and depositing a first insulator layer having the same thickness as the second superconducting electrode and removing the resist mask; An etching mask is formed at a location on the second superconducting electrode that will become a tunnel barrier layer, and a second etching mask is formed at a location other than this etching mask.
a third step of etching the superconducting electrode portion of the second superconducting electrode; depositing a second insulating layer so as to fill the etched portion of the second superconducting electrode and the first insulating layer; and then etching the etching mask; and a fifth step of depositing a third superconducting electrode on the second insulating main layer including a portion that contacts the second superconducting electrode. do.

(実施例) 以下本発明を図面によシ詳細に説明する。(Example) The present invention will be explained in detail below with reference to the drawings.

第2図(a)〜(1)は本発明の実施側音工程順に説明
する素子の断面図でろる0まず、第2図(a)に示すよ
うに、絶縁体基板あるいは表面に絶縁体層を有する基板
11上に、NbまたはNb化合物でなる第1の超伝導体
電極12.トンネル障壁層15.PbまたはPb合金で
なる第2の超伝導体電極2103層膜を形成する。これ
ら第1および第2の超伝導体電極21は蒸着法またはス
パッタ法で被着され、トンネル障壁層15は$1の超伝
導体電極12は通常のレジスト工程を用いて、第2図(
b)に示すようにイオンエツチング法や反応性スバツタ
エ。
FIGS. 2(a) to (1) are cross-sectional views of an element to be explained in order of implementation process of the present invention. First, as shown in FIG. 2(a), an insulating substrate or an insulating layer on the surface A first superconductor electrode 12 made of Nb or a Nb compound is disposed on a substrate 11 having a first superconductor electrode 12 . Tunnel barrier layer 15. A second superconductor electrode 2103 layer film made of Pb or Pb alloy is formed. These first and second superconductor electrodes 21 are deposited by vapor deposition or sputtering, and the tunnel barrier layer 15 is deposited using a normal resist process.
b) As shown in ion etching method and reactive etching method.

チング法でパターニングする。引続き第2図(C)に示
すように、基板全面に蒸着法やイオンビームデポジショ
ン法などの指向性の良い成膜法で8i0゜8i0.等か
らなる第1の絶縁体層23を被着する。
Patterning is done using the cutting method. Subsequently, as shown in FIG. 2(C), a film of 8i0°8i0. A first insulating layer 23 consisting of etc. is deposited.

この膜厚は後述するように最適化しである。次に第2図
(d)に示すように、レジストマスク22金リフトオフ
した後、第2図(e)のように、第2の超伝導体電極2
1上のトンネル障壁部となる場所にレジストマスク24
を形成し、第2図(f)に示すようにイオンエツチング
法で第2の超伝導体電極21を完全にエツチングし、第
1の超伝導体電極12と第1の絶縁体層23の境界部を
平坦化する。ここで、レジストマスク22の膜厚は、エ
ツチング後のレジストマスク22の側壁に再付着物音生
じないように最適化しておく。
This film thickness is optimized as described later. Next, as shown in FIG. 2(d), after lift-off of the resist mask 22 gold, as shown in FIG. 2(e), the second superconductor electrode 2 is removed.
A resist mask 24 is placed on the area that will become the tunnel barrier section on 1.
As shown in FIG. 2(f), the second superconductor electrode 21 is completely etched by ion etching to remove the boundary between the first superconductor electrode 12 and the first insulator layer flatten the area. Here, the film thickness of the resist mask 22 is optimized so as not to cause the sound of re-deposition on the side wall of the resist mask 22 after etching.

第2の超伝導体電極21と第1の絶縁体層23の各エツ
チング速度をそれぞれr、、rlとし、第1の超伝導体
電極12と第2の超伝導体電極21の膜厚をそれぞれd
sl、 d*2とすれば、被着すべき第1の絶縁体層2
3の膜厚diは、次式の関係にあるよう選ばれる。
Let the etching rates of the second superconductor electrode 21 and the first insulator layer 23 be r, , rl, respectively, and the film thicknesses of the first superconductor electrode 12 and the second superconductor electrode 21, respectively. d
sl, d*2, the first insulator layer 2 to be deposited
The film thickness di of No. 3 is selected so as to satisfy the following relationship.

dI= dst + −ds2 ・−・(i)S 次に、第2図(g)に示すように第1の絶縁体層23と
同様な方法で、第2の超伝導体電極21と同じ厚さの第
2の絶縁体層25を被着する。レジストマスク24をリ
フトオフして、第2図(、h)のようなバター/を形成
する。この後第2図(i)に示すように、第1の超伝導
体電極12.第2の超伝導体電極21の場合と同様な成
膜法および加工法により、第3の超伝導体電極26を形
成する。
dI = dst + -ds2 ·- · (i) S Next, as shown in FIG. A second insulator layer 25 is applied. The resist mask 24 is lifted off to form a butter pattern as shown in FIG. 2(h). After this, as shown in FIG. 2(i), the first superconductor electrode 12. The third superconductor electrode 26 is formed using the same film forming method and processing method as in the case of the second superconductor electrode 21.

この製造方法によれば、トンネル障壁部を形成する際に
再現性の良い矩形レジストマスクが利用できること、イ
オンエツチング法によシレジストマスク22から第2の
超伝導体電極21への高精度のパターン転写が可能であ
ることから、従来のり7トオノ法を用いた方法に比ベト
ンネル障壁部の寸法を制御し易い。また、第1の超伝導
体電極12と第4の絶縁体層23の平坦化により、第1
図のような第1の超伝導体電極12のパターンエ、ジ部
における不充分なステップカバレジを解消して、ショー
トや弱結合部の発生を防止できる。
According to this manufacturing method, a rectangular resist mask with good reproducibility can be used when forming the tunnel barrier portion, and a highly accurate pattern can be formed from the resist mask 22 to the second superconductor electrode 21 by the ion etching method. Since transfer is possible, it is easier to control the dimensions of the tunnel barrier portion compared to the conventional glue method. Furthermore, by flattening the first superconductor electrode 12 and the fourth insulator layer 23, the first
Insufficient step coverage in the pattern edges and edges of the first superconductor electrode 12 as shown in the figure can be resolved, thereby preventing the occurrence of short circuits and weak coupling portions.

(具体例) 次に本発明の詳細な説明する。(Concrete example) Next, the present invention will be explained in detail.

表面が熱酸化SiO2で被覆されたシリコン(Si )
基板(11)上に、゛電子ビーム蒸着法によシ基板温度
300℃でNb膜(12)t−厚さ2oooX被着する
。引続き、同一装置内で2チの酸素(,02)’r含む
アルゴン(Ar)−02混合ガスを用いて、全圧力1 
x I F2Torr 、カソード電圧−170vでN
b膜表面全10分間プラズマ酸化し、20〜30xの酸
化ニオブ(Nb205)膜(15)e形成する0この後
、連続して室温でPb膜(21)を厚さ2000X蒸着
する。この膜上にポジ型ホトレジスト(7ツプレ一社製
AZ 1350J )を用いた通常のホトレジスト工程
で膜厚1,5μmのレジストマスク22を形成した後、
平行平板型のスパッタエツチング装置を用いて、At’
+フロン13 (OF、)でそれぞれPbC21)、 
Nb/Nb20ff(15)全連続工、チングして第1
の超伝導体電極パターンを形成する。次に、基板全面に
電子ビーム蒸着法により 5in(23)i22soX
被着し、レジスト22をアセトン中の超音波洗浄でリフ
トオフする。次に3層膜12゜15.21上のトンネル
障壁部となる場所に直径1.5μm、膜厚zoooXの
レジストマスク24全バターニングした後、Ar kエ
ツチングガスとするイオンエツチング法でPb膜(21
)を完全に除去し、第2の超伝導体電極パターンを形成
する。このエツチング条件は、Ar圧力2 x 10−
’ Torr、加速電圧5oov、電流密度0.9 m
A/cm2である。
Silicon (Si) whose surface is coated with thermally oxidized SiO2
On the substrate (11), a Nb film (12) is deposited to a thickness of 200X by electron beam evaporation at a substrate temperature of 300°C. Subsequently, in the same apparatus, using an argon (Ar)-02 mixed gas containing 2 g of oxygen (,02)'r, a total pressure of 1
x I F2Torr, N at cathode voltage -170v
b Plasma oxidize the entire surface of the film for 10 minutes to form a 20-30x niobium oxide (Nb205) film (15)e. After this, a Pb film (21) is continuously vapor-deposited at room temperature to a thickness of 2000x. After forming a resist mask 22 with a film thickness of 1.5 μm on this film by a normal photoresist process using a positive type photoresist (AZ 1350J manufactured by 7 Tsupre-Ichi Co., Ltd.),
At'
+ Freon 13 (OF, ) and PbC21), respectively
Nb/Nb20ff (15) Fully continuous machining, 1st
form a superconductor electrode pattern. Next, 5in (23) i22soX was deposited on the entire surface of the substrate by electron beam evaporation.
The resist 22 is lifted off by ultrasonic cleaning in acetone. Next, after patterning the entire resist mask 24 with a diameter of 1.5 μm and a film thickness of zoooX at the location on the three-layer film 12゜15.21 that will become the tunnel barrier, the Pb film ( 21
) is completely removed to form a second superconductor electrode pattern. This etching condition is Ar pressure 2 x 10-
' Torr, acceleration voltage 5oov, current density 0.9 m
A/cm2.

8i0に対するPbのエツチング速度比は7.5である
から、(1)式から明らかなように、第1の絶縁体層2
3は約250X工、チングされる。この結果、第1の超
伝導体電極12と第1の絶縁体層23の膜厚は共に2o
ooXとなシ完全に平坦化が達成される。
Since the etching rate ratio of Pb to 8i0 is 7.5, as is clear from equation (1), the first insulating layer 2
3 is approximately 250X work. As a result, the film thicknesses of the first superconductor electrode 12 and the first insulator layer 23 are both 20
Complete flattening is achieved with ooX.

次に、第1の絶縁体層23と同様な方法で8i0(25
)を2oooX被着し、レジストマスク24をリフトオ
フする。
Next, 8i0 (25
) and lift off the resist mask 24.

この基板表面iArでスパッタクリーニングした後、第
2の超伝導体電極パターン形成と同様な方法で3ooo
XのPb膜からなる第3の超伝導体電極26を形成する
After sputter cleaning the surface of this substrate with iAr, 3ooo
A third superconductor electrode 26 made of a Pb film of X is formed.

この製造方法によれば、第2の超伝導体電極21のパタ
ーニングの際、AZ1350Jに対するPbのエツチン
グ速度比が13〜14と非常に大きく、しかも異方性エ
ツチングが可能なため、レジストマスクに対するトンネ
ル障壁部のパターン寸法変化をほとんど生じない。また
、Pbは超伝導体電極であるNb、下地絶縁層5in2
に対してもそれぞれ13〜14,7〜8と大きなエツチ
ング速度比をもつため、Pbの選択エツチングが可能で
ある。
According to this manufacturing method, when patterning the second superconductor electrode 21, the etching rate ratio of Pb to AZ1350J is as large as 13 to 14, and anisotropic etching is possible. There is almost no change in the pattern dimensions of the barrier section. In addition, Pb is a superconductor electrode, Nb is a base insulating layer 5in2
Since the etching rate ratio is large, 13 to 14 and 7 to 8, respectively, selective etching of Pb is possible.

なお、この具体例では、第3の超伝導体電極までを形成
するプロセスについて述べたが、全く同様な方法の繰返
しでさらに多層の素子の段差解消を行なうことができる
。また、第1の超伝導体電極12としてNb i 、第
2および第3の超伝導体電極21.26としてPbi用
いた場合について説明したが、それぞれNb化合物、 
Pb合金でも同様な結果が得られる。また、第3の超伝
導体電極26にはNbあるいはNb化合物を用いること
もできる。また、トンネル障壁層15には第1の超伝導
体電極21の表面の酸化層以外に、被着により形成した
絶縁体層、トンネル障壁層15を酸化する場合には金属
層、半導体層も適用できる0さらにトンネル障壁部全形
成するためのマスクとしてAZ1350Jを使用したが
、他の有機レジスト。
In this specific example, the process of forming up to the third superconductor electrode has been described, but by repeating exactly the same method, steps in a multilayer device can be further eliminated. Furthermore, although a case has been described in which Nb i is used as the first superconductor electrode 12 and Pbi is used as the second and third superconductor electrodes 21.26, Nb compounds,
Similar results can be obtained with Pb alloys. Further, Nb or a Nb compound can also be used for the third superconductor electrode 26. In addition to the oxidized layer on the surface of the first superconductor electrode 21, the tunnel barrier layer 15 may include an insulator layer formed by deposition, a metal layer, and a semiconductor layer when the tunnel barrier layer 15 is oxidized. Although AZ1350J was used as a mask to form the entire tunnel barrier section, other organic resists could also be used.

無機レジストなども用いることができる。また、イオン
エツチング法では、Pbは電子ビームレジストに対して
も非常に大きなエツチング速度比をもつため、1μm程
度の微細パターンの加工にはこの電子ビームレジストが
有効である。
Inorganic resists can also be used. Furthermore, in the ion etching method, since Pb has a very high etching rate ratio compared to the electron beam resist, the electron beam resist is effective for processing fine patterns of about 1 μm.

(発明の効果) 以上説明したように、本発明によれば、トンネル障壁部
を異方性エツチングで形成するので、寸法精度の良いト
ンネル障壁部を有するジョセフソン接合素子全製造する
ことができる。また、完全に段差を解消できるので不充
分なステップヵバレ、ジに起因するショートや弱結合部
の発生などの問題を解決できる。
(Effects of the Invention) As described above, according to the present invention, since the tunnel barrier portion is formed by anisotropic etching, all Josephson junction elements having tunnel barrier portions with high dimensional accuracy can be manufactured. In addition, since the step can be completely eliminated, problems such as insufficient step coverage and the occurrence of short circuits and weak connections due to gaps can be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は従来のジョセフソン接合素子の
製造方法全工程順に説明する断面図、第2図(a)〜(
i)は本発明の実施例を工程順に説明する素子の断面図
である。図において 11・・・・・・基板、12・・・・・・第1の超伝導
体電極、13.22.24・旧・・レジストマスク、1
4・・・・・・絶縁体層、15・・・・・・トンネル障
壁層、16.21・・・・・・第2の超伝導体電極、2
3・・・・・・第1の絶縁体層、25・・・・・・第2
の絶縁体層、26・・・・・・第3の超第7図 (ct)
FIGS. 1(a) to (f) are cross-sectional views explaining the conventional Josephson junction device manufacturing method in order of all steps, and FIGS. 2(a) to (f)
i) is a sectional view of an element explaining an example of the present invention in the order of steps; In the figure, 11...Substrate, 12...First superconductor electrode, 13.22.24.Old...Resist mask, 1
4... Insulator layer, 15... Tunnel barrier layer, 16.21... Second superconductor electrode, 2
3...First insulator layer, 25...Second
Insulator layer, 26...Third super Figure 7 (ct)

Claims (1)

【特許請求の範囲】[Claims] 基板上にNbまたはNb化合物からなる所定パターンの
第1の超電導電極、この第1の超電導電極上にトンネル
障壁層、このトンネル障壁層上にPbまたはPb合金か
らなる第2の超電導電極の三層膜を連続して形成する第
1の工程と、前記三層膜上をレジストマスクで覆って前
記第2の超電導電極と同じ厚さの第1の絶縁体層を被着
しそのレジストマスクを除く第2の工程と、前記第2の
超電導電極上のトンネル障壁部となる個所に工、チング
マスクを形成しこのエツチングマスク以外の個所の第2
の超電導電極部分を工、チングする第3の工程と、前記
第2の超電導電極の被エツチング部と前記第1の絶縁体
層とを埋めるように第2の絶縁体層を被着しその後前記
工、チングマスクを除く第4の工程と、前記第2の超電
導電極と接触する個所を含んで前記第2の絶縁体層上に
第3の超電導電極を被着する第5の工程とを備えること
を特徴とするジョセフソン接合素子の製造方法。
Three layers: a first superconducting electrode in a predetermined pattern made of Nb or a Nb compound on a substrate, a tunnel barrier layer on this first superconducting electrode, and a second superconducting electrode made of Pb or a Pb alloy on this tunnel barrier layer. A first step of continuously forming a film, and covering the three-layer film with a resist mask, depositing a first insulating layer having the same thickness as the second superconducting electrode, and removing the resist mask. In the second step, an etching mask is formed at a portion of the second superconducting electrode that will become a tunnel barrier portion, and a second etching mask is formed at a portion other than this etching mask.
a third step of etching and etching the superconducting electrode portion of the second superconducting electrode, and depositing a second insulating layer so as to fill the etched portion of the second superconducting electrode and the first insulating layer; and a fifth step of depositing a third superconducting electrode on the second insulator layer including a portion that contacts the second superconducting electrode. A method for manufacturing a Josephson junction element, characterized by:
JP59066302A 1984-04-03 1984-04-03 Manufacture of josephson junction element Pending JPS60208875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066302A JPS60208875A (en) 1984-04-03 1984-04-03 Manufacture of josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066302A JPS60208875A (en) 1984-04-03 1984-04-03 Manufacture of josephson junction element

Publications (1)

Publication Number Publication Date
JPS60208875A true JPS60208875A (en) 1985-10-21

Family

ID=13311873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066302A Pending JPS60208875A (en) 1984-04-03 1984-04-03 Manufacture of josephson junction element

Country Status (1)

Country Link
JP (1) JPS60208875A (en)

Similar Documents

Publication Publication Date Title
US5369053A (en) Method for patterning aluminum metallizations
JPS58200586A (en) Josephson tunnel junction device of niob-insultor-niob and method of producing same
JPS60208875A (en) Manufacture of josephson junction element
JPS60208873A (en) Manufacture of josephson junction element
JP3200475B2 (en) Method for manufacturing semiconductor device
JPS58209183A (en) Manufacture of josephson junction element
JPS60208874A (en) Manufacture of josephson junction element
JPS60210887A (en) Manufacture of josephson junction element
JPH0511432B2 (en)
JPS6167975A (en) Manufacture of josephson junction element
JPS59104143A (en) Forming method for wiring
JPH0234195B2 (en)
JPS58209184A (en) Manufacture of josephson junction element
JPS6147679A (en) Production of josephson junction element
JPS6143488A (en) Manufacture of superconductive contact
JPS61144892A (en) Production of josephson integrated circuit
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element
JPS6396973A (en) Manufacture of josephson junction element
JP3329148B2 (en) Wiring formation method
JPH0481876B2 (en)
JPS6224677A (en) Formation of ground plane for superconducting circuit
JPS6149437A (en) Semiconductor device
JPS6029234B2 (en) Microbridge type Josephson device, its manufacturing method, and its manufacturing device
JPS63289880A (en) Manufacture of josephson junction device
JPS61272981A (en) Manufacture of josephson device